1
|
Iftimovici A, Krebs E, Dalfin W, Legrand A, Scoriels L, Martinez G, Bendjemaa N, Duchesnay E, Chaumette B, Krebs MO. Neurodevelopmental predictors of treatment response in schizophrenia and bipolar disorder. Psychol Med 2024; 54:1-12. [PMID: 39402801 PMCID: PMC11536111 DOI: 10.1017/s0033291724001776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Treatment resistance is a major challenge in psychiatric disorders. Early detection of potential future resistance would improve prognosis by reducing the delay to appropriate treatment adjustment and recovery. Here, we sought to determine whether neurodevelopmental markers can predict therapeutic response. METHODS Healthy controls (N = 236), patients with schizophrenia (N = 280) or bipolar disorder (N = 78) with a known therapeutic outcome, were retrospectively included. Age, sex, education, early developmental abnormalities (obstetric complications, height, weight, and head circumference at birth, hyperactivity, dyslexia, epilepsy, enuresis, encopresis), neurological soft signs (NSS), and ages at first subjective impairment, clinical symptoms, treatment, and hospitalization, were recorded. A supervised algorithm leveraged NSS and age at first clinical signs to classify between resistance and response in schizophrenia. RESULTS Developmental abnormalities were more frequent in schizophrenia and bipolar disorder than in controls. NSS significantly differed between controls, responsive, and resistant participants with schizophrenia (5.5 ± 3.0, 7.0 ± 4.0, 15.0 ± 6.0 respectively, p = 3 × 10-10) and bipolar disorder (5.5 ± 3.0, 8.3 ± 3.0, 12.5 ± 6.0 respectively, p < 1 × 10-10). In schizophrenia, but not in bipolar disorder, age at first subjective impairment was three years lower, and age at first clinical signs two years lower, in resistant than responsive subjects (p = 2 × 10-4 and p = 9 × 10-3, respectively). Age at first clinical signs and NSS accurately predicted treatment response in schizophrenia (area-under-curve: 77 ± 8%, p = 1 × 10-14). CONCLUSIONS Neurodevelopmental features such as NSS and age of clinical onset provide a means to identify patients who may require rapid treatment adaptation.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Paris, France
- NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France
| | - Emma Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - William Dalfin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | | | - Linda Scoriels
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
| | | | | | | | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Paris, France
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
2
|
Prohens L, Rodríguez N, Segura ÀG, Martínez-Pinteño A, Olivares-Berjaga D, Martínez I, González A, Mezquida G, Parellada M, Cuesta MJ, Bernardo M, Gassó P, Mas S. Gene expression imputation provides clinical and biological insights into treatment-resistant schizophrenia polygenic risk. Psychiatry Res 2024; 332:115722. [PMID: 38198858 DOI: 10.1016/j.psychres.2024.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Genome-wide association studies (GWAS) have revealed the polygenic nature of treatment-resistant schizophrenia TRS. Gene expression imputation allowed the translation of GWAS results into regulatory mechanisms and the construction of gene expression (GReX) risk scores (GReX-RS). In the present study we computed GReX-RS from the largest GWAS of TRS to assess its association with clinical features. We perform transcriptome imputation in the largest GWAS of TRS to find GReX associated with TRS using brain tissues. Then, for each tissue, we constructed a GReX-RS of the identified genes in a sample of 254 genotyped first episode of psychosis (FEP) patients to test its association with clinical phenotypes, including clinical symptomatology, global functioning and cognitive performance. Our analysis provides evidence that the polygenic basis of TRS includes genetic variants that modulate the expression of certain genes in certain brain areas (substantia nigra, hippocampus, amygdala and frontal cortex), which at the same time are related to clinical features in FEP patients, mainly persistence of negative symptoms and cognitive alterations in sustained attention, which have also been suggested as clinical predictors of TRS. Our results provide a clinical explanation of the polygenic architecture of TRS and give more insight into the biological mechanisms underlying TRS.
