1
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Palumbo MC, Gautam M, Sonneborn A, Kim K, Wilmarth PA, Reddy AP, Shi X, Marks DL, Sahay G, Abbas AI, Janowsky A. MicroRNA137-loaded lipid nanoparticles regulate synaptic proteins in the prefrontal cortex. Mol Ther 2023; 31:2975-2990. [PMID: 37644723 PMCID: PMC10556225 DOI: 10.1016/j.ymthe.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.
Collapse
Affiliation(s)
- Michelle C Palumbo
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kilsun Kim
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xiao Shi
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Portland, OR 97239, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Aaron Janowsky
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Huang W, Gu X, Wang Y, Bi Y, Yang Y, Wan G, Chen N, Li K. Effects of the co-administration of MK-801 and clozapine on MiRNA expression profiles in rats. Basic Clin Pharmacol Toxicol 2021; 128:758-772. [PMID: 33656787 DOI: 10.1111/bcpt.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
MiRNAs are small, non-coding RNAs that can silence the expression of various target genes by binding their mRNAs and thus regulate a wide range of crucial bodily functions. However, the miRNA expression profile of schizophrenia after antipsychotic mediation is largely unknown. Non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonists such as MK-801 have provided useful animal models to investigate the effects of schizophrenia-like symptoms in rodent animals. Herein, the hippocampal miRNA expression profiles of Sprague-Dawley rats pretreated with MK-801 were examined after antipsychotic clozapine (CLO) treatment. Total hippocampal RNAs from three groups were subjected to next-generation sequencing (NGS), and bioinformatics analyses, including differential expression and enrichment analyses, were performed. Eight miRNAs were differentially expressed between the MK-801 and vehicle (VEH) control groups. Interestingly, 14 miRNAs were significantly differentially expressed between the CLO + MK-801 and MK-801 groups, among which rno-miR-184 was the most upregulated. Further analyses suggested that these miRNAs modulate target genes that are involved in endocytosis regulation, ubiquitin-mediated proteolysis, and actin cytoskeleton regulation and thus might play important roles in the pathogenesis of schizophrenia. Our results suggest that differentially expressed miRNAs play important roles in the complex pathophysiology of schizophrenia and subsequently impact brain functions.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China.,Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xuefeng Gu
- Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yingying Wang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yuhan Bi
- Department of Pathology, Stanford University, Palo alto, CA, USA
| | - Yu Yang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Guoqing Wan
- Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Nianhong Chen
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Keshen Li
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
6
|
Chen G, He H, Hu K, Gao J, Li J, Han M, Wang J. Sensitive Biomarker Analysis of Xue-Fu-Zhu-Yu Capsule for Patients with Qi Stagnation and Blood Stasis Pattern: A Nested Case-Control Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7182865. [PMID: 31827557 PMCID: PMC6885824 DOI: 10.1155/2019/7182865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To identify the sensitive biomarker to predict the effectiveness of Xue-Fu-Zhu-Yu capsules (XFZYC). METHODS This nested case-control study included 5 patients with response to XFZYC in the treatment group, 5 patients with no response to XFZYC also in the treatment group, and 5 patients in the control group treated with placebo who participated in the previous RCT. The mRNAs, miRNAs, lncRNAs, and circRNAs were sequenced by next-generation sequencing and differential-expressed (DE) RNAs were identified if p value ≤ 0.05 and fold change ≥2, bioinformatics analysis was conducted in terms of function annotations and signaling pathways, and then sensitive biomarker was analyzed based on real-time PCR. RESULTS The distributions of clinical characteristics between the selected participants from treatment group and placebo group were well balanced. A total of 1156 DE RNAs, 388 miRNAs, 1954 lncRNAs, and 560 circRNAs were identified, which was associated the mechanism of XFZYC and composed the targeted potential biomarkers for further real-time PCR. The DE RNAs were enriched in KEGG pathways pertaining to pathogenesis of Qi Stagnation and Blood Stasis- (QS & BS-) & associated diseases such as coronary heart disease and digestive diseases. The expression level of FZD8 was significantly higher in response patients than that in nonresponse patients (p = 0.041) and circRNA_13799 significantly lower in response patients than that in nonresponse patients (p = 0.040) based on real-time PCR. Patients with higher expression level of FZD8 with 75% stratification have significantly higher reduction in the questionnaire score (p = 0.010), and the area under the curve (AUC) was 0.765 (95%CI = 0.593-0.936; p = 0.014). CONCLUSIONS FZD8 might perform the sensitive biomarker for predicting the effectiveness of XFZYC. However, further prospective cohort study was warranted to confirm the exact specificity and sensitivity of this biomarker.
