1
|
Hamoya T, Kaminaga K, Igarashi R, Nishimura Y, Yanagihara H, Morioka T, Suzuki C, Abe H, Ohshima T, Imaoka T. Intravital microscopic thermometry of rat mammary epithelium by fluorescent nanodiamond. NANOSCALE HORIZONS 2024; 9:1938-1947. [PMID: 39297440 DOI: 10.1039/d4nh00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Quantum sensing using the fluorescent nanodiamond (FND) nitrogen-vacancy center enables physical/chemical measurements of the microenvironment, although application of such measurements in living mammals poses significant challenges due to the unknown biodistribution and toxicity of FNDs, the limited penetration of visible light for quantum state manipulation/measurement, and interference from physiological motion. Here, we describe a microenvironmental thermometry technique using FNDs in rat mammary epithelium, an important model for mammary gland biology and breast cancer research. FNDs were injected directly into the mammary gland. Microscopic observation of mammary tissue sections showed that most FNDs remained in the mammary epithelium for at least 8 weeks. Pathological examination indicated no obvious change in tissue morphology, suggesting negligible toxicity. Optical excitation and detection were performed through a skin incision. Periodic movements due to respiration and heartbeat were mitigated by frequency filtering of the signal. Based on these methods, we successfully detected temperature elevation in the mammary epithelium associated with lipopolysaccharide-induced inflammation, demonstrating the sensitivity and relevance of the technique in biological contexts. This study lays the groundwork for expanding the applicability of quantum sensing in biomedical research, providing a tool for real-time monitoring of physiological and pathological processes.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiromi Yanagihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chihiro Suzuki
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Abe
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Takeshi Ohshima
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Tatsuhiko Imaoka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Stewart A, Zhu Y, Liu Y, Simpson DA, Reece PJ. Optical Tweezers Assembled Nanodiamond Quantum Sensors. NANO LETTERS 2024; 24:12188-12195. [PMID: 39291712 DOI: 10.1021/acs.nanolett.4c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Here we show that gradient force optical tweezers can be used to mediate the self-assembly of nanodiamonds into superstructures, which can serve as optically trapped nanoscale quantum probes with superior magnetic resonance sensing capabilities. Enhanced fluorescence rates from nitrogen-vacancy NV- defect centers enable rapid acquisition of optically detected magnetic resonance (ODMR), and shape-induced forces can improve both positioning accuracy and orientation control. The use of confocal imaging can isolate the signal from individual nanodiamonds within the assembly, thereby retaining the desirable properties of a single crystal probe. The improvements afforded by the use nanodiamond assemblies has the potential to resolve dynamic changes through, for example, real-time monitoring of the ODMR contrast.
Collapse
Affiliation(s)
- Adam Stewart
- School of Physics, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Ying Zhu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney 2007, New South Wales, Australia
- School of Clinical Medicine, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yiting Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| | - David A Simpson
- Department of Physics, The University of Melbourne, Parkville 3052, New South Wales, Australia
| | - Peter J Reece
- School of Physics, The University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
3
|
Hsiao WWW, Lam XM, Le TN, Cheng CA, Chang HC. Exploring nanodiamonds: leveraging their dual capacities for anticancer photothermal therapy and temperature sensing. NANOSCALE 2024; 16:14994-15008. [PMID: 39044543 DOI: 10.1039/d4nr01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cancer has become a primary global health concern, which has prompted increased attention towards targeted therapeutic approaches like photothermal therapy (PTT). The unique optical and magnetic properties of nanodiamonds (NDs) have made them versatile nanomaterials with promising applications in biomedicine. This comprehensive review focuses on the potential of NDs as a multifaceted platform for anticancer therapy, mainly focusing on their dual functionality in PTT and temperature sensing. The review highlighted NDs' ability to enhance PTT through hybridization or modification, underscoring their adaptability in delivering small molecule reagents effectively. Furthermore, NDs, particularly fluorescent nanodiamonds (FNDs) with negatively charged nitrogen-vacancy centers, enable precise temperature monitoring, enhancing PTT efficacy in anticancer treatment. Integrating FNDs into PTT holds promise for advancing therapeutic efficacy by providing valuable insights into localized temperature variations and cell death mechanisms. This review highlights new insights into cancer treatment strategies, showcasing the potential of NDs to revolutionize targeted therapeutics and improve patient outcomes.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xuan Mai Lam
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
5
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
6
|
Shimada T, Ueda Y, Baba Y, Yukawa H. Advances of Fluorescent Nanodiamond Platforms for Intracellular and On-Chip Biosensing. BIOSENSORS 2024; 14:340. [PMID: 39056616 PMCID: PMC11274460 DOI: 10.3390/bios14070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Intracellular and extracellular sensing of physical and chemical variables is important for disease diagnosis and the understanding of cellular biology. Optical sensing utilizing fluorescent nanodiamonds (FNDs) is promising for probing intracellular and extracellular variables owing to their biocompatibility, photostability, and sensitivity to physicochemical quantities. Based on the potential of FNDs, we outlined the optical properties, biocompatibility, surface chemistry of FNDs and their applications in intracellular biosensing. This review also introduces biosensing platforms that combine FNDs and lab-on-a-chip approaches to control the extracellular environment and improve sample/reagent handling and sensing performance.