Collapse
Affiliation(s)
- Llucia Prohens
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Natalia Rodríguez
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Àlex-Gonzàlez Segura
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Albert Martínez-Pinteño
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Olivares-Berjaga
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Irene Martínez
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aitor González
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gisela Mezquida
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Manuel J Cuesta
- Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miquel Bernardo
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Patricia Gassó
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, Spain
| | - Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, Spain.
| |
Collapse
|
3
|
Mohamed Saini S, Bousman CA, Mancuso SG, Cropley V, Van Rheenen TE, Lenroot RK, Bruggemann J, Weickert CS, Weickert TW, Sundram S, Everall IP, Pantelis C. Genetic variation in glutamatergic genes moderates the effects of childhood adversity on brain volume and IQ in treatment-resistant schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:59. [PMID: 37709784 PMCID: PMC10502098 DOI: 10.1038/s41537-023-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Suriati Mohamed Saini
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
- Department of Psychiatry, Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Psychiatry, and Physiology and Pharmacology, The University of Calgary, Calgary, AB, Canada
| | - Serafino G Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Psychiatry and Behavioural Science, University of New Mexico, Albuquerque, NM, USA
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Cynthia S Weickert
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, NY, USA
- Schizophrenia Research Laboratory, Neuroscience Research Australia, NSW, Australia
| | - Thomas W Weickert
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, NY, USA
| | - Suresh Sundram
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Monash Medical Centre, Monash Health, Clayton, VIC, Australia
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Western Centre for Health Research & Education, Sunshine Hospital, Western Health, St Albans, VIC, 3021, Australia
| |
Collapse
|
4
|
Petrescu C, Petrescu DM, Marian G, Focseneanu BE, Iliuta FP, Ciobanu CA, Papacocea S, Ciobanu AM. Neurological Soft Signs in Schizophrenia, a Picture of the Knowledge in the Last Decade: A Scoping Review. Healthcare (Basel) 2023; 11:healthcare11101471. [PMID: 37239757 DOI: 10.3390/healthcare11101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Neurological Soft Signs (NSS) are subtle neurological abnormalities that are more common in schizophrenia patients than in healthy individuals and have been regularly observed in neuroleptic-naive first-episode patients, supporting the hypothesis that they are an intrinsic component of schizophrenia. (2) Methods: a review of articles published in the last ten years (from January 2013 to January 2023) was carried out on articles published in ScienceDirect and PubMed, by following the PRISMA Statement extension for scoping reviews (PRISMA-ScR), which evaluated the impact of NSS in correlation with the symptomatology, neuroleptic treatment, and the cerebral structural changes of patients with schizophrenia. (3) Results: thirty articles were included, among them twelve included MRI structural evaluation and four studies with a longitudinal design. (4) Conclusions: interest in researching NSS has increased in recent years, but questions remain about their origin and relationship to schizophrenia symptoms, thus this study aims to fill in information gaps in the hope that future research will help provide individualized treatment. It is suggested that NSS in schizophrenia might have an inherited genetic relationship pattern, thus being in line with a trait viewpoint. Most of the research revealed that schizophrenia patients had higher NSS scores than healthy controls, however, they were rather similar to their first-degree relatives, thus, also arguing in favor of a trait perspective. The greatest improvement in scores is seen in those with a remitting course, as shown by declining NSS ratings concurrent with symptomatology.
Collapse
Affiliation(s)
- Cristian Petrescu
- Department of Psychiatry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Diana M Petrescu
- Neurology Clinic Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Gabriela Marian
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Department of Psychiatry and Psychology, Titu Maiorescu University of Medicine, 040441 Bucharest, Romania
| | - Brindusa E Focseneanu
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
- Department of Psychiatry and Psychology, Titu Maiorescu University of Medicine, 040441 Bucharest, Romania
| | - Floris Petru Iliuta
- Department of Psychiatry and Psychology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Serban Papacocea
- Department of Neurosurgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adela M Ciobanu
- Department of Psychiatry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| |
Collapse
|
5
|