Collapse
Affiliation(s)
- Guang Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoqiang He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mei Han
- Center for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
7
|
Pacheco A, Berger R, Freedman R, Law AJ. A VNTR Regulates miR-137 Expression Through Novel Alternative Splicing and Contributes to Risk for Schizophrenia. Sci Rep 2019; 9:11793. [PMID: 31409837 PMCID: PMC6692358 DOI: 10.1038/s41598-019-48141-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
The MIR137HG gene encoding microRNA-137 (miR-137) is genome-wide associated with schizophrenia (SZ), however, the underlying molecular mechanisms remain unknown. Through cloning and sequencing of individual transcripts from fetal and adult human brain tissues we describe novel pri-miR-137 splice variants which exclude the mature miR-137 sequence termed ‘del-miR-137’ that would function to down-regulate miR-137 expression. Sequencing results demonstrate a significant positive association between del-miR-137 transcripts and the length of a proximal variable number tandem repeat (VNTR) element. Additionally, a significantly higher proportion of sequenced transcripts from fetal brain were del-miR-137 transcripts indicating neurodevelopmental splicing regulation. In-silico results predict an independent regulatory function for del-miR-137 transcripts through competitive endogenous RNA function. A case-control haplotype analysis (n = 998) in SZ implicates short VNTR length in risk, with longer lengths imparting a protective effect. Rare high risk haplotypes were also observed indicating multiple risk variants within the region. A second haplotype analysis was performed to evaluate recombination effects excluding the VNTR and results indicate that recombination of the region was found to independently contribute to risk. Evaluation of the evolutionary conservation of the VNTR reveals a human lineage specific expansion. These findings shed further light on the risk architecture of the miR-137 region and provide a novel regulatory mechanism through VNTR length and alternative MIR137HG transcripts which contribute to risk for SZ.
Collapse
Affiliation(s)
- Ashley Pacheco
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Ralph Berger
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Robert Freedman
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Amanda J Law
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA. .,University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, 80045, USA. .,University of Colorado, School of Medicine, Department of Cell and Developmental Biology, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
mir-234 controls neuropeptide release at the Caenorhabditis elegans neuromuscular junction. Mol Cell Neurosci 2019; 98:70-81. [PMID: 31200102 DOI: 10.1016/j.mcn.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/16/2023] Open
Abstract
miR-137 is a highly conserved microRNA (miRNA) that is associated with the control of brain function and the etiology of psychiatric disorders including schizophrenia and bipolar disorder. The Caenorhabditis elegans genome encodes a single miR-137 ortholog called mir-234, the function of which is unknown. Here we show that mir-234 is expressed in a subset of sensory, motor and interneurons in C. elegans. Using a mir-234 deletion strain, we systematically examined the development and function of these neurons in addition to global C. elegans behaviors. We were however unable to detect phenotypes associated with loss of mir-234, possibly due to genetic redundancy. To circumvent this issue, we overexpressed mir-234 in mir-234-expressing neurons to uncover possible phenotypes. We found that mir-234-overexpression endows resistance to the acetylcholinesterase inhibitor aldicarb, suggesting modification of neuromuscular junction (NMJ) function. Further analysis revealed that mir-234 controls neuropeptide levels, therefore positing a cause of NMJ dysfunction. Together, our data suggest that mir-234 functions to control the expression of target genes that are important for neuropeptide maturation and/or transport in C. elegans. SIGNIFICANCE STATEMENT: The miR-137 family of miRNAs is linked to the control of brain function in humans. Defective regulation of miR-137 is associated with psychiatric disorders that include schizophrenia and bipolar disorder. Previous studies have revealed that miR-137 is required for the development of dendrites and for controlling the release of fast-acting neurotransmitters. Here, we analyzed the function a miR-137 family member (called mir-234) in the nematode animal model using anatomical, behavioral, electrophysiological and neuropeptide analysis. We reveal for the first time that mir-234/miR-137 is required for the release of slow-acting neuropeptides, which may also be of relevance for controlling human brain function.
Collapse
|
9
|
Alfimova MV, Kondratiev NV, Golov AK, Golimbet VE. DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ganesh S, Ahmed P. H, Nadella RK, More RP, Seshadri M, Viswanath B, Rao M, Jain S, Mukherjee O. Exome sequencing in families with severe mental illness identifies novel and rare variants in genes implicated in Mendelian neuropsychiatric syndromes. Psychiatry Clin Neurosci 2019; 73:11-19. [PMID: 30367527 PMCID: PMC7380025 DOI: 10.1111/pcn.12788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
AIM Severe mental illnesses (SMI), such as bipolar disorder and schizophrenia, are highly heritable, and have a complex pattern of inheritance. Genome-wide association studies detect a part of the heritability, which can be attributed to common genetic variation. Examination of rare variants with next-generation sequencing may add to the understanding of the genetic architecture of SMI. METHODS We analyzed 32 ill subjects from eight multiplex families and 33 healthy individuals using whole-exome sequencing. Prioritized variants were selected by a three-step filtering process, which included: deleteriousness by five in silico algorithms; sharing within families by affected individuals; rarity in South Asian sample estimated using the Exome Aggregation Consortium data; and complete absence of these variants in control individuals from the same gene pool. RESULTS We identified 42 rare, non-synonymous deleterious variants (~5 per pedigree) in this study. None of the variants were shared across families, indicating a 'private' mutational profile. Twenty (47.6%) of the variant harboring genes were previously reported to contribute to the risk of diverse neuropsychiatric syndromes, nine (21.4%) of which were of Mendelian inheritance. These included genes carrying novel deleterious variants, such as the GRM1 gene implicated in spinocerebellar ataxia 44 and the NIPBL gene implicated in Cornelia de Lange syndrome. CONCLUSION Next-generation sequencing approaches in family-based studies are useful to identify novel and rare variants in genes for complex disorders like SMI. The findings of the study suggest a potential phenotypic burden of rare variants in Mendelian disease genes, indicating pleiotropic effects in the etiology of SMI.
Collapse
Affiliation(s)
- Suhas Ganesh
- Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruIndia
- Department of Psychiatry, Schizophrenia Neuropharmacology Research Group at YaleYale UniversityConnecticutUSA
| | | | - Ravi K. Nadella
- Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruIndia
| | - Ravi P. More
- National Centre for Biological SciencesBengaluruIndia
| | - Manasa Seshadri
- Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruIndia
| | - Biju Viswanath
- Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruIndia
| | - Mahendra Rao
- Centre for Brain Development and RepairInstitute for Stem Cell Biology and Regenerative MedicineBengaluruIndia
| | - Sanjeev Jain
- Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruIndia
| | - Odity Mukherjee
- Centre for Brain Development and RepairInstitute for Stem Cell Biology and Regenerative MedicineBengaluruIndia
| |
Collapse
|
11
|
Fan SJ, Sun AB, Liu L. Epigenetic modulation during hippocampal development. Biomed Rep 2018; 9:463-473. [PMID: 30546873 DOI: 10.3892/br.2018.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
The hippocampus is located in the limbic system and is vital in learning ability, memory formation and emotion regulation, and is associated with depression, epilepsy and mental retardation in an abnormal developmental situation. Several factors have been found to modulate the development of the hippocampus, and epigenetic modification have a crucial effect in this progress. The present review summarizes the epigenetic modifications, including DNA methylation, histone acetylation, and non-coding RNAs, regulating all stages of hippocampal development, focusing on the growth of Ammons horn and the dentate gyrus in humans and rodents. These modifications may significantly affect hippocampal development and health in addition to cognitive processes.
Collapse
Affiliation(s)
- Si-Jing Fan
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - An-Bang Sun
- Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Department of Anatomy, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
12
|
Correlation of the predisposition of Chinese children to cerebral palsy with nucleotide variation in pri-miR-124 that alters the non-canonical apoptosis pathway. Acta Pharmacol Sin 2018; 39:1453-1462. [PMID: 29770797 DOI: 10.1038/aps.2017.211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Cerebral palsy is a group of non-progressive motor impairment syndromes caused by brain lesions during development. Herein, we investigated the relationship between nucleotide variations in a miRNA coding region and the predisposition of Chinese children to cerebral palsy. A total of 233 CP patients and 256 healthy participants were enrolled, and 60 children were selected from each group for plasma miRNA detection. We screened the coding regions of pri-miR-124-1, -2, and -3 using PCR and sequencing. The expression of miR-124 was determined by qRT-PCR. Luciferase assays and Western blots were used to confirm the regulation of target genes by miR-124. The function of miR-124 was further identified in SH-SY5Y cells by detecting cell viability and apoptosis. We revealed that the rare alleles T of rs3802169 and G of rs191727850 were found to be associated with an increased risk of cerebral palsy (OR=3.71, 95% CI 1.74-7.92 and OR=2.18, 95% CI 1.36-3.49, respectively). We further showed that the levels of mature miR-124 were down-regulated by the C-to-T variation in vitro. More importantly, the reduction of miR-124 resulting from the C-to-T change led to the less-efficient inhibition of the target genes ITGB1, LAMC1 and BECN1, which may play important roles during the development of the nervous system. Meanwhile, the reduction in the expression of miR-124 was also related to the increased nuclear translocation of apoptosis-inducing factor (AIF) under oxidative stress, thereby inducing more cell apoptosis. Our results suggest that one functional polymorphism in pri-miR-124-1 might contribute to the genetic predisposition of Chinese children to cerebral palsy by disrupting the production of miR-124, which consequently interfered in the expression and function of the target genes of miR-124.
Collapse
|
13
|
Jiang Y, Xu B, Chen J, Sui Y, Ren L, Li J, Zhang H, Guo L, Sun X. Micro-RNA-137 Inhibits Tau Hyperphosphorylation in Alzheimer's Disease and Targets the CACNA1C Gene in Transgenic Mice and Human Neuroblastoma SH-SY5Y Cells. Med Sci Monit 2018; 24:5635-5644. [PMID: 30102687 PMCID: PMC6104547 DOI: 10.12659/msm.908765] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) results in cognitive impairment. The calcium voltage-gated channel subunit alpha-1 C CACNA1C gene encodes an alpha-1 C subunit of L-type calcium channel (LTCC). The aim of this study was to investigate the role of micro-RNA-137 (miR-137) and the CACNA1C gene in APPswe/PS1ΔE9 (APP/PS1) double-transgenic AD mice and in human neuroblastoma SH-SY5Y cells. Material/Methods Six-month-old APP/PS1 double-transgenic AD mice (N=6) and age-matched normal C57BL/6 mice (N=6) underwent a Morris water maze (MWM) test, expression levels of amyloid-β (Aβ), LTCC, the CACNA1C gene, and miR-137 were measured in the rat hippocampus and cerebral cortex in both groups of mice. A luciferase assay was used to evaluate the effect of miR-137 on the expression of CACNA1C in SH-SY5Y human neuroblastoma SH-SY5Y cells. Western blotting was used to detect the CACNA1C, phosphorylated-tau (p-tau), and Aβ proteins. Results In APP/PS1 transgenic AD mice, spatial learning and memory was significantly reduced, levels of Aβ1–40 and Aβ1–42 were increased in the serum, hippocampus, and cerebral cortex, expression levels of miR-137 were reduced, expression of CACNA1C protein was increased in the hippocampus and cerebral cortex, compared with normal control mice. miR-137 regulated the expression of the CACNA1C gene. Increased expression levels of p-tau (Ser202, Ser396, and Ser404) induced by Aβ1–42 were inhibited by miR-137 mimics in SH-SY5Y human neuroblastoma cells in vitro. Conclusions In a transgenic mouse model of AD, miR-137 and expression of the CACNA1C gene inhibited the hyperphosphorylation of tau protein.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Bing Xu
- Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Jing Chen
- Department of Neurology and Neuroscience, henyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China (mainland)
| | - Yi Sui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Li Ren
- Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Jing Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Huiyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Liqing Guo
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
14
|
Curtis D, Emmett W. Association study of schizophrenia with variants in miR-137 binding sites. Schizophr Res 2018; 197:346-348. [PMID: 29158013 PMCID: PMC7172025 DOI: 10.1016/j.schres.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 01/23/2023]
Abstract
There is strong cumulative evidence for the involvement of miR-137 and its targets in the aetiology of schizophrenia. Here we test whether variants, especially rare variants, in miR-137 binding sites are associated with schizophrenia in an exome-sequenced sample of 4225 cases and 5834 controls. Only a small proportion of binding sites were covered by the capture system which had been used. A weighted burden test using the 372 detected variants demonstrated an excess among cases significant at p=0.024. The sample size is too small to implicate individual variants or genes but overall this finding does provide some further support for the hypothesis that disruption of miR-137 binding sites can increase the risk of schizophrenia, perhaps by leading to over-expression of the target gene. We recommend that future exome sequencing studies should cover the untranscribed regions of genes, which contain the microRNA binding sites, in order that this potentially important pathogenic mechanism can be adequately investigated.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London, UK; Centre for Psychiatry, Barts and the London School of Medicine and Dentistry, UK.
| | - Warren Emmett
- UCL Genetics Institute, University College London,The Francis Crick Institute,Department of Molecular Neuroscience, UCL Institute of Neurology
| |
Collapse
|
15
|
He E, Lozano MAG, Stringer S, Watanabe K, Sakamoto K, den Oudsten F, Koopmans F, Giamberardino SN, Hammerschlag A, Cornelisse LN, Li KW, van Weering J, Posthuma D, Smit AB, Sullivan PF, Verhage M. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Hum Mol Genet 2018; 27:1879-1891. [PMID: 29635364 PMCID: PMC5961183 DOI: 10.1093/hmg/ddy089] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
The MIR137 locus is a replicated genetic risk factor for schizophrenia. The risk-associated allele is reported to increase miR-137 expression and miR-137 overexpression alters synaptic transmission in mouse hippocampus. We investigated the cellular mechanisms underlying these observed effects in mouse hippocampal neurons in culture. First, we correlated the risk allele to expression of the genes in the MIR137 locus in human postmortem brain. Some evidence for increased MIR137HG expression was observed, especially in hippocampus of the disease-associated genotype. Second, in mouse hippocampal neurons, we confirmed previously observed changes in synaptic transmission upon miR-137 overexpression. Evoked synaptic transmission and spontaneous release were 50% reduced. We identified defects in release probability as the underlying cause. In contrast to previous observations, no evidence was obtained for selective synaptic vesicle docking defects. Instead, ultrastructural morphometry revealed multiple effects of miR-137 overexpression on docking, active zone length and total vesicle number. Moreover, proteomic analyses of neuronal protein showed that expression of Syt1 and Cplx1, previously reported as downregulated upon miR-137 overexpression, was unaltered. Immunocytochemistry of synapses overexpressing miR-137 showed normal Synaptotagmin1 and Complexin1 protein levels. Instead, our proteomic analyses revealed altered expression of genes involved in synaptogenesis. Concomitantly, synaptogenesis assays revealed 31% reduction in synapse formation. Taken together, these data show that miR-137 regulates synaptic function by regulating synaptogenesis, synaptic ultrastructure and synapse function. These effects are plausible contributors to the increased schizophrenia risk associated with miR-137 overexpression.
Collapse
Affiliation(s)
- Enqi He
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Miguel A Gonzalez Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Sven Stringer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Kensuke Sakamoto
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
- Department of Genetics, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, NC, USA
| | - Frank den Oudsten
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Stephanie N Giamberardino
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
- Department of Genetics, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, NC, USA
| | - Anke Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Jan van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
- Department of Genetics, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, NC, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Cosgrove D, Mothersill DO, Whitton L, Harold D, Kelly S, Holleran L, Holland J, Anney R, Richards A, Mantripragada K, Owen M, O'Donovan MC, Gill M, Corvin A, Morris DW, Donohoe G. Effects of MiR-137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. Am J Med Genet B Neuropsychiatr Genet 2018; 177:369-376. [PMID: 29418072 DOI: 10.1002/ajmg.b.32620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022]
Abstract
Multiple genome-wide association studies of schizophrenia have implicated genetic variants within the gene encoding microRNA-137. As risk variants within or regulated by MIR137 have been implicated in memory performance, we investigated the additive effects of schizophrenia-associated risk variants in genes empirically regulated by MIR137 on brain regions associated with memory function. A polygenic risk score (PRS) was calculated (at a p = 0.05 threshold), using this empirically regulated MIR137 gene set, to investigate associations between this PRS and structural brain measures. These measures included total brain volume, cortical thickness, cortical surface area, and hippocampal volume, in a sample of 216 individuals consisting of healthy participants (n = 171) and patients with psychosis (n = 45). We did not observe a significant association between MIR137 PRS and these cortical thickness, surface area or hippocampal volume measures linked to memory function; a significant association between increasing PRS and decreasing total brain volume, independent of diagnosis status (R2 = 0.008, Beta = -0.09, p = 0.029), was observed. This did not survive correction for multiple testing. In conclusion, our study yielded only suggestive evidence that risk variants interacting with MIR137 impacts on cortical structure.
Collapse
Affiliation(s)
- Donna Cosgrove
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - David O Mothersill
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Whitton
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laurena Holleran
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Jessica Holland
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Richard Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Alex Richards
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kiran Mantripragada
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael Owen
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology. Behav Genet 2018; 48:198-208. [PMID: 29564678 PMCID: PMC5934462 DOI: 10.1007/s10519-018-9893-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/13/2018] [Indexed: 11/04/2022]
Abstract
A previous study of exome-sequenced schizophrenia cases and controls reported an excess of singleton, gene-disruptive variants among cases, concentrated in particular gene sets. The dataset included a number of subjects with a substantial Finnish contribution to ancestry. We have reanalysed the same dataset after removal of these subjects and we have also included non-singleton variants of all types using a weighted burden test which assigns higher weights to variants predicted to have a greater effect on protein function. We investigated the same 31 gene sets as previously and also 1454 GO gene sets. The reduced dataset consisted of 4225 cases and 5834 controls. No individual variants or genes were significantly enriched in cases but 13 out of the 31 gene sets were significant after Bonferroni correction and the “FMRP targets” set produced a signed log p value (SLP) of 7.1. The gene within this set with the highest SLP, equal to 3.4, was FYN, which codes for a tyrosine kinase which phosphorylates glutamate metabotropic receptors and ionotropic NMDA receptors, thus modulating their trafficking, subcellular distribution and function. In the most recent GWAS of schizophrenia it was identified as a “prioritized candidate gene”. Two of the subunits of the NMDA receptor which are substrates of FYN are coded for by GRIN1 (SLP = 1.7) and GRIN2B (SLP = 2.1). Of note, for some sets there was a substantial enrichment of non-singleton variants. Of 1454 GO gene sets, three were significant after Bonferroni correction. Identifying specific genes and variants will depend on genotyping them in larger samples and/or demonstrating that they cosegregate with illness within pedigrees.
Collapse
|
18
|
Wyczechowska D, Lin HY, LaPlante A, Jeansonne D, Lassak A, Parsons CH, Molina PE, Peruzzi F. A miRNA Signature for Cognitive Deficits and Alcohol Use Disorder in Persons Living with HIV/AIDS. Front Mol Neurosci 2017; 10:385. [PMID: 29187813 PMCID: PMC5694774 DOI: 10.3389/fnmol.2017.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/06/2017] [Indexed: 01/23/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affects more than half of persons living with HIV-1/AIDS (PLWHA). Identification of biomarkers representing the cognitive status of PLWHA is a critical step for implementation of successful cognitive, behavioral and pharmacological strategies to prevent onset and progression of HAND. However, the presence of co-morbidity factors in PLWHA, the most common being substance abuse, can prevent the identification of such biomarkers. We have optimized a protocol to profile plasma miRNAs using quantitative RT-qPCR and found a miRNA signature with very good discriminatory ability to distinguish PLWHA with cognitive impairment from those without cognitive impairment. Here, we have evaluated this miRNA signature in PLWHA with alcohol use disorder (AUD) at LSU Health Sciences Center (LSUHSC). The results show that AUD is a potential confounding factor for the miRNAs associated with cognitive impairment in PLWHA. Furthermore, we have investigated the miRNA signature associated with cognitive impairment in an independent cohort of PLWHA using plasma samples from the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) program. Despite differences between the two cohorts in socioeconomic status, AUD, and likely misuse of illicit or prescription drugs, we validated a miRNA signature for cognitive deficits found at LSUHSC in the CHARTER samples.
Collapse
Affiliation(s)
- Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA, United States
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University, New Orleans, LA, United States
| | - Andrea LaPlante
- Department of Psychiatry, University Medical Center, Louisiana State University, New Orleans, LA, United States
| | - Duane Jeansonne
- Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA, United States
| | - Adam Lassak
- Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA, United States
| | - Christopher H Parsons
- Stanley S. Scott Cancer Center, Department of Medicine, School of Medicine, Louisiana State University, New Orleans, LA, United States
| | - Patricia E Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, School of Medicine, Louisiana State University, New Orleans, LA, United States
| | - Francesca Peruzzi
- Stanley S. Scott Cancer Center, Alcohol and Drug Abuse Center of Excellence, Department of Medicine, School of Medicine, Louisiana State University, New Orleans, LA, United States
| |
Collapse
|
19
|
Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X, Li G, Sang N. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM 2.5 aspiration. Part Fibre Toxicol 2017; 14:34. [PMID: 28851397 PMCID: PMC5575838 DOI: 10.1186/s12989-017-0215-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background PM2.5 (particulate matter ≤ 2.5 μm) is one of the leading environmental risk factors for the global burden of disease. Whereas increasing evidence has linked the adverse roles of PM2.5 with cardiovascular and respiratory diseases, limited but growing emerging evidence suggests that PM2.5 exposure can affect the nervous system, causing neuroinflammation, synaptic dysfunction and cognitive deterioration. However, the molecular mechanisms underlying the synaptic and cognitive deficits elicited by PM2.5 exposure are largely unknown. Methods C57BL/6 mice received oropharyngeal aspiration of PM2.5 (1 and 5 mg/kg bw) every other day for 4 weeks. The mice were also stereotaxically injected with β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE1) shRNA or LV-miR-574-5p lentiviral constructs in the absence or presence of PM2.5 aspiration at 5 mg/kg bw every other day for 4 weeks. Spatial learning and memory were assessed with the Morris water maze test, and synaptic function integrity was evaluated with electrophysiological recordings of long-term potentiation (LTP) and immunoblot analyses of glutamate receptor subunit expression. The expression of α-secretase (ADAM10), BACE1, and γ-secretase (nicastrin) and the synthesis and accumulation of amyloid β (Aβ) were measured by immunoblot and enzyme-linked immunosorbent assay (ELISA). MicroRNA (miRNA) expression was screened with a microRNA microarray analysis and confirmed by real-time quantitative reverse transcription PCR (qRT-PCR) analysis. Dual-luciferase reporter gene and chromatin immunoprecipitation (ChIP) analyses were used to detect the binding of miR-574-5p in the 3’UTR of BACE1 and NF-κB p65 in the promoter of miR-574-5p, respectively. Results PM2.5 aspiration caused neuroinflammation and deteriorated synaptic function integrity and spatial learning and memory, and the effects were associated with the induction of BACE1. The action was mediated by NF-κB p65-regulated downregulation of miR-574-5p, which targets BACE1. Overexpression of miR-574-5p in the hippocampal region decreased BACE1 expression, restored synaptic function, and improved spatial memory and learning following PM2.5 exposure. Conclusions Taken together, our findings reveal a novel molecular mechanism underlying impaired synaptic and cognitive function following exposure to PM2.5, suggesting that miR-574-5p is a potential intervention target for the prevention and treatment of PM2.5-induced neurological disorders. Electronic supplementary material The online version of this article (10.1186/s12989-017-0215-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ben Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
20
|
Abstract
The dysregulation of autophagy is implicated in many pathological disorders including infections, aging, neurodegenerative diseases, and cancer. Autophagy can be precisely controlled both transcriptionally and translationally. Accumulating evidences show that the autophagy response is regulated by microRNAs, which therefore becomes subject area of interest in recent years. Herein, we give a brief introduction of the recent advancement in the regulation of microRNA on autophagy, and then we focus on the microRNA regulation of the mitophagy receptor, NIX. Finally, we present the methodology on how to study it in detail.
Collapse
|
21
|
Jia X, Wang F, Han Y, Geng X, Li M, Shi Y, Lu L, Chen Y. miR-137 and miR-491 Negatively Regulate Dopamine Transporter Expression and Function in Neural Cells. Neurosci Bull 2016; 32:512-522. [PMID: 27628529 DOI: 10.1007/s12264-016-0061-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
Collapse
Affiliation(s)
- Xiaojian Jia
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ying Han
- Institute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Xuewen Geng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Minghua Li
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
22
|
microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice. Sci Rep 2016; 6:30953. [PMID: 27484949 PMCID: PMC4971468 DOI: 10.1038/srep30953] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023] Open
Abstract
The abnormal regulation of amyloid-β (Aβ) metabolism (e.g., production, cleavage, clearance) plays a central role in Alzheimer’s disease (AD). Among endogenous factors believed to participate in AD progression are the small regulatory non-coding microRNAs (miRs). In particular, the miR-132/212 cluster is severely reduced in the AD brain. In previous studies we have shown that miR-132/212 deficiency in mice leads to impaired memory and enhanced Tau pathology as seen in AD patients. Here we demonstrate that the genetic deletion of miR-132/212 promotes Aβ production and amyloid (senile) plaque formation in triple transgenic AD (3xTg-AD) mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Aβ metabolism, including Tau, Mapk, and Sirt1. Consistent with these findings, we show that the modulation of miR-132, or its target Sirt1, can directly regulate Aβ production in cells. Finally, both miR-132 and Sirt1 levels correlated with Aβ load in humans. Overall, our results support the hypothesis that the miR-132/212 network, including Sirt1 and likely other target genes, contributes to abnormal Aβ metabolism and senile plaque deposition in AD. This study strengthens the importance of miR-dependent networks in neurodegenerative disorders, and opens the door to multifactorial drug targets of AD by targeting Aβ and Tau.
Collapse
|