Collapse
Affiliation(s)
- Taisuke Shimada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; (Y.U.); (Y.B.)
| | - Yasuyuki Ueda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; (Y.U.); (Y.B.)
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; (Y.U.); (Y.B.)
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; (Y.U.); (Y.B.)
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Oviedo-Casado S, Prior J, Cerrillo J. Low frequency signal detection via correlated Ramsey measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107691. [PMID: 38776598 DOI: 10.1016/j.jmr.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
The low frequency region of the spectrum is a challenging regime for quantum probes. We support the idea that, in this regime, performing Ramsey measurements carefully controlling the time at which each measurement is initiated is an excellent signal detection strategy. We use the Fisher information to demonstrate a high quality performance in the low frequency regime, compared to more elaborated measurement sequences, and to optimize the correlated Ramsey sequence according to any given experimental parameters, showing that correlated Ramsey rivals with state-of-the-art protocols, and can even outperform commonly employed sequences such as dynamical decoupling in the detection of low frequency signals. Contrary to typical quantum detection protocols for oscillating signals, which require adjusting the time separation between pulses to match the half period of the target signal, and consequently see their scope limited to signals whose period is shorter than the characteristic decoherence time of the probe, or to those protocols whose target is primarily static signals, the time-tagged correlated Ramsey sequence simultaneously tracks the amplitude and the phase information of the target signal, regardless of its frequency, which crucially permits correlating measurements in post-processing, leading to efficient spectral reconstruction.
Collapse
Affiliation(s)
- Santiago Oviedo-Casado
- Área de Física Aplicada, Universidad Politécnica de Cartagena, Cartagena, 30202, Spain; Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel.
| | - Javier Prior
- Departamento de Física - CIOyN, Universidad de Murcia, Murcia, 30071, Spain.
| | - Javier Cerrillo
- Área de Física Aplicada, Universidad Politécnica de Cartagena, Cartagena, 30202, Spain.
| |
Collapse
|
8
|
Zhang Z, Wen HF, Gao Z, Liu Y, Cao B, Guo H, Li Z, Ma Z, Li X, Tang J, Liu J. Investigation of zero-phonon line characteristics in ensemble nitrogen-vacancy centers at 1.6 K-300 K. OPTICS EXPRESS 2024; 32:17336-17344. [PMID: 38858919 DOI: 10.1364/oe.518322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
The ensemble of nitrogen-vacancy (NV) centers is widely used in quantum information transmission, high-precision magnetic field, and temperature sensing due to their advantages of long-lived state and the ability to be pumped by optical cycling. In this study, we investigate the zero-phonon line behavior of the two charge states of NV centers by measuring the photoluminescence of the NV center at 1.6 K-300 K. The results demonstrate a positional redshift, an increase in line width, and a decrease in fluorescence intensity for the ZPL of NV0 and NV- as the temperature increased. In the range of 10 K to 140 K, the peak shift with high concentrations of NV- revealed an anomaly of bandgap reforming. The peak position undergoes a blueshift and then a redshift as temperature increases. Furthermore, the transformation between NV0 and NV- with temperature changes has been obtained in diamonds with different nitrogen concentrations. This study explored the ZPL characteristics of NV centers in various temperatures, and the findings are significant for the development of high-resolution temperature sensing and high-precision magnetic field sensing in ensemble NV centers.
Collapse
|
9
|
Paudel HP, Lander GR, Crawford SE, Duan Y. Sensing at the Nanoscale Using Nitrogen-Vacancy Centers in Diamond: A Model for a Quantum Pressure Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:675. [PMID: 38668169 PMCID: PMC11054777 DOI: 10.3390/nano14080675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
The sensing of stress under harsh environmental conditions with high resolution has critical importance for a range of applications including earth's subsurface scanning, geological CO2 storage monitoring, and mineral and resource recovery. Using a first-principles density functional theory (DFT) approach combined with the theoretical modelling of the low-energy Hamiltonian, here, we investigate a novel approach to detect unprecedented levels of pressure by taking advantage of the solid-state electronic spin of nitrogen-vacancy (NV) centers in diamond. We computationally explore the effect of strain on the defect band edges and band gaps by varying the lattice parameters of a diamond supercell hosting a single NV center. A low-energy Hamiltonian is developed that includes the effect of stress on the energy level of a ±1 spin manifold at the ground state. By quantifying the energy level shift and split, we predict pressure sensing of up to 0.3 MPa/Hz using the experimentally measured spin dephasing time. We show the superiority of the quantum sensing approach over traditional optical sensing techniques by discussing our results from DFT and theoretical modelling for the frequency shift per unit pressure. Importantly, we propose a quantum manometer that could be useful to measure earth's subsurface vibrations as well as for pressure detection and monitoring in high-temperature superconductivity studies and in material sciences. Our results open avenues for the development of a sensing technology with high sensitivity and resolution under extreme pressure limits that potentially has a wider applicability than the existing pressure sensing technologies.
Collapse
Affiliation(s)
- Hari P. Paudel
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
- NETL Support Contractor, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA
| | - Gary R. Lander
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
- NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA
| | - Scott E. Crawford
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
| | - Yuhua Duan
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, USA; (G.R.L.); (S.E.C.)
| |
Collapse
|
10
|
Wang B, Shen Y, Ke D, Li Z, Wen HF, Guo H, Tang J, Li YJ, Ma Z, Liu J. Simultaneous detection of multi-channel signals in MHz bandwidth using nitrogen-vacancy centers in a diamond. OPTICS EXPRESS 2024; 32:3184-3193. [PMID: 38297545 DOI: 10.1364/oe.511283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024]
Abstract
In this paper, we propose a method for simultaneously recovering multiple radio wave signals based on nitrogen-vacancy (NV) centers in diamond combining optically detected magnetic resonance (ODMR) spectrum. A controlled magnetic field gradient applied to the laser excitation area on the surface of diamond widens the detectable ODMR bandwidth to 200 MHz. Three different frequency-modulated (FM) signals with distinct carrier frequencies falling within the resonance frequency range are received and demodulated in real-time. Subsequently, the FM signal reception capability of this system is further investigated by measuring baseband signal frequencies ranging from 0.1 Hz to 200 Hz and adjusting the carrier power within a dynamic range from -10 dBm to 30 dBm. This proposal, which accomplishes multi-channel demodulation using a compact and single device, has potential applications in fields such as wireless communication, radar and navigation.
Collapse
|
11
|
Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform 2024; 25:bbae074. [PMID: 38446742 PMCID: PMC10939336 DOI: 10.1093/bib/bbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 02/07/2021] [Indexed: 03/08/2024] Open
Abstract
Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
12
|
Takada K, Katsumi R, Yatsui T. Sensitivity improvement of a single-NV diamond magnetometer using a chiral waveguide. OPTICS EXPRESS 2024; 32:795-802. [PMID: 38175099 DOI: 10.1364/oe.509860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
A single nitrogen-vacancy (NV) center in diamond is utilized to perform nanoscale magnetic measurements. However, the low contrast and poor collection efficiency of spin-dependent emitted photons limited the instrument sensitivity to approximately several nT/Hz. Here, we design a diamond magnetometer based on a chiral waveguide. We numerically demonstrate that the proposed device achieves a sensitivity of 170 pT/Hz owing to near-unity contrast and efficient photon collection. We also confirm that the device sensitivity is robust against position misalignment and dipole misorientation of an NV center. The proposed approach will enable the construction of a highly-sensitive magnetometer with high spatial resolution.
Collapse
|
13
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
14
|
Zandieh M, Liu J. Metal-Mediated DNA Adsorption on Carboxylated, Hydroxylated, and Hydrogenated Nanodiamonds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11596-11602. [PMID: 37552885 DOI: 10.1021/acs.langmuir.3c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nanodiamonds (NDs) have attracted considerable attention owing to their quantum properties and versatility in biological applications. In this study, we systematically investigated the adsorption of DNA oligonucleotides onto NDs with three types of surface groups: carboxylated (COOH-), hydroxylated (OH-), and hydrogenated (H-). Among them, only the H-NDs showed fluorescence quenching property that is useful for real-time DNA adsorption kinetic studies. The effect of common metal ions on DNA adsorption was studied. In the presence of Na+, the order of DNA adsorption efficiency was H- > OH- > COOH-, whereas all the NDs showed a similar DNA adsorption efficiency in the presence of divalent metal ions such as Ca2+ and Zn2+. Desorption studies revealed that hydrogen bonding and metal-mediated interactions were dominant for the adsorption of DNA, and the H-NDs exhibited extraordinarily tight DNA adsorption. Finally, a fluorescently labeled DNA was adsorbed on NDs for DNA detection, and the COOH-NDs had the highest target specificity, and a detection limit of 1.4 nM was achieved. This study indicates the feasibility of using metal ions to mediate the physical adsorption of DNA to NDs and compares various NDs with graphene oxide for fundamental understanding.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|