Iasevoli F, D’Ambrosio L, Ciccarelli M, Barone A, Gaudieri V, Cocozza S, Pontillo G, Brunetti A, Cuocolo A, de Bartolomeis A, Pappatà S. Altered Patterns of Brain Glucose Metabolism Involve More Extensive and Discrete Cortical Areas in Treatment-resistant Schizophrenia Patients Compared to Responder Patients and Controls: Results From a Head-to-Head 2-[18F]-FDG-PET Study. Schizophr Bull 2023; 49:474-485. [PMID: 36268829 PMCID: PMC10016407 DOI: 10.1093/schbul/sbac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND HYPOTHESIS Treatment resistant schizophrenia (TRS) affects almost 30% of patients with schizophrenia and has been considered a different phenotype of the disease. In vivo characterization of brain metabolic patterns associated with treatment response could contribute to elucidate the neurobiological underpinnings of TRS. Here, we used 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) to provide the first head-to-head comparative analysis of cerebral glucose metabolism in TRS patients compared to schizophrenia responder patients (nTRS), and controls. Additionally, we investigated, for the first time, the differences between clozapine responders (Clz-R) and non-responders (Clz-nR). STUDY DESIGN 53 participants underwent FDG-PET studies (41 patients and 12 controls). Response to conventional antipsychotics and to clozapine was evaluated using a standardized prospective procedure based on PANSS score changes. Maps of relative brain glucose metabolism were processed for voxel-based analysis using Statistical Parametric Mapping software. STUDY RESULTS Restricted areas of significant bilateral relative hypometabolism in the superior frontal gyrus characterized TRS compared to nTRS. Moreover, reduced parietal and frontal metabolism was associated with high PANSS disorganization factor scores in TRS (P < .001 voxel level uncorrected, P < .05 cluster level FWE-corrected). Only TRS compared to controls showed significant bilateral prefrontal relative hypometabolism, more extensive in CLZ-nR than in CLZ-R (P < .05 voxel level FWE-corrected). Relative significant hypermetabolism was observed in the temporo-occipital regions in TRS compared to nTRS and controls. CONCLUSIONS These data indicate that, in TRS patients, altered metabolism involved discrete brain regions not found affected in nTRS, possibly indicating a more severe disrupted functional brain network associated with disorganization symptoms.
Collapse
Affiliation(s)
- Felice Iasevoli
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi D’Ambrosio
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development - University of Naples Federico II, Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| |
Collapse
|
6
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
7
|
The Impact of Antipsychotic Treatment on Neurological Soft Signs in Patients with Predominantly Negative Symptoms of Schizophrenia. Biomedicines 2022; 10:biomedicines10112939. [PMID: 36428507 PMCID: PMC9687986 DOI: 10.3390/biomedicines10112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia is a complex and incompletely elucidated pathology that affects sensorimotor function and also produces numerous therapeutic challenges. The aims of this cross-sectional study were to identify the profile of neurological soft signs (NSS) in patients with predominantly negative symptoms of schizophrenia (PNS) compared with patients with schizophrenia who do not present a predominance of negative symptoms (NPNS) and also to objectify the impact of treatment on the neurological function of these patients. Ninety-nine (n = 99; 56 females and 43 males) patients diagnosed with schizophrenia according to DSM-V were included; these patients were undergoing antipsychotic (4 typical antipsychotics, 86 atypical antipsychotics, and 9 combinations of two atypical antipsychotics) or anticholinergic treatment (24 out of 99) at the time of evaluation, and the PANSS was used to identify the patients with predominantly negative symptoms (n = 39), the Neurological Evaluation Scale (NES) was used for the evaluation of neurological soft signs (NSS), and the SAS was used for the objectification of the extrapyramidal side effects induced by the neuroleptic treatment, which was converted to chlorpromazine equivalents (CPZE). The study's main finding was that, although the daily dose of CPZE did not represent a statistically significant variable, in terms of neurological soft signs, patients with PNS had higher rates of NSS.
Collapse
|
8
|
Disorganization domain as a putative predictor of Treatment Resistant Schizophrenia (TRS) diagnosis: A machine learning approach. J Psychiatr Res 2022; 155:572-578. [PMID: 36206601 DOI: 10.1016/j.jpsychires.2022.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Treatment Resistant Schizophrenia (TRS) is the persistence of significant symptoms despite adequate antipsychotic treatment. Although consensus guidelines are available, this condition remains often unrecognized and an average delay of 4-9 years in the initiation of clozapine, the gold standard for the pharmacological treatment of TRS, has been reported. We aimed to determine through a machine learning approach which domain of the Positive and Negative Syndrome Scale (PANSS) 5-factor model was most associated with TRS. METHODS In a cross-sectional design, 128 schizophrenia patients were classified as TRS (n = 58) or non-TRS (n = 60) after a structured retrospective-prospective analysis of treatment response. The random forest algorithm (RF) was trained to analyze the relationship between the presence/absence of TRS and PANSS-based psychopathological factor scores (positive, negative, disorganization, excitement, and emotional distress). As a complementary strategy to identify the variables most associated with the diagnosis of TRS, we included the variables selected by the RF algorithm in a multivariate logistic regression model. RESULTS according to the RF model, patients with higher disorganization, positive, and excitement symptom scores were more likely to be classified as TRS. The model showed an accuracy of 67.19%, a sensitivity of 62.07%, and a specificity of 71.43%, with an area under the curve (AUC) of 76.56%. The multivariate model including disorganization, positive, and excitement factors showed that disorganization was the only factor significantly associated with TRS. Therefore, the disorganization factor was the variable most consistently associated with the diagnosis of TRS in our sample.
Collapse
|
9
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
10
|
Iasevoli F, Razzino E, Altavilla B, Avagliano C, Barone A, Ciccarelli M, D'Ambrosio L, Matrone M, Milandri F, Notar Francesco D, Fornaro M, de Bartolomeis A. Relationships between early age at onset of psychotic symptoms and treatment resistant schizophrenia. Early Interv Psychiatry 2022; 16:352-362. [PMID: 33998142 PMCID: PMC9291026 DOI: 10.1111/eip.13174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
AIM Early age at schizophrenia onset (EOS) has been associated with a worse clinical course, although previous studies reported substantial heterogeneity. Despite the relevance of the subject, the relationship between the age of onset and treatment resistant schizophrenia (TRS) is less clear. METHODS We screened 197 non-affective psychotic patients. Of these, 99 suffered from schizophrenia and were putative TRS and were included in a prospective 4-to-8-week trial to assess their response to antipsychotics. According to status (TRS/nonTRS) and age-at-onset (early: ≤18 years, EOS; adult: >18 years, adult onset schizophrenia [AOS]) patients were subdivided in EOS-TRS, EOS-nonTRS, AOS-TRS, AOS-nonTRS. Multiple clinical variables were measured and compared by analysis of covariance (ANCOVA), using age as a covariate. Two-way analysis of variance (ANOVA) was used to assess whether significant differences were attributable to TRS status or age-at-onset. RESULTS The rate of TRS patients was significantly higher in EOS compared to AOS. At the ANCOVA, EOS-TRS had significantly worse clinical, cognitive, and psychosocial outcomes compared to the other groups. Overall, EOS-TRS were more impaired than EOS-nonTRS, while significant differences with AOS-TRS were less consistent, albeit appreciable. Two-way ANOVA demonstrated that, in the majority of the investigated variables, the significant differences among groups were attributable to the TRS status effect rather than to age-at-onset or combined effects. CONCLUSIONS These results suggest that refractoriness to antipsychotics may be strongly linked to the early onset of psychotic symptoms, possibly as a result of common neurobiology.
Collapse
Affiliation(s)
- Felice Iasevoli
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Eugenio Razzino
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Benedetta Altavilla
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Camilla Avagliano
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Annarita Barone
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Luigi D'Ambrosio
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Marta Matrone
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Federica Milandri
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Danilo Notar Francesco
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Michele Fornaro
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, and Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| |
Collapse
|
11
|
Matrone M, Kotzalidis GD, Romano A, Bozzao A, Cuomo I, Valente F, Gabaglio C, Lombardozzi G, Trovini G, Amici E, Perrini F, De Persis S, Iasevoli F, De Filippis S, de Bartolomeis A. Treatment-resistant schizophrenia: Addressing white matter integrity, intracortical glutamate levels, clinical and cognitive profiles between early- and adult-onset patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110493. [PMID: 34883221 DOI: 10.1016/j.pnpbp.2021.110493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Treatment-resistance in schizophrenia is 30-40%. Its neurobiology remains unclear; to explore it, we conducted a combined spectrometry/tractography/cognitive battery and psychopathological rating study on patients with treatment-resistant schizophrenia (TRS), dividing the sample into early-onset (N = 21) and adult-onset TRS (N = 20). Previous studies did not differentiate between early- (onset 13-18 years) and adult-onset (>18 years at formal diagnosis of schizophrenia) TRS. METHODS We evaluated cross-sectionally 41 TRS patients (26 male and 15 female) and 20 matched healthy controls (HCs) with psychopathological and cