1
|
He XB, Guo F, Zhang W, Fan J, Le W, Chen Q, Ma Y, Zheng Y, Lee SH, Wang HJ, Wu Y, Zhou Q, Yang R. JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain. Acta Neuropathol Commun 2024; 12:201. [PMID: 39716224 DOI: 10.1186/s40478-024-01912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons. Mice carrying Jmjd3 conditional knockout or undergoing pharmaceutical inhibition of JMJD3 showed consistent reduction of DA content in midbrain and striatum. Histological examination of both mice confirmed that TH and NURR1, two key molecules in DA biosynthesis pathway, were decreased in mDA neurons. Mechanistic experiments in vivo and in vitro further demonstrated that the transcriptions of Th and Nurr1 in mDA neurons were suppressed by JMJD3 deficiency, because of increased repressive H3K27me3 and attenuated bindings of JMJD3 and NURR1 on the promoters of both genes. On behavioral level, a significant prolonged inflammation-induced mechanical hyperalgesia was found in conditional knockout mice regardless of sex and age, whereas motor function appeared to be intact. Our findings establish a novel link between DA level in mDA neurons with intrinsic JMJD3 activity, and suggest prolonged chronic inflammatory pain as a major loss-of-function consequence.
Collapse
Affiliation(s)
- Xi-Biao He
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
| | - Fang Guo
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Fan
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Weidong Le
- Center for Translational Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Qi Chen
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Yongjun Ma
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- The Interdisciplinary Research Center of Biology and Chemistry, Chinese Academy of sciences, Shanghai, 200120, China
| | - Yong Zheng
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yi Wu
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Yang
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| |
Collapse
|
2
|
Gahtani RM, Shoaib S, Hani U, Jayachithra R, Alomary MN, Chauhan W, Jahan R, Tufail S, Ansari MA. Combating Parkinson's disease with plant-derived polyphenols: Targeting oxidative stress and neuroinflammation. Neurochem Int 2024; 178:105798. [PMID: 38950626 DOI: 10.1016/j.neuint.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder predominantly affecting the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra. Reactive oxygen species (ROS) generation plays a central role in the pathogenesis of PD and other neurodegenerative diseases. An imbalance between cellular antioxidant activity and ROS production leads to oxidative stress, contributing to disease progression. Dopamine metabolism, mitochondrial dysfunction, and neuroinflammation in dopaminergic neurons have been implicated in the pathogenesis of Parkinson's disease. Consequently, there is a pressing need for therapeutic interventions capable of scavenging ROS. Current pharmacological approaches, such as L-dihydroxyphenylalanine (levodopa or L-DOPA) and other drugs, provide symptomatic relief but are limited by severe side effects. Researchers worldwide have been exploring alternative compounds with less toxicity to address the multifaceted challenges associated with Parkinson's disease. In recent years, plant-derived polyphenolic compounds have gained significant attention as potential therapeutic agents. These compounds exhibit neuroprotective effects by targeting pathophysiological responses, including oxidative stress and neuroinflammation, in Parkinson's disease. The objective of this review is to summarize the current understanding of the neuroprotective effects of various polyphenols in Parkinson's disease, focusing on their antioxidant and anti-inflammatory properties, and to discuss their potential as therapeutic candidates. This review highlights the progress made in elucidating the molecular mechanisms of action of these polyphenols, identifying potential therapeutic targets, and optimizing their delivery and bioavailability. Well-designed clinical trials are necessary to establish the efficacy and safety of polyphenol-based interventions in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Reem M Gahtani
- Department of clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shoaib Shoaib
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA.
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - R Jayachithra
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saba Tufail
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
3
|
Charkiewicz AE. Is Copper Still Safe for Us? What Do We Know and What Are the Latest Literature Statements? Curr Issues Mol Biol 2024; 46:8441-8463. [PMID: 39194715 DOI: 10.3390/cimb46080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Copper (Cu) is a precious metal and one of the three most abundant trace elements in the body (50-120 mg). It is involved in a large number of cellular mechanisms and pathways and is an essential cofactor in the function of cellular enzymes. Both its excess and deficiency may be harmful for many diseases. Even small changes in Cu concentration may be associated with significant toxicity. Consequently, it can be damaging to any organ or tissue in our body, beginning with harmful effects already at the molecular level and then affecting the degradation of individual tissues/organs and the slow development of many diseases, such as those of the immunological system, skeletal system, circulatory system, nervous system, digestive system, respiratory system, reproductive system, and skin. The main purpose of this article is to review the literature with regard to both the healthiness and toxicity of copper to the human body. A secondary objective is to show its widespread use and sources, including in food and common materials in contact with humans. Its biological half-life from diet is estimated to range from 13 to 33 days. The retention or bioavailability of copper from the diet is influenced by several factors, such as age, amount and form of copper in the diet, lifestyle, and genetic background. The upper limit of normal in serum in healthy adults is approximately 1.5 mg Cu/L, while the safe upper limit of average intake is set at 10-12 mg/day, the reference limit at 0.9 mg/day, and the minimum limit at 0.6-0.7 mg/day. Cu is essential, and in the optimal dose, it provides antioxidant defense, while its deficiency reduces the body's ability to cope with oxidative stress. The development of civilization and the constant, widespread use of Cu in all electrical devices will not be stopped, but the health of people directly related to its extraction, production, or distribution can be controlled, and the inhabitants of nearby towns can be protected. It is extremely difficult to assess the effects of copper on the human body because of its ubiquity and the increasing reports in the literature about its effects, including copper nanoparticles.
Collapse
|
4
|
Molnár Z, Koplányi G, Farkas R, Péli N, Kenéz B, Decsi B, Katona G, Balogh GT, Vértessy BG, Balogh-Weiser D. Immobilization of human tyrosine hydroxylase onto magnetic nanoparticles - A novel formulation of a therapeutic enzyme. Int J Biol Macromol 2024; 268:131939. [PMID: 38692555 DOI: 10.1016/j.ijbiomac.2024.131939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Human tyrosine hydroxylase (hTH) has key role in the production of catecholamine neurotransmitters. The structure, function and regulation of hTH has been extensively researched area and the possibility of enzyme replacement therapy (ERT) involving hTH through nanocarriers has been raised as well. However, our understanding on how hTH may interact with nanocarriers is still lacking. In this work, we attempted to investigate the immobilization of hTH on magnetic nanoparticles (MNPs) with various surface linkers in quantitative and mechanistic detail. Our results showed that the activity of hTH was retained after immobilization via secondary and covalent interactions as well. The colloidal stability of hTH could be also enhanced proved by Dynamic light scattering and Zeta potential analysis and a homogenous enzyme layer could be achieved, which was investigated by Raman mapping. The covalent attachment of hTH on MNPs via aldehyde or epoxy linkers provide irreversible immobilization and 38.1 % and 16.5 % recovery (ER). The hTH-MNPs catalyst had 25 % ER in average in simulated nasal electrolyte solution (SNES). This outcome highlights the relevance of immobilization applying MNPs as a potential formulation tool of sensitive therapeutic enzymes offering new opportunities for ERT related to neurodegenerative disorders.
Collapse
Affiliation(s)
- Zsófia Molnár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Institue of Enzymology, Research Center of Natural Science, Eötvös Loránd Research Network, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Gábor Koplányi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Réka Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Noémi Péli
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Balázs Kenéz
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Balázs Decsi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - György T Balogh
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Beáta G Vértessy
- Institue of Enzymology, Research Center of Natural Science, Eötvös Loránd Research Network, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; Department Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
5
|
Repici A, Capra AP, Hasan A, Bulzomì M, Campolo M, Paterniti I, Esposito E, Ardizzone A. Novel Findings on CCR1 Receptor in CNS Disorders: A Pathogenic Marker Useful in Controlling Neuroimmune and Neuroinflammatory Mechanisms in Parkinson's Disease. Int J Mol Sci 2024; 25:4337. [PMID: 38673922 PMCID: PMC11050472 DOI: 10.3390/ijms25084337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is recognized as the second most common neurodegenerative disease worldwide. Even if PD etiopathogenesis is not yet fully understood, in recent years, it has been advanced that a chronic state of inflammation could play a decisive role in the development of this pathology, establishing the close link between PD and neuroinflammation. In the broad panorama of inflammation and its several signaling pathways, the C-C chemokine receptor type 1 (CCR1) could play a key pathogenic role in PD progression, and could constitute a valuable target for the development of innovative anti-PD therapies. In this study, we probed the neuroprotective properties of the CCR1 antagonist BX471 compound in a mouse model of MPTP-induced nigrostriatal degeneration. BX471 treatments were performed intraperitoneally at a dose of 3 mg/kg, 10 mg/kg, and 30 mg/kg, starting 24 h after the last injection of MPTP and continuing for 7 days. From our data, BX471 treatment strongly blocked CCR1 and, as a result, decreased PD features, also reducing the neuroinflammatory state by regulating glial activation, NF-κB pathway, proinflammatory enzymes, and cytokines overexpression. Moreover, we showed that BX471's antagonistic action on CCR1 reduced the infiltration of immune cells, including mast cells and lymphocyte T activation. In addition, biochemical analyses carried out on serum revealed a considerable increase in circulating levels of CCR1 following MPTP-induced PD. In light of these findings, CCR1 could represent a useful pathological marker of PD, and its targeting could be a worthy candidate for the future development of new immunotherapies against PD.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Maria Bulzomì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.P.C.); (A.H.); (M.B.); (M.C.); (I.P.); (A.A.)
| |
Collapse
|
6
|
Gan QX, Peng MY, Wei HB, Chen LL, Chen XY, Li ZH, An GQ, Ma YT. Gastrodia elata polysaccharide alleviates Parkinson's disease via inhibiting apoptotic and inflammatory signaling pathways and modulating the gut microbiota. Food Funct 2024; 15:2920-2938. [PMID: 38385354 DOI: 10.1039/d3fo05169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) is a common, chronic, and progressive degenerative disease of the central nervous system for which there is no effective treatment. Gastrodia elata is a well-known food and medicine homologous resource with neuroprotective potential. Gastrodia elata polysaccharide (GEP), which is a highly active and safe component in Gastrodia elata, is an important ingredient in the development of functional products. In this study, GEP was administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice over 3 weeks to investigate its neuroprotective effects. The results showed that GEP significantly alleviated the motor dysfunction of PD mice, inhibited the accumulation of α-synuclein, and reduced the loss of dopaminergic neurons in the brain. Moreover, GEP increased the Bcl-2/Bax ratio and decreased the cleaved-caspase-3 level, suggesting that GEP may ameliorate PD by preventing MPTP-induced mitochondrial apoptosis. GEP also significantly inhibited the increase of GFAP and decreased the levels of TNF-α, IL-1β, and IL-6 in the brain of PD mice, which may be the result of the inhibition of neuroinflammation by the inactivation of the TLR4/NF-κB pathway. Furthermore, the neuroprotective effects of GEP involve the gut-brain axis, as it has been shown that GEP regulated the dysbiosis of PD-related gut microbiota such as Akkermansia, Lactobacillus, Bacteroides, Prevotella, and Faecalibacterium, increased the content of microbial metabolites SCFAs in the colon and increased the level of occludin that repairs the intestinal barrier of PD mice. In conclusion, this study is expected to provide a theoretical basis for the development and application of functional products with GEP from the perspective of neuroprotective effects.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Mao-Yao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Hao-Bo Wei
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Lin-Lin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Xiao-Yan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Zi-Han Li
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Guang-Qin An
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Yun-Tong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| |
Collapse
|
7
|
Valvaikar S, Vaidya B, Sharma S, Bishnoi M, Kondepudi KK, Sharma SS. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochem Int 2024; 174:105691. [PMID: 38311217 DOI: 10.1016/j.neuint.2024.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.
Collapse
Affiliation(s)
- Sonali Valvaikar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
8
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Hamdon S, Fernandez-Gonzalez P, Omar MY, González-Sepúlveda M, Ortiz J, Gil C. CHIR99021 causes inactivation of Tyrosine Hydroxylase and depletion of dopamine in rat brain striatum. Neuropharmacology 2024; 242:109759. [PMID: 37844866 DOI: 10.1016/j.neuropharm.2023.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
CHIR99021, also known as laduviglusib or CT99021, is a Glycogen-synthase kinase 3β (GSK3β) inhibitor, which has been reported as a promising drug for cardiomyocyte regeneration or treatment of sensorial hearing loss. Since the activation of dopamine (DA) receptors regulates dopamine synthesis and they can signal through the β-arrestin pathway and GSK3β, we decided to check the effect of GSK3β inhibitors (CHIR99021, SB216763 and lithium ion) on the control of DA synthesis. Using ex vivo experiments with minces from rat brain striatum, we observed that CHIR99021, but not SB216763 or lithium, causes complete abrogation of both DA synthesis and accumulation, pointing to off-target effects of CHIR99021. This decrease can be attributed to tyrosine hydroxylase (TH) inhibition since the accumulation of l-DOPA in the presence of a DOPA decarboxylase inhibitor was similarly decreased. On the other hand, CHIR99021 caused a dramatic increase in the DOPAC/DA ratio, an indicator of DA metabolization, and hindered DA incorporation into striatum tissue. Tetrabenazine, an inhibitor of DA vesicular transport, also caused DA depletion and DOPAC/DA ratio increase to the same extent as CHIR99021. In addition, both CHIR99021 or SB216763, but not lithium, decreased TH phosphorylation in Ser19, but not in Ser31 or Ser40. These results demonstrate that CHIR99021 can lead to TH inactivation and DA depletion in brain striatum, opening the possibility of its use in DA-related disorders, and shows effects to be considered in future clinical trials. More work is needed to find the mechanism exerted by CHIR99021 on DA accumulation.
Collapse
Affiliation(s)
- Sally Hamdon
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Pol Fernandez-Gonzalez
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Muhammad Yusof Omar
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Marta González-Sepúlveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR) - Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jordi Ortiz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, and Translational Neuroscience Unit, Parc Taulí University Hospital and Universitat Autònoma de Barcelona, Spain
| | - Carles Gil
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
10
|
Stoop J, Douma EH, van der Vlag M, Smidt MP, van der Heide LP. Tyrosine hydroxylase phosphorylation is under the control of serine 40. J Neurochem 2023; 167:376-393. [PMID: 37776259 DOI: 10.1111/jnc.15963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 10/02/2023]
Abstract
Tyrosine hydroxylase catalyzes the initial and rate-limiting step in the biosynthesis of the neurotransmitter dopamine. The phosphorylation state of Ser40 and Ser31 is believed to exert a direct effect on the enzymatic activity of tyrosine hydroxylase. Interestingly, some studies report that Ser31 phosphorylation affects Ser40 phosphorylation, while Ser40 phosphorylation has no effect on Ser31 phosphorylation, a process named hierarchical phosphorylation. Here, we provide a detailed investigation into the signal transduction mechanisms regulating Ser40 and Ser31 phosphorylation in dopaminergic mouse MN9D and Neuro2A cells. We find that cyclic nucleotide signaling drives Ser40 phosphorylation, and that Ser31 phosphorylation is strongly regulated by ERK signaling. Inhibition of ERK1/2 with UO126 or PD98059 reduced Ser31 phosphorylation, but surprisingly had no effect on Ser40 phosphorylation, contradicting a role for Ser31 in the regulation of Ser40. Moreover, to elucidate a possible hierarchical mechanism controlling tyrosine hydroxylase phosphorylation, we introduced tyrosine hydroxylase variants in Neuro2A mouse neuroblastoma cells that mimic either phosphorylated or unphosphorylated serine residues. When we introduced a Ser40Ala tyrosine hydroxylase variant, Ser31 phosphorylation was completely absent. Additionally, neither the tyrosine hydroxylase variant Ser31Asp, nor the variant Ser31Ala had any significant effect on basal Ser40 phosphorylation levels. These results suggest that tyrosine hydroxylase is not controlled by hierarchical phosphorylation in the sense that first Ser31 has to be phosphorylated and subsequently Ser40, but, conversely, that Ser40 phosphorylation is essential for Ser31 phosphorylation. Overall our study suggests that Ser40 is the crucial residue to target so as to modulate tyrosine hydroxylase activity.
Collapse
Affiliation(s)
- Jesse Stoop
- Macrobian Biotech B.V., Amsterdam, the Netherlands
| | - Erik H Douma
- Macrobian Biotech B.V., Amsterdam, the Netherlands
| | | | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
12
|
Lanza M, Cucinotta L, Casili G, Filippone A, Basilotta R, Capra AP, Campolo M, Paterniti I, Cuzzocrea S, Esposito E. The Transcription Factor Nrf2 Mediates the Effects of Antrodia camphorata Extract on Neuropathological Changes in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24119250. [PMID: 37298200 DOI: 10.3390/ijms24119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a disorder that is characterized by progressive and selective neuronal injury and cell death. Recent studies have provided accumulating evidence for a significant role of the immune system and neuroinflammation in PD pathogenesis. On this basis, many scientific articles have highlighted the anti-inflammatory and neuroprotective properties of Antrodia camphorata (AC), an edible fungus containing various bioactive compounds. This study aimed to evaluate the inhibitory effect of AC administration on neuroinflammation and oxidative stress in a murine model of MPTP-induced dopaminergic degeneration. AC (10, 30, 100 mg/kg) was administered daily by oral gavage starting 24 h after the first administration of MPTP, and mice were sacrificed 7 days after MPTP induction. In this study, treatment with AC significantly reduced the alteration of PD hallmarks, increasing tyrosine hydroxylase expression and reducing the number of alpha-synuclein-positive neurons. In addition, AC treatment restored the myelination process of neurons associated with PD and attenuated the neuroinflammatory state. Furthermore, our study demonstrated that AC was able to reduce the oxidative stress induced by MPTP injection. In conclusion, this study highlighted that AC could be a potential therapeutic agent for the treatment of neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
13
|
Zhang DD, Zhang CY, Zhang YX, Cui HP, Jiao Chen, Wen-Zhi Ma, Jia H. G-CSF reduces loss of dopaminergic neurons by inhibiting TNF-α and IL-1β in mouse model of Parkinson's disease. Int J Neurosci 2023; 133:278-289. [PMID: 33781148 DOI: 10.1080/00207454.2021.1910259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF THE STUDY granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor existing in neutrophils, glial cells and neurons. Increasing researches discovered that G-CSF improved cell survival in neurodegenerative diseases by its anti-inflammatory effect. However, the effect of G-CSF in suppressing inflammation in Parkinson's disease (PD) remains unclear. Thus, the purpose of this study is to explored the anti-inflammatory effect of G-CSF in mouse model of PD. MATERIALS AND METHODS G-CSF was administrated in the PD model induced by MPTP. Subsequently, the protein of tyrosine hydroxylase (TH), ionized calcium-binding adaptor molecule 1 (Iba-1) and the inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the midbrain were examined. In addition, the phosphorylated mitogen-activated protein kinases (MAPK) including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 MAPK in the midbrain were investigated. RESULTS Compared with the MPTP group, the protein of TH in the midbrain was increased, while the Iba-1 and the inflammatory factors were decreased. In addition, the expression of phosphorylated JNK (p-JNK) in the midbrain of the MPTP + G-CSF group was decreased, while the phosphorylated ERK (p-ERK) levels were elevated. CONCLUSIONS These findings emphasize that G-CSF inhibited the degradation of DA neurons. The protective effect is associated with the reduction of the inflammatory factors caused by the inhibition of the microglial activation. Moreover, G-CSF may decrease the inflammatory factors through the decrease of P-JNK and the increase of P-ERK.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Department of physiology, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Cheng-Yun Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Yu-Xin Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hai-Peng Cui
- Department of Pathophysiology, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Jiao Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wen-Zhi Ma
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China.,Center for Reproductive Biology and Health, School of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hua Jia
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Center for Reproductive Biology and Health, School of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
da Costa RO, Gadelha-Filho CVJ, de Aquino PEA, Lima LAR, de Lucena JD, Ribeiro WLC, Lima FAV, Neves KRT, de Barros Viana GS. Vitamin D (VD3) Intensifies the Effects of Exercise and Prevents Alterations of Behavior, Brain Oxidative Stress, and Neuroinflammation, in Hemiparkinsonian Rats. Neurochem Res 2023; 48:142-160. [PMID: 36028736 DOI: 10.1007/s11064-022-03728-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
In the present study, we investigated the effects of physical exercise in the presence of Vitamin D3 (VD3), on 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. The animals were divided into sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned plus VD3 (1 µg/kg, 21 days), in the absence (no exercise, NE) and presence (with exercise, WE) of physical exercise on a treadmill (30 min, speed of 20 cm/s, once a day/21 days). This procedure started, 24 h after the stereotaxic surgery (injections of 6-OHDA into the right striatum). The animals were then subjected to behavioral (rotarod, open field, and apomorphine tests) and their brain areas were dissected for neurochemical, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) determinations, and immunohistochemical studies for tyrosine hydroxylase (TH), dopamine transporter (DAT), and vitamin D receptor (VD3R). The effects on the brain oxidative stress: nitrite/nitrate, glutathione (GSH), and malondialdehyde (MDA) measurements were also evaluated. Behavioral changes of the 6-OHDA lesioned group were improved by exercise plus VD3. Similar results were observed in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations increased by exercise and VD3, compared with SO groups. Additionally, tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoexpressions were decreased in the 6-OHDA-lesioned groups, with values normalized after exercise and VD3. The VD3 receptor immunoexpression decreased in the 6-OHDA (NE) group, and this was attenuated by exercise, especially after VD3. While 6-OHDA lesions increased, VD3 supplementation decreased the oxidative stress, which was intensified by exercise. VD3 showed neuroprotective properties that were intensified by physical exercise. These VD3 actions on hemiparkinsonian rats are possibly related to its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Roberta Oliveira da Costa
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Ludmila Araújo Rodrigues Lima
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | - Jalles Dantas de Lucena
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Kelly Rose Tavares Neves
- Graduate Program of Pharmacology, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | - Glauce Socorro de Barros Viana
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil. .,Graduate Program of Pharmacology, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
15
|
Xu RC, Miao WT, Xu JY, Xu WX, Liu MR, Ding ST, Jian YX, Lei YH, Yan N, Liu HD. Neuroprotective Effects of Sodium Butyrate and Monomethyl Fumarate Treatment through GPR109A Modulation and Intestinal Barrier Restoration on PD Mice. Nutrients 2022; 14:nu14194163. [PMID: 36235813 PMCID: PMC9571500 DOI: 10.3390/nu14194163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Research has connected Parkinson's disease (PD) with impaired intestinal barrier. The activation of G-protein-coupled receptor 109A (GPR109A) protects the intestinal barrier by inhibiting the NF-κB signaling pathway. Sodium butyrate (NaB), which is a GPR109A ligand, may have anti-PD effects. The current study's objective is to demonstrate that NaB or monomethyl fumarate (MMF, an agonist of the GPR109A) can treat PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via repairing the intestinal barrier. Male C57BL/6J mice were divided into four groups randomly: control, MPTP + vehicle, MPTP + NaB, and MPTP + MMF. Modeling mice received MPTP (20 mg/kg/day, i.p.) for a week, while control mice received sterile PBS. Then, four groups each received two weeks of sterile PBS (10 mL/kg/day, i.g.), sterile PBS (10 mL/kg/day, i.g.), NaB (600 mg/kg/day, i.g.), or MMF (100 mg/kg/day, i.g.). We assessed the expression of tight junction (TJ) proteins (occludin and claudin-1), GPR109A, and p65 in the colon, performed microscopic examination via HE staining, quantified markers of intestinal permeability and proinflammatory cytokines in serum, and evaluated motor symptoms and pathological changes in the substantia nigra (SN) or striatum. According to our results, MPTP-induced defected motor function, decreased dopamine and 5-hydroxytryptamine levels in the striatum, decreased tyrosine hydroxylase-positive neurons and increased activated microglia in the SN, and systemic inflammation were ameliorated by NaB or MMF treatment. Additionally, the ruined intestinal barrier was also rebuilt and NF-κB was suppressed after the treatment, with higher levels of TJ proteins, GPR109A, and decreased intestinal permeability. These results show that NaB or MMF can remedy motor symptoms and pathological alterations in PD mice by restoring the intestinal barrier with activated GPR109A. We demonstrate the potential for repairing the compromised intestinal barrier and activating GPR109A as promising treatments for PD.
Collapse
Affiliation(s)
- Rui-Chen Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Teng Miao
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of Pediatrics, Chongqing Medical University, Chongqing 400016, China
| | - Jing-Yi Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Xin Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Ran Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Song-Tao Ding
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Xin Jian
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Yi-Han Lei
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Ning Yan
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Han-Deng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-65712090
| |
Collapse
|
16
|
Ardizzone A, Bova V, Casili G, Filippone A, Campolo M, Lanza M, Esposito E, Paterniti I. SUN11602, a bFGF mimetic, modulated neuroinflammation, apoptosis and calcium-binding proteins in an in vivo model of MPTP-induced nigrostriatal degeneration. J Neuroinflammation 2022; 19:107. [PMID: 35526035 PMCID: PMC9080217 DOI: 10.1186/s12974-022-02457-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. PD etiopathogenesis is multifactorial and not yet fully known, however, the scientific world advised the establishment of neuroinflammation among the possible risk factors. In this field, basic fibroblast growth factor/fibroblast growth factor receptor-1 (bFGF/FGFR1) could be a promising way to treat CNS-mediated inflammation; unfortunately, the use of bFGF as therapeutic agent is limited by its side effects. The novel synthetic compound SUN11602 exhibited neuroprotective activities like bFGF. With this perspective, this study aimed to evaluate the effect of SUN11602 administration in a murine model of MPTP-induced dopaminergic degeneration. Methods Specifically, nigrostriatal degeneration was induced by intraperitoneal injection of MPTP (80 mg/kg). SUN11602 (1 mg/kg, 2.5 mg/kg, and 5 mg/kg) was administered daily by oral gavage starting from 24 h after the first administration of MPTP. Mice were killed 7 days after MPTP induction. Results The results obtained showed that SUN11602 administration significantly reduced the alteration of PD hallmarks, attenuating the neuroinflammatory state via modulation of glial activation, NF-κB pathway, and cytokine overexpression. Furthermore, we demonstrated that SUN11602 treatment rebalanced Ca2+ overload in neurons by regulating Ca2+-binding proteins while inhibiting the apoptotic cascade. Conclusion Therefore, in the light of these findings, SUN11602 could be considered a valuable pharmacological strategy for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02457-3.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy.
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| |
Collapse
|
17
|
Mohamad KA, El-Naga RN, Wahdan SA. Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson's disease: Impact of the SIRT1-AMPK signaling pathway. Toxicol Appl Pharmacol 2022; 435:115853. [PMID: 34973289 DOI: 10.1016/j.taap.2021.115853] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder. Although mounting studies have been conducted, no effective therapy is available to halt its progression. Indole-3-carbinol (I3C) is a naturally occurring compound obtained by β-thioglucosidase-mediated autolysis of glucobrassicin in cruciferous vegetables. Besides its powerful antioxidant activity, I3C has shown neuroprotection against depression and chemically induced neurotoxicity via its anti-inflammatory and antiapoptotic effects. This study aimed to investigate the neuroprotective effects of I3C against rotenone (ROT)-induced PD in male albino rats. The possible protective mechanisms were also explored. PD was induced by subcutaneous administration of ROT (2 mg/kg) for 28 days. The effects of I3C (25, 50, and 100 mg/kg/day) were assessed by catalepsy test (bar test), spontaneous locomotor activity, rotarod test, weight change, tyrosine hydroxylase (TH) expression, α-synuclein (α-Syn) expression, striatal dopamine (DA) content, and histological examination. The highest dose of I3C (100 mg/kg) was the most effective to prevent ROT-mediated motor dysfunctions and amend striatal DA decrease, weight loss, neurodegeneration, TH expression reduction, and α-Syn expression increase in both the midbrain and striatum. Further mechanistic investigations revealed that the neuroprotective effects of I3C are partially attributed to its anti-inflammatory and antiapoptotic effects and the activation of the sirtuin 1/AMP-activated protein kinase pathway. Altogether, these results suggested that I3C could attenuate biochemical, molecular, and functional changes in a rat PD model with following repeated rotenone exposures.
Collapse
Affiliation(s)
- Khalid A Mohamad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
18
|
Zhang XL, Zhang XH, Yu X, Zheng LF, Feng XY, Liu CZ, Quan ZS, Zhang Y, Zhu JX. Enhanced Contractive Tension and Upregulated Muscarinic Receptor 2/3 in Colorectum Contribute to Constipation in 6-Hydroxydopamine-Induced Parkinson's Disease Rats. Front Aging Neurosci 2022; 13:770841. [PMID: 35002677 PMCID: PMC8733788 DOI: 10.3389/fnagi.2021.770841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Constipation and defecatory dysfunctions are frequent symptoms in patients with Parkinson’s disease (PD). The pathology of Lewy bodies in colonic and rectal cholinergic neurons suggests that cholinergic pathways are involved in colorectal dysmotility in PD. However, the underlying mechanism is unclear. The aim of the present study is to examine the effect of central dopaminergic denervation in rats, induced by injection 6-hydroxydopamine into the bilateral substania nigra (6-OHDA rats), on colorectal contractive activity, content of acetylcholine (ACh), vasoactive intestinal peptide (VIP) and expression of neural nitric oxide synthase (nNOS) and muscarinic receptor (MR). Strain gauge force transducers combined with electrical field stimulation (EFS), gut transit time, immunohistochemistry, ELISA, western blot and ultraperformance liquid chromatography tandem mass spectrometry were used in this study. The 6-OHDA rats exhibited outlet obstruction constipation characterized by prolonged transit time, enhanced contractive tension and fecal retention in colorectum. Pretreatment with tetrodotoxin significantly increased the colorectal motility. EFS-induced cholinergic contractions were diminished in the colorectum. Bethanechol chloride promoted colorectal motility in a dose-dependent manner, and much stronger reactivity of bethanechol chloride was observed in 6-OHDA rats. The ACh, VIP and protein expression of nNOS was decreased, but M2R and M3R were notably upregulated in colorectal muscularis externa. Moreover, the number of cholinergic neurons was reduced in sacral parasympathetic nucleus (SPN) of 6-OHDA rats. In conclusion, central nigrostriatal dopaminergic denervation is associated with decreased cholinergic neurons in SPN, decreased ACh, VIP content, and nNOS expression and upregulated M2R and M3R in colorectum, resulting in colorectal dysmotility, which contributes to outlet obstruction constipation. The study provides new insights into the mechanism of constipation and potential therapeutic targets for constipation in PD patients.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Artificial Liver Treatment Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen-Zhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhu-Sheng Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Vaidya B, Kaur H, Thapak P, Sharma SS, Singh JN. Pharmacological Modulation of TRPM2 Channels via PARP Pathway Leads to Neuroprotection in MPTP-induced Parkinson's Disease in Sprague Dawley Rats. Mol Neurobiol 2022; 59:1528-1542. [PMID: 34997907 DOI: 10.1007/s12035-021-02711-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and ADP-ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson's disease (PD). Thus, the role of TRPM2 and its associated poly (ADPR) polymerase (PARP) signaling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB), and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in rats, and different parameters were evaluated. An increase in oxidative stress was observed, leading to locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in the striatum and mid-brain accompanied by reduced expression of tyrosine hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-APB and PJ-34 led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in the striatum and mid-brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in the striatum and mid-brain. Our results provide a rationale for the development of potent pharmacological agents targeting the TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological diseases like PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Harpinder Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India.
| |
Collapse
|
20
|
Song Q, Peng S, Zhu X. Baicalein protects against MPP +/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson's disease. Neurotoxicology 2021; 87:188-194. [PMID: 34666128 DOI: 10.1016/j.neuro.2021.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023]
Abstract
Baicalein, a major bioactive flavone constituent isolated from Scutellaria baicalensis Georgi, has neuroprotective properties in several neurological disorders. Many studies suggest that oxidative stress plays a central role in the pathogenesis of Parkinson's disease (PD). Baicalein has also been shown to have antioxidant effects. Therefore, the current study was designed to investigate whether baicalein could protect against MPP+/MPTP-induced neurotoxicity via suppressing oxidative stress in vitro and in vivo. In vitro, our results showed that baicalein increased cell viability in MPP+-treated SH-SY5Y cells. Treatment with baicalein could reversed the increased MDA and ROS levels, and the decreased GSH levels in MPP+-treated SH-SY5Y cells. In MPTP-treated mice, baicalein ameliorated MPTP-induced motor impairment and suppressed the MPTP-induced accumulation of iron and lipid peroxides. Besides, baicalein improved the neurotoxicity induced by MPTP as seen by a significant raise of tyrosine hydroxylase (TH) and simultaneous decrease of monoamine-oxidase-B (MAO-B). The inhibitory effect of baicalein on oxidative stress probably was partially governed by inhibition of ERK activation. In conclusion, our results suggest that baicalein could prevent MPP+/MPTP-induced neurotoxicity via suppressing oxidative stress.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Infection Management, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, China; Department of Neurosurgery, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, China
| | - Shanxin Peng
- Department of Infection Management, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, China; Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, China
| | - Xiaosong Zhu
- Department of Infection Management, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, China; Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, China.
| |
Collapse
|
21
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
22
|
Zuo L, Dai C, Yi L, Dong Z. 7,8-dihydroxyflavone ameliorates motor deficits via regulating autophagy in MPTP-induced mouse model of Parkinson's disease. Cell Death Discov 2021; 7:254. [PMID: 34545064 PMCID: PMC8452727 DOI: 10.1038/s41420-021-00643-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and diminished dopamine content in the striatum. Recent reports show that 7,8-dihydroxyflavone (DHF), a TrkB agonist, attenuates the α-synuclein deposition and ameliorates motor deficits. However, the underlying mechanism is unclear. In this study, we investigated whether autophagy is involved in the clearance of α-synuclein and the signaling pathway through which DHF exerts therapeutic effects. We found that the administration of DHF (5 mg/kg/day, i.p.) prevented the loss of dopaminergic neurons and improved motor functions in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, whereas these protective effects of DHF were completely blocked by autophagy inhibitor chloroquine (CQ). Further in vitro studies showed that autophagy was inhibited in N2A cells treated with 1-methyl-4-phenylpyridinium (MPP+), as reflected by a significant decrease in the expressions of autophagy marker proteins (Beclin1 and LC3II) and an increase in the expression of autophagic flux marker p62. DHF restored the impaired autophagy to control level in MPP+-treated N2A cells by inhibiting the ERK-LKB1-AMPK signaling pathway. Taken together, these results demonstrate that DHF exerts therapeutic effects in MPTP/MPP+-induced neurotoxicity by inhibiting the ERK-LKB1-AMPK signaling pathway and subsequently improving impaired autophagy.
Collapse
Affiliation(s)
- Li Zuo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunfang Dai
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
23
|
Zhang J, Wang W, Wang Y, Hu H, Yu B, Zhou Z, Guo J, Gu Y, Cai Z, Xin G. Modulation of broiler plasma metabolic spectrum by the addition of lysine residue to the diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1072-1085. [PMID: 34528302 DOI: 10.1111/jpn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Flavour is an important factor in evaluating meat quality, and amino acids and fats are important components affecting meat flavour. In this study, we evaluated the relationship between the variation of lysine residue addition and the slaughter performance and meat quality of broilers, which decreased with the addition of lysine residues but improved the meat quality of the broilers. 10% lysine residue addition was the most beneficial for reducing feed cost and improving meat quality. Meanwhile, the plasma metabolites of broilers fed increasing concentrations of lysine residue supplemented feeds were analysed using liquid chromatography-mass spectrometry (LC-MS). Principal component analysis (PCA) and partial least square discriminant analysis (OPLS-DA) were used screen, the differential metabolites induced by lysine residue. In the broilers 29, 37, 63, 87, 80 and 111 differential metabolites were detected (p < 0.05). Amongst them, 3-iodotyrosine, N-methyl-L-glutamic acid, coumaraldehyde, 2-dimethylphenol, N-methylnicotinamide and L-erythrone were the common differential metabolites between group A and groups B, C, D, E, F and G. The addition of lysine residue was positively correlated with alanine aminotransferase (p < 0.05, r = 0.942) and high-density lipoprotein cholesterol (p < 0.05, r = 0.798) and negatively correlated with aspartate aminotransferase (p < 0.05, r = 0.822). According to the classification of differential metabolites and their enriched pathway analysis, differential metabolites mainly caused changes in amino acid and lipid metabolism. Our study shows that a certain proportion of lysine residue in diet affects the specific metabolic pathway of broilers, which may affect amino acid and fat metabolism by regulating alanine aminotransferase, aspartate aminotransferase and high-density lipoprotein cholesterol, ultimately affecting the flavour.
Collapse
Affiliation(s)
- Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Weizhen Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ying Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Honghong Hu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Baojun Yu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zihang Zhou
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ju Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhengyun Cai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- School of Life Sciences, Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| |
Collapse
|
24
|
TNFα increases tyrosine hydroxylase expression in human monocytes. NPJ Parkinsons Dis 2021; 7:62. [PMID: 34285243 PMCID: PMC8292430 DOI: 10.1038/s41531-021-00201-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Most, if not all, peripheral immune cells in humans and animals express tyrosine hydroxylase (TH), the rate limiting enzyme in catecholamine synthesis. Since TH is typically studied in the context of brain catecholamine signaling, little is known about changes in TH production and function in peripheral immune cells. This knowledge gap is due, in part, to the lack of an adequately sensitive assay to measure TH in immune cells expressing lower TH levels compared to other TH expressing cells. Here, we report the development of a highly sensitive and reproducible Bio-ELISA to quantify picogram levels of TH in multiple model systems. We have applied this assay to monocytes isolated from blood of persons with Parkinson's disease (PD) and to age-matched, healthy controls. Our study unexpectedly revealed that PD patients' monocytes express significantly higher levels of TH protein in peripheral monocytes relative to healthy controls. Tumor necrosis factor (TNFα), a pro-inflammatory cytokine, has also been shown to be increased in the brains and peripheral circulation in human PD, as well as in animal models of PD. Therefore, we investigated a possible connection between higher levels of TH protein and the known increase in circulating TNFα in PD. Monocytes isolated from healthy donors were treated with TNFα or with TNFα in the presence of an inhibitor. Tissue plasminogen activator (TPA) was used as a positive control. We observed that TNFα stimulation increased both the number of TH+ monocytes and the quantity of TH per monocyte, without increasing the total numbers of monocytes. These results revealed that TNFα could potentially modify monocytic TH production and serve a regulatory role in peripheral immune function. The development and application of a highly sensitive assay to quantify TH in both human and animal cells will provide a novel tool for further investigating possible PD immune regulatory pathways between brain and periphery.
Collapse
|
25
|
Sonne JWH, Seavey C, Groshong JS. Rapid immunohistological measurement of tyrosine hydroxylase in rat midbrain by near-infrared instrument-based detection. J Chem Neuroanat 2021; 116:101992. [PMID: 34166778 DOI: 10.1016/j.jchemneu.2021.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
We present a robust, fresh-frozen approach to immunohistochemistry (IHC), without committing the tissue to IHC via fixation and cryopreservation while maintaining long-term storage, using LiCor-based infrared (IR) quantification for sensitive assessment of TH in immunoreacted midbrain sections for quantitative comparison across studies. In fresh-frozen tissue stored up to 1 year prior to IHC reaction, we found our method to be highly sensitive to rotenone treatment in 3-month-old Sprague-Dawley rats, and correlated with a significant decline in rotarod latency-to-fall measurement by approximately 2.5 fold. The measured midbrain region revealed a 31 % lower TH signal when compared to control (p < 0.01 by t test, n = 5). Bivariate analysis of integrated TH counts versus rotarod latency-to-fall indicates a positive slope and modest but significant correlation of R2 = 0.68 (p < 0.05, n = 10). These results indicate this rapid, instrument-based quantification method by IR detection successfully quantifies TH levels in rat brain tissue, while taking only 5 days from euthanasia to data output. This approach also allows for the identification of multiple targets by IHC with the simultaneous performance of downstream molecular analysis within the same animal tissue, allowing for the use of fewer animals per study.
Collapse
Affiliation(s)
- James W H Sonne
- University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, USA.
| | - Corey Seavey
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - Jason S Groshong
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA; Science Department, Valencia College, Orlando, FL, USA.
| |
Collapse
|
26
|
Aluko OM, Iroegbu JD, Ijomone OM, Umukoro S. Methyl Jasmonate: Behavioral and Molecular Implications in Neurological Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:220-232. [PMID: 33888651 PMCID: PMC8077066 DOI: 10.9758/cpn.2021.19.2.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Methyl jasmonate (MJ) is a derivative of the jasmonate family which is found in most tropical regions of the world and present in many fruits and vegetables such as grapevines, tomato, rice, and sugarcane. MJ is a cyclopentanone phytohormone that plays a vital role in defense against stress and pathogens in plants. This has led to its isolation from plants for studies in animals. Many of these studies have been carried out to evaluate its therapeutic effects on behavioral and neurochemical functions. It has however been proposed to have beneficial potential over a wide range of neurological disorders. Hence, this review aims to provide an overview of the neuroprotective properties of MJ and its probable mechanisms of ameliorating neurological disorders. The information used for this review was sourced from research articles and scientific databases using 'methyl jasmonate', 'behavior', 'neuroprotection', 'neurodegenerative diseases', and 'mechanisms' as search words. The review highlights its influences on behavioral patterns of anxiety, aggression, depression, memory, psychotic, and stress. The molecular mechanisms such as modulation of the antioxidant defense, inflammatory biomarkers, neurotransmitter regulation, and neuronal regeneration, underlying its actions in managing neurodegenerative diseases like Alzheimer's and Parkinson's diseases are also discussed. This review, therefore, provides a detailed evaluation of methyl jasmonate as a potential neuroprotective compound with the ability to modify behavioral and molecular biomarkers underlying neurological disorders. Hence, MJ could be modeled as a guided treatment for the management of brain diseases.
Collapse
Affiliation(s)
- Oritoke Modupe Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Joy Dubem Iroegbu
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi Meashack Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
27
|
Zhang W, Chen H, Ding L, Gong J, Zhang M, Guo W, Xu P, Li S, Zhang Y. Trojan Horse Delivery of 4,4'-Dimethoxychalcone for Parkinsonian Neuroprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004555. [PMID: 33977069 PMCID: PMC8097374 DOI: 10.1002/advs.202004555] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive deterioration of dopamine (DA) neurons, and therapeutic endeavors are aimed at preventing DA loss. However, lack of effective brain delivery approaches limits this strategy. In this study, a "Trojan horse" system is used for substantia nigra-targeted delivery of a blood brain barrier-penetrating peptide (RVG29) conjugated to the surface of nanoparticles loaded with the natural autophagy inducer 4,4'-dimethoxychalcone (DMC) (designated as RVG-nDMC). Here, the neuroprotective effects of DMC are demonstrated in PD. Specifically, RVG-nDMC penetrates the blood brain barrier with enhanced brain-targeted delivery efficiency and is internalized by DA neurons and microglia. In vivo studies demonstrate that RVG-nDMC ameliorates motor deficits and nigral DA neuron death in PD mice without causing overt adverse effects in the brain or other major organs. Moreover, RVG-nDMC reverses tyrosine hydroxylase ubiquitination and degradation, alleviates oxidative stress in DA neurons, and exerts antiinflammatory effects in microglia. The "Trojan horse" strategy for targeted delivery of DMC thus provides a potentially powerful and clinically feasible approach for PD intervention.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Huaqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Liuyan Ding
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Junwei Gong
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Mengran Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Wenyuan Guo
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Pingyi Xu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Yunlong Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
28
|
Wassenberg T, Geurtz BPH, Monnens L, Wevers RA, Willemsen MA, Verbeek MM. Blood, urine and cerebrospinal fluid analysis in TH and AADC deficiency and the effect of treatment. Mol Genet Metab Rep 2021; 27:100762. [PMID: 33996491 PMCID: PMC8093927 DOI: 10.1016/j.ymgmr.2021.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background Aromatic L-amino acid decarboxylase (AADC) deficiency and tyrosine hydroxylase (TH) deficiency are rare inherited disorders of monoamine neurotransmitter synthesis which are typically diagnosed using cerebrospinal fluid examination of monoamine neurotransmitter metabolites. Until now, it has not been systematically studied whether analysis of monamine neurotransmitter metabolites in blood or urine has diagnostic value as compared to cerebrospinal fluid examination, or whether monoamine neurotransmitter metabolites in these peripheral body fluids is useful to monitor treatment efficacy. Methods Assessment, both by literature review and retrospective analysis of our local university hospital database, of monoamine neurotransmitter metabolites in urine, blood and cerebrospinal fluid, and serum prolactin levels, before and during treatment in patients with AADC and TH deficiency. Results In AADC deficiency, 3-O-methyldopa in serum or dried blood spots was reported in 34 patients and found to be (strongly) increased in all, serotonin in serum was decreased in 7/7 patients. Serum prolactin was increased in 34/37 and normal in 3 untreated patients. In urine, dopamine was normal or increased in 21/24 patients, 5-hydroxyindoleacetic acid was decreased in 9/10 patients, and vanillactic acid was increased in 19/20 patients. No significant changes were seen in monoamine neurotransmitter metabolites after medical treatment, except for an increase of homovanillic acid in urine and cerebrospinal fluid after levodopa therapy, sometimes even in absence of a clinical response. After gene therapy, cerebrospinal fluid homovanillic acid increased in most patients (8/12), but 5-hydroxyindoleacetic acid remained unchanged in 9/12 patients. In TH deficiency, serum prolactin was increased in 12/14 and normal in the remaining untreated patients. Urinary dopamine was decreased in 2/8 patients and normal in 6. Homovanillic acid concentrations in cerebrospinal fluid increased upon levodopa treatment, even in the absence of a clear treatment response. Conclusions This study confirms that cerebrospinal fluid is the most informative body fluid to measure monoamine neurotransmitter metabolites when AADC or TH deficiency is suspected, and that routine follow-up of cerebrospinal fluid measurements to estimate treatment response is not needed. 3-O-methyldopa in dried blood spots and vanillactic acid in urine are promising peripheral biomarkers for diagnosis of AADC deficiency. However, in many patients with TH or AADC deficiency dopamine in urine is normal or increased thereby not reflecting the metabolic block. The value of serum prolactin for follow-up of AADC and TH deficiency should be further studied.
Collapse
Key Words
- 3-OMD, 3-O-methyldopa
- 5-HIAA, 5-Hydroxyindoleacetic acid
- 5-HTP, 5-Hydroxytryptophan
- AADC deficiency
- AADC, Aromatic L-amino acid decarboxylase
- Aromatic L-amino acid decarboxylase deficiency
- Biomarkers
- CSF, Cerebrospinal fluid
- HVA, Homovanillic acid
- MHPG, 3-methoxy 4-hydroxyphenylglycol
- Monoamine neurotransmitter deficiency
- TH deficiency
- TH, Tyrosine hydroxylase
- TML, Translational Metabolic Laboratory
- Tyrosine hydroxylase deficiency
- VLA, Vanillactic acid
- VMA, Vanillylmandelic acid
Collapse
Affiliation(s)
- Tessa Wassenberg
- Radboud university medical center, Department of Neurology (943), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.,Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Pediatrics, Pediatric Neurology Unit, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ben P H Geurtz
- Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Leo Monnens
- Radboud university medical center, Department of Physiology (392), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Ron A Wevers
- Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Michèl A Willemsen
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatric Neurology (801), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marcel M Verbeek
- Radboud university medical center, Department of Neurology (943), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.,Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
29
|
Kadnikov IA, Verbovaya ER, Voronkov DN, Voronin MV, Seredenin SB. Deferred Administration of Afobazole Induces Sigma1R-Dependent Restoration of Striatal Dopamine Content in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2020; 21:E7620. [PMID: 33076300 PMCID: PMC7593947 DOI: 10.3390/ijms21207620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Previously, we demonstrated that the immediate administration of multitarget anxiolytic afobazole slows down the progression of neuronal damage in a 6-hydroxidodamine (6-OHDA) model of Parkinson's disease due to the activation of chaperone Sigma1R. The aim of the present study is to evaluate the therapeutic potential of deferred afobazole administration in this model. Male ICR mice received a unilateral 6-OHDA lesion of the striatum. Fourteen days after the surgery, mice were treated with afobazole, selective Sigma1R agonist PRE-084, selective Sigma1R antagonist BD-1047, and a combination of BD-1047 with afobazole or PRE-084 for another 14 days. The deferred administration of afobazole restored the intrastriatal dopamine content in the 6-OHDA-lesioned striatum and facilitated motor behavior in rotarod tests. The action of afobazole accorded with the effect of Sigma1R selective agonist PRE-084 and was blocked by Sigma1R selective antagonist BD-1047. The present study illustrates the Sigma1R-dependent effects of afobazole in a 6-OHDA model of Parkinson's disease and reveals the therapeutic potential of Sigma1R agonists in treatment of the condition.
Collapse
Affiliation(s)
- Ilya A. Kadnikov
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya street 8, 125315 Moscow, Russia; (E.R.V.); (M.V.V.)
| | - Ekaterina R. Verbovaya
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya street 8, 125315 Moscow, Russia; (E.R.V.); (M.V.V.)
| | - Dmitry N. Voronkov
- Laboratory of neuromorphology, Research Center of Neurology, Volokolamskoe Highway 80, 125367 Moscow, Russia;
| | - Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya street 8, 125315 Moscow, Russia; (E.R.V.); (M.V.V.)
| | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya street 8, 125315 Moscow, Russia; (E.R.V.); (M.V.V.)
| |
Collapse
|
30
|
Alabi AO, Ajayi AM, Ben-Azu B, Omorobge O, Umukoro S. Methyl jasmonate ameliorates rotenone-induced motor deficits in rats through its neuroprotective activity and increased expression of tyrosine hydroxylase immunopositive cells. Metab Brain Dis 2019; 34:1723-1736. [PMID: 31463866 DOI: 10.1007/s11011-019-00478-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Decreased tyrosine hydroxylase (TH) activity, due to degeneration of dopaminergic neurons contributes to the low dopamine content and the motor deficits that characterized Parkinson's disease (PD). This study examines the effect of methyl jasmonate (MJ), a neuroprotective bioactive compound isolated from jasminum grandiflorum, on motor functions, immunopositive cells of TH, dendritic neurons and dopamine contents in rotenone (Rot)-treated rats. Rats pretreated daily with MJ (100 mg/kg, i.p) for 21 days also received Rot (2.5 mg/kg, i.p.) 30 min after each pretreatment for every 48 h for 21 days. Motor functions were assessed on day 22. The specific brain regions of the rats were processed for determination of dopamine contents, immunopositive cells of TH, neuronal cell morphology and dendritic aborizations. Rot impaired locomotion and rearing behavior, and decreased dopamine content in the striatum, prefrontal cortex and midbrain. It further reduced the expression of TH in the substantia nigra and striatum relative to vehicle-control (p < 0.05). Histopathologic studies revealed that Rot-treated rats had degenerated neurons with pyknotic nuclei and loss of nigrostriatal neuronal cells. Rot also altered the nigrostriatal dendritic neuronal networks, decreased the dendritic length and spine density. However, pretreatment with MJ improved motor deficits, increased TH activity and dopamine contents in the specific brain regions of Rot-treated rats. MJ also attenuated the cyto-architectural distortions, loss of neuronal cells and dendritic aborizations of the striatum of Rot-treated rats. These findings suggest that MJ may reverse the motor deficits associated with PD by modifying the key pathological abnormalities involved in the disease progression.
Collapse
Affiliation(s)
- Akinyinka O Alabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, River States, Port Harcourt, Nigeria
| | - Osarume Omorobge
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
31
|
Xu X, Wang R, Hao Z, Wang G, Mu C, Ding J, Sun W, Ren H. DJ-1 regulates tyrosine hydroxylase expression through CaMKKβ/CaMKIV/CREB1 pathway in vitro and in vivo. J Cell Physiol 2019; 235:869-879. [PMID: 31232473 DOI: 10.1002/jcp.29000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 01/27/2023]
Abstract
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKβ/CaMKIV/CREB1 activities to facilitate TH expression.
Collapse
Affiliation(s)
- Xingyun Xu
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanping Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
33
|
The effects of rotenone on TH, BDNF and BDNF-related proteins in the brain and periphery: Relevance to early Parkinson's disease. J Chem Neuroanat 2019; 97:23-32. [PMID: 30690135 DOI: 10.1016/j.jchemneu.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
Loss of dopaminergic neurons in the substantia nigra (SN) is one of the pathological hallmarks in Parkinson's disease (PD). This neuron loss is accompanied by reduced protein and activity levels of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. Reduced nigral brain-derived neurotrophic factor (BDNF) has been postulated to contribute to the loss of nigral dopaminergic neurons in PD by causing a lack of trophic support. Prior to this nigral cell loss many patients develop non-motor symptoms such as hyposmia, constipation and orthostatic hypotension. We investigated how TH, BDNF and BDNF related receptors are altered in the SN, olfactory bulb, adrenal glands and colon (which are known to be affected in PD) using rotenone-treated rats. Rotenone was administered to Sprague-Dawley rats at a dose of 2.75 mg/kg, 5 days/week for 4 weeks, via intraperitoneal injections. Rats underwent behavioural testing, and tissues were collected for western blot and ELISA analysis. This rotenone treatment induced reduced rears and distance travelled in the rearing and open field test, respectively but caused no impairments in forced movement (rotarod test). The SN had changes consistent with a pro-apoptotic state, such as increased proBDNF but no change in TH; whereas, the colon had significantly reduced TH and increased sortilin. Thus, our results indicate further investigation is warranted for this rotenone-dosing paradigm's capacity for reproducing the early stage of PD, as we observed impairments in voluntary movement and pathology in the colon without overt motor symptoms or nigral dopaminergic loss.
Collapse
|
34
|
Junqueira SC, Centeno EGZ, Wilkinson KA, Cimarosti H. Post-translational modifications of Parkinson's disease-related proteins: Phosphorylation, SUMOylation and Ubiquitination. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2001-2007. [PMID: 30412791 DOI: 10.1016/j.bbadis.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the nigrostriatal pathway. The etiology of PD remains unclear and most cases are sporadic, however genetic mutations in more than 20 proteins have been shown to cause inherited forms of PD. Many of these proteins are linked to mitochondrial function, defects in which are a central characteristic of PD. Post-translational modifications (PTMs) allow rapid and reversible control over protein function. Largely focussing on mitochondrial dysfunction in PD, here we review findings on the PTMs phosphorylation, SUMOylation and ubiquitination that have been shown to affect PD-related proteins.
Collapse
Affiliation(s)
- Stella C Junqueira
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Eduarda G Z Centeno
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, UK.
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
35
|
Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism. Neurotoxicology 2018; 67:178-189. [DOI: 10.1016/j.neuro.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
36
|
Salvatore MF, Nejtek VA, Khoshbouei H. Prolonged increase in ser31 tyrosine hydroxylase phosphorylation in substantia nigra following cessation of chronic methamphetamine. Neurotoxicology 2018; 67:121-128. [PMID: 29782882 PMCID: PMC6088751 DOI: 10.1016/j.neuro.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Methamphetamine (MA) exposure may increase the risk of motor or cognitive impairments similar to Parkinson's disease (PD) by middle age. Although damage to nigrostriatal or mesoaccumbens dopamine (DA) neurons may occur during or early after MA exposure, overt PD-like symptoms at a younger age may not manifest due to compensatory mechanisms to maintain DA neurotransmission. One possible compensatory mechanism is increased tyrosine hydroxylase (TH) phosphorylation. In the rodent PD 6-OHDA model, nigrostriatal lesion decreases TH protein in both striatum and substantia nigra (SN). However, DA loss in the SN is significantly less than that in the striatum. An increase in ser31 TH phosphorylation in the SN may increase TH activity in response to TH loss. To determine if similar compensatory mechanisms may be engaged in young mice after MA exposure, TH expression, phosphorylation, and DA tissue content were evaluated, along with dopamine transporter expression, 21 days after cessation of MA (24 mg/kg, daily, 14 days). DA tissue content was unaffected by the MA regimen in striatum, nucleus accumbens, SN, or ventral tegmental area (VTA), despite decreased TH protein in SN and VTA. In the SN, but not striatum, ser31 phosphorylation increased over 2-fold. This suggests that increased ser31 TH phosphorylation may be an inherent compensatory mechanism to attenuate DA loss against TH loss, similar to that in an established PD model. These results also indicate the somatodendritic compartments of DA neurons are more vulnerable to TH protein loss than terminal fields following MA exposure.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Vicki A Nejtek
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, United States; Center for Addiction Research & Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|