1
|
Chen W, Liu M, Li Z, Luo Z, Wu J. Phloretin alleviates sleep deprivation-induced cognitive impairment by reducing inflammation through PPARγ/NF-κB signaling pathway. Exp Neurol 2024; 382:114949. [PMID: 39284540 DOI: 10.1016/j.expneurol.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Sleep loss leads to significant pathophysiological consequences, including cognitive impairment. The neuroinflammation are pivotal factors in the pathogenesis of cognitive impairment induced by sleep loss. The phloretin (PHL), derived from peel of juicy fruits, has demonstrated potent anti-inflammatory properties. However, the precise influence of PHL on the cognitive impairment triggered by sleep loss and its underlying mechanism remain uncertain. In the present study, mice were subjected to sleep deprivation (SD) paradigm. Cognitive impairment induced by SD were significantly relieved by administration of PHL in a dose-dependent manner. Furthermore, PHL not only mitigated the synaptic losses but also enhanced dendritic spine density and neuronal activity within mice hippocampus following exposure to SD. Moreover, PHL treatment decreased the microglial numbers and altered microglial morphology in the hippocampus to restore the M1/M2 balances; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in SD-exposed mice. Additionally, in vivo and in vitro studies showed PHL might attenuate the inflammation through the PPARγ/NF-κB pathway. Our findings suggest that PHL exerts inhibitory effects on microglia-mediated neuroinflammation, thereby providing protection against cognitive impairment induced by SD through a PPAR-γ dependent mechanism. The results indicate PHL is expected to provide a valuable candidate for new drug development for SD-induced cognitive impairment in the future.
Collapse
Affiliation(s)
- Wenjun Chen
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| | - Mei Liu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Afffliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziming Li
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Zhoucai Luo
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou 510240, China
| | - Jianlin Wu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| |
Collapse
|
2
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
3
|
Cabrera Y, Koymans KJ, Poe GR, Kessels HW, Van Someren EJW, Wassing R. Overnight neuronal plasticity and adaptation to emotional distress. Nat Rev Neurosci 2024; 25:253-271. [PMID: 38443627 DOI: 10.1038/s41583-024-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.
Collapse
Affiliation(s)
- Yesenia Cabrera
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Karin J Koymans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gina R Poe
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Synaptic Plasticity and Behaviour, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology and Psychiatry, VU University, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam, Netherlands
| | - Rick Wassing
- Sleep and Circadian Research, Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia.
- School of Psychological Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Fang Z, Chen J, Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for Memory Regulation: An Emotional Perspective. Curr Neuropharmacol 2024; 22:1846-1869. [PMID: 38288837 PMCID: PMC11284729 DOI: 10.2174/1570159x22666240128003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 07/23/2024] Open
Abstract
Histamine has long been accepted as a pro-cognitive agent. However, lines of evidence have suggested that the roles of histamine in learning and memory processes are much more complex than previously thought. When explained by the spatial perspectives, there are many contradictory results. However, using emotional memory perspectives, we suspect that the histaminergic system may interplay with stress, reward inhibition, and attention to modulate emotional memory formation. The functional diversity of histamine makes it a viable target for clinical management of neuropsychiatric disorders. Here, we update the current knowledge about the functions of histamine in emotional memory and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on memory and discuss insights into future research on the roles of histamine in emotional memory. Despite the recent progress in histamine research, the histaminergic emotional memory circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Zhuowen Fang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
5
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
6
|
Qiao Q, Mairlot C, Bendor D. Memory capacity and prioritization in female mice. Sci Rep 2023; 13:14073. [PMID: 37640740 PMCID: PMC10462704 DOI: 10.1038/s41598-023-40976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Our brain's capacity for memory storage may be vast but is still finite. Given that we cannot remember the entirety of our experiences, how does our brain select what to remember and what to forget? Much like the triage of a hospital's emergency room, where urgent cases are prioritized and less critical patients receive delayed or even no care, the brain is believed to go through a similar process of memory triage. Recent salient memories are prioritized for consolidation, which helps create stable, long-term representations in the brain; less salient memories receive a lower priority, and are eventually forgotten if not sufficiently consolidated (Stickgold and Walker in Nat Neurosci 16(2):139-145, 2013). While rodents are a primary model for studying memory consolidation, common behavioral tests typically rely on a limited number of items or contexts, well within the memory capacity of the subject. A memory test allowing us to exceed an animal's memory capacity is key to investigating how memories are selectively strengthened or forgotten. Here we report a new serial novel object recognition task designed to measure memory capacity and prioritization, which we test and validate using female mice.
Collapse
Affiliation(s)
- Qinbo Qiao
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Caroline Mairlot
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| |
Collapse
|
7
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
8
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
9
|
Obenaus A, Kinney-Lang E, Jullienne A, Haddad E, Wendel KM, Shereen AD, Solodkin A, Dunn JF, Baram TZ. Seeking the Amygdala: Novel Use of Diffusion Tensor Imaging to Delineate the Basolateral Amygdala. Biomedicines 2023; 11:biomedicines11020535. [PMID: 36831071 PMCID: PMC9953214 DOI: 10.3390/biomedicines11020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The amygdaloid complex, including the basolateral nucleus (BLA), contributes crucially to emotional and cognitive brain functions, and is a major target of research in both humans and rodents. However, delineating structural amygdala plasticity in both normal and disease-related contexts using neuroimaging has been hampered by the difficulty of unequivocally identifying the boundaries of the BLA. This challenge is a result of the poor contrast between BLA and the surrounding gray matter, including other amygdala nuclei. Here, we describe a novel diffusion tensor imaging (DTI) approach to enhance contrast, enabling the optimal identification of BLA in the rodent brain from magnetic resonance (MR) images. We employed this methodology together with a slice-shifting approach to accurately measure BLA volumes. We then validated the results by direct comparison to both histological and cellular-identity (parvalbumin)-based conventional techniques for defining BLA in the same brains used for MRI. We also confirmed BLA connectivity targets using DTI-based tractography. The novel approach enables the accurate and reliable delineation of BLA. Because this nucleus is involved in and changed by developmental, degenerative and adaptive processes, the instruments provided here should be highly useful to a broad range of neuroimaging studies. Finally, the principles used here are readily applicable to numerous brain regions and across species.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Correspondence:
| | - Eli Kinney-Lang
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Amandine Jullienne
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Kara M. Wendel
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
| | - A. Duke Shereen
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
| | - Ana Solodkin
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Jeffrey F. Dunn
- Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Tallie Z. Baram
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Wei Z, Li D, Shi J. Alterations of Spatial Memory and Gut Microbiota Composition in Alzheimer's Disease Triple-Transgenic Mice at 3, 6, and 9 Months of Age. Am J Alzheimers Dis Other Demen 2023; 38:15333175231174193. [PMID: 37169734 PMCID: PMC10624076 DOI: 10.1177/15333175231174193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease. Gut microbial dysbiosis is associated with AD. This study involves the comparative assessment of spatial learning, β-amyloid peptide accumulation, and fecal microbiota alterations in 3×Tg-AD mice from 3 age groups: AD asymptomatic stage (3 m), presymptomatic stage (6 m), and the symptomatic stage of AD (9 m). We demonstrate that spatial memory deficits, brain Aβ accumulation, and weight gain in 3×Tg-AD mice gradually appear after 6 months of age. However, the total gut bacterial counts underwent changes from 3 to 6 months of age and were further altered at 9 months of age. Importantly, changes in gut bacteria abundance of Desulfobacterota and Actinobacteriota phyla in 6-month-old mice preceded apparent spatial memory deficits. In summary, Changes in the gut microbial community are one of the mechanisms of early AD pathology.
Collapse
Affiliation(s)
- Zhang Wei
- Medical College, Guizhou University, Guiyang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
12
|
Tirole M, Huelin Gorriz M, Takigawa M, Kukovska L, Bendor D. Experience-driven rate modulation is reinstated during hippocampal replay. eLife 2022; 11:79031. [PMID: 35993533 PMCID: PMC9489210 DOI: 10.7554/elife.79031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Replay, the sequential reactivation within a neuronal ensemble, is a central hippocampal mechanism postulated to drive memory processing. While both rate and place representations are used by hippocampal place cells to encode behavioral episodes, replay has been largely defined by only the latter – based on the fidelity of sequential activity across neighboring place fields. Here, we show that dorsal CA1 place cells in rats can modulate their firing rate between replay events of two different contexts. This experience-dependent phenomenon mirrors the same pattern of rate modulation observed during behavior and can be used independently from place information within replay sequences to discriminate between contexts. Our results reveal the existence of two complementary neural representations available for memory processes. How do our brains store memories? We now know that this is a complex and dynamic process, involving multiple regions of the brain. A brain region, called the hippocampus, plays an important role in memory formation. While we sleep, the hippocampus works to consolidate information, and eventually creates stable, long-term memories that are then stored in other parts of the brain. But how does the hippocampus do this? Neuroscientists believe that it can replay the patterns of brain activity that represent particular memories. By repeatedly doing this while we sleep, the hippocampus can then direct the transfer of this information to the rest of the brain for storage. The behaviour of nerve cells in the brain underpins these patterns of brain activity. When a nerve cell is active, it fires tiny electrical impulses that can be detected experimentally. The brain thus represents information in two ways: which nerve cells are active and when (sequential patterns); and how active the nerve cells are (how fast they fire electrical impulses or firing rate). For example, when an animal moves from one location to another, special place cells in the hippocampus become active in a distinct sequence. Depending on the context, they will also fire faster or slower. We know that the hippocampus can replay sequential patterns of nerve cell activity during memory consolidation, but whether it can also replay the firing rates associated with a particular experience is still unknown. Tirole, Huelin Gorriz et al. set out to determine if the hippocampus could also preserve the information encoded by firing rate during replay. In the experiments, rats explored two different environments that they had not seen before. The activity of the rats’ place cells was recorded before and after they explored, and also later while they were sleeping. Analysis of the recordings revealed that during replay, the rats’ hippocampi could indeed reproduce both the sequential patterns of activity and the firing rate of the place cells. It also confirmed that each environment was associated with unique firing rates – in other words, the firing rates were memory-specific. These results contribute to our understanding of how the hippocampus represents and processes information about our experiences. More broadly, they also shed new light on how the brain lays down memories, by revealing a key part of the mechanism that it uses to consolidate that information.
Collapse
|
13
|
Giovannelli F, Innocenti I, Santarnecchi E, Tatti E, Cappa SF, Rossi S. Emotional Context Shapes the Serial Position Curve. Brain Sci 2022; 12:581. [PMID: 35624967 PMCID: PMC9139710 DOI: 10.3390/brainsci12050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Emotional contexts affect memory processes. However, the impact of contextual priming as a function of the emotional valence on the recall of neutral information is not fully understood. The aim of the present study was to evaluate how a conditioning of emotional context during encoding may influence the subsequent memory of otherwise neutral materials in a well-established phenomenon as the serial position effect. Participants performed a free recall task for neutral words in three conditions: (i) word list alone; (ii) word list coupled with positive or neutral images; and (iii) word list coupled with negative or neutral images. Images were presented before each word stimulus. In three different experiments, the emotional context during the word list presentation was manipulated separately for primacy and recency clusters, and for the middle words ('middlecy'). Emotional context affects free recall of neutral stimuli, changing the serial position curve effect across conditions. Namely, emotional images presented in the primacy and recency clusters worsen accuracy, whereas their occurrence in the 'middlecy' cluster reduces the oblivion. The present findings show that the typical pattern related to the serial position curve for neutral information can be shaped by the conditioning of emotional context. Findings have implications in medical-legal contexts in the case of the recollection of events with high emotional content.
Collapse
Affiliation(s)
- Fabio Giovannelli
- Section of Psychology—Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy;
| | - Iglis Innocenti
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
- Department of Cognitive Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY 10031, USA;
| | - Stefano F. Cappa
- Institute for Advanced Study, IUSS, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
14
|
Implicit and explicit emotional memory recall in anxiety and depression: Role of basolateral amygdala and cortisol-norepinephrine interaction. Psychoneuroendocrinology 2022; 136:105598. [PMID: 34894424 DOI: 10.1016/j.psyneuen.2021.105598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023]
Abstract
Anxiety and depression are linked to both explicit and implicit memory biases, which are defined as the tendency to preferentially recall emotionally negative information at conscious and subconscious levels, respectively. Functional connectivity (FC) of the basolateral amygdala (BLA) and related stress hormones (i.e., cortisol and norepinephrine) are purportedly implicated in these biases. However, previous findings on memory biases in anxiety and depression have been inconsistent, likely due to their symptomatic complications. Therefore, the underlying neurobiological mechanism remains unclear. We thus investigated whether anxiety and depression as premorbid predispositions are related to the memory biases, and whether FC of BLA, cortisol, and 3-methoxy-4-hydroxyphenylglycol (MHPG: a major metabolite of norepinephrine) would affect the anxiety/depression-related biased memory recall in 100 participants without psychiatric symptomatology. Psycho-behavioral assessment, resting-state fMRI scans, and saliva collection at 10-points-in-time across two days were conducted. Correlations of memory biases with anxiety/depression and neurobiological markers were explored. As a result, neither anxiety nor depression were correlated with explicit memory bias to negative (vs. positive) information, although depression was associated with better recall of the negative stimuli only when they were perceived as self-relevant. In contrast, both anxiety and depression were correlated with implicit memory bias; however, the effects were solely explained by anxiety. Furthermore, FC of the BLA with subgenual anterior cingulate cortex (sgACC) and the synergetic effect of cortisol and MHPG uniquely affected the implicit memory bias. These findings suggest that anxiety facilitates an initial snapshot of negative information and can be accompanied by depression when the information creates negative semantic associations with the self. The BLA-sgACC neural connectivity and cortisol-norepinephrine interaction that are associated with the implicit memory bias might be one of the important neurobiological targets in the prevention and treatment for comorbid anxiety and depressive disorders.
Collapse
|
15
|
Serra L, De Simone MS, Fadda L, Perri R, Caltagirone C, Bozzali M, Carlesimo GA. Memory for public events in amnestic mild cognitive impairment: The role of hippocampus and ventro-medial prefrontal cortex. J Neuropsychol 2021; 16:131-148. [PMID: 34170071 DOI: 10.1111/jnp.12259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current theories assume that retrograde memory deficits for semantic information in amnestic mild cognitive impairment (aMCI) are temporally graded and partially sparing most remote memories. Moreover, these models assume a prevalent role of the hippocampus in early phases of memory consolidation and of the prefrontal mesial neocortical areas in permanent consolidation of traces. PURPOSE To explore the relationship between hippocampus and memory accuracy for the most recent public events and between the ventro-medial prefrontal cortex (vmPFC) and memory accuracy irrespective of the memory age, we investigated in aMCI patients the retrograde memory for public events and its relationship with grey matter volume reductions in the hippocampus and vmPFC. METHODS 18 aMCI patients and 13 healthy subjects (HS) underwent a modified version of the Famous Events questionnaire (FEq) to assess their memory performance for public events. Patients underwent 3T-MRI scanning to assess correlations between FEq's scores and grey matter volumes. RESULTS aMCI showed significantly reduced performances on FEq compared to HS in the recollection of most recent events, while no significant difference was observed for more remote memories, thus demonstrating a temporal gradient. Moreover, hippocampal volumes predicted accuracy scores for most recent, but not older, public events. Finally, an area in the subcallosal portion of the vmPFC, corresponding to BA32, predicted accuracy scores on FEq irrespective of the period examined. CONCLUSIONS Pathological changes in a neural circuit linking hippocampal to medial prefrontal cortical regions are responsible for impaired recollection of retrograde memories in aMCI.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | - Lucia Fadda
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy
| | - Roberta Perri
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy.,Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brighton, UK
| | - Giovanni A Carlesimo
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
16
|
Daming M, Xin L, Shuwen H, Pengfei G, Shuai L, Feng G, Xiaomei C, Binbin C, Hui Z. Somatization Symptoms Regulate Emotional Memory Bias in Adolescents With Major Depressive Disorder. Front Psychiatry 2021; 12:656198. [PMID: 34512408 PMCID: PMC8428275 DOI: 10.3389/fpsyt.2021.656198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: Somatization symptoms are commonly comorbid with depression. Furthermore, people with depression and somatization have a negative memory bias. We investigated the differences in emotional memory among adolescent patients with depressive disorders, with and without functional somatization symptoms (FSS). Methods: We recruited 30 adolescents with depression and FSS, 38 adolescents with depression but without FSS, and 38 healthy participants. Emotional memory tasks were conducted to evaluate the emotional memory of the participants in the three groups. The clinical symptoms were evaluated using the Hamilton Depression Rating Scale (HDRS) and the Children's Somatization Inventory (CSI). Results: The valence ratings and recognition accuracy rates for positive and neutral images of adolescent patients were significantly lower than those of the control group (F = 12.208, P < 0.001; F = 6.801, P < 0.05; F = 14.536, P < 0.001; F = 6.306, P < 0.05, respectively); however, the recognition accuracy rate for negative images of adolescent patients of depression without FSS was significantly lower than that of patients with FSS and control group participants (F = 10.316, P < 0.001). These differences persisted after controlling for HDRS scores. The within-group analysis revealed that patients of depression with FSS showed significantly higher recognition accuracy rates for negative images than the other types (F = 5.446, P < 0.05). The recognition accuracy rate for negative images was positively correlated with CSI scores (r = 0.352, P < 0.05). Conclusion: Therefore, emotional memory impairment exists in adolescent patients of depression and FSS are associated with negative emotional memory retention.
Collapse
Affiliation(s)
- Mo Daming
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Li Xin
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Hu Shuwen
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Guo Pengfei
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Liu Shuai
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Geng Feng
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Cao Xiaomei
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Chen Binbin
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Zhong Hui
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Mental Health Center, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| |
Collapse
|
17
|
Individual alpha frequency modulates sleep-related emotional memory consolidation. Neuropsychologia 2020; 148:107660. [PMID: 33075330 DOI: 10.1016/j.neuropsychologia.2020.107660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
Alpha-band oscillatory activity is involved in modulating memory and attention. However, few studies have investigated individual differences in oscillatory activity during the encoding of emotional memory, particularly in sleep paradigms where sleep is thought to play an active role in memory consolidation. The current study aimed to address the question of whether individual alpha frequency (IAF) modulates the consolidation of declarative memory across periods of sleep and wake. 22 participants aged 18-41 years (mean age = 25.77) viewed 120 emotionally valenced images (positive, negative, neutral) and completed a baseline memory task before a 2hr afternoon sleep opportunity and an equivalent period of wake. Following the sleep and wake conditions, participants were required to distinguish between 120 learned (target) images and 120 new (distractor) images. This method allowed us to delineate the role of different oscillatory components of sleep and wake states in the emotional modulation of memory. Linear mixed-effects models revealed interactions between IAF, rapid eye movement sleep theta power, and slow-wave sleep slow oscillatory density on memory outcomes. These results highlight the importance of individual factors in the EEG in modulating oscillatory-related memory consolidation and subsequent behavioural outcomes and test predictions proposed by models of sleep-based memory consolidation.
Collapse
|
18
|
Kooloos JG, Bergman EM, Scheffers MA, Schepens‐Franke AN, Vorstenbosch MA. The Effect of Passive and Active Education Methods Applied in Repetition Activities on the Retention of Anatomical Knowledge. ANATOMICAL SCIENCES EDUCATION 2020; 13:458-466. [PMID: 31610096 PMCID: PMC7383800 DOI: 10.1002/ase.1924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
This study examines the long-term retention of anatomical knowledge from 180 students after various repetition activities. The retention of anatomical knowledge was assessed by multiple-choice tests at five different points in time: before and after a course in Functional Anatomy, before and after repetition activities that occurred 14 weeks after this course, and 28 weeks after this course to establish long-term retention. Students were divided into five groups: one without any repetition activity, one with a restricted repetition activity (the multiple-choice test), and three groups that were offered repetition activities (traditional lecture, e-learning module, and small group work in the dissection room). During all three repetition activities the same information was conveyed, and this content was not revisited in other courses for the duration of the study. The results showed that students who did not engage in a repetition activity scored significantly lower on the long-term retention test compared to all other groups (ANCOVA: P = 0.0001). Pair-wise comparison with estimated means showed that the other four groups, regardless of the type of repeating activity, did not differ in the amount of knowledge they retained during any of the five assessments (P = 0.008, P = 0.0001, P = 0.001, and P = 0.0001, respectively). This study suggests that the type of repetition activity has no effect on knowledge retention both immediately following the activity and in the long term. It is concluded that the repetition of anatomical knowledge in any form is beneficial for students and will likely improve student outcomes in a curriculum that builds on prior knowledge.
Collapse
Affiliation(s)
- Jan G.M. Kooloos
- Department of AnatomyRadboud University Medical CenterNijmegenThe Netherlands
| | - Esther M. Bergman
- Department of AnatomyRadboud University Medical CenterNijmegenThe Netherlands
- Zuyderland AcademyZuyderland Medical CenterHeerlenThe Netherlands
| | | | | | | |
Collapse
|
19
|
Somer E, Allen J, Brooks JL, Buttrill V, Javadi AH. Theta Phase-dependent Modulation of Perception by Concurrent Transcranial Alternating Current Stimulation and Periodic Visual Stimulation. J Cogn Neurosci 2020; 32:1142-1152. [DOI: 10.1162/jocn_a_01539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sensory perception can be modulated by the phase of neural oscillations, especially in the theta and alpha ranges. Oscillatory activity in the visual cortex can be entrained by transcranial alternating current stimulation (tACS) as well as periodic visual stimulation (i.e., flicker). Combined tACS and visual flicker stimulation modulates BOLD response, and concurrent 4-Hz auditory click train, and tACS modulate auditory perception in a phase-dependent way. In this study, we investigated whether phase synchrony between concurrent tACS and periodic visual stimulation (i.e., flicker) can modulate performance on a visual matching task. Participants completed a visual matching task on a flickering visual stimulus while receiving either in-phase (0°) or asynchronous (180°, 90°, or 270°) tACS at alpha or theta frequency. Stimulation was applied over either occipital cortex or dorsolateral pFC. Visual performance was significantly better during theta frequency tACS over the visual cortex when it was in-phase (0°) with visual stimulus flicker, compared with antiphase (180°). This effect did not appear with alpha frequency flicker or with dorsolateral pFC stimulation. Furthermore, a control sham group showed no effect. There were no significant performance differences among the asynchronous (180°, 90°, and 270°) phase conditions. Extending previous studies on visual and auditory perception, our results support a crucial role of oscillatory phase in sensory perception and demonstrate a behaviorally relevant combination of visual flicker and tACS. The spatial and frequency specificity of our results have implications for research on the functional organization of perception.
Collapse
Affiliation(s)
| | | | | | | | - Amir-Homayoun Javadi
- University of Kent
- University College London
- Tehran University of Medical Sciences
| |
Collapse
|
20
|
Navarrete M, Valderrama M, Lewis PA. The role of slow-wave sleep rhythms in the cortical-hippocampal loop for memory consolidation. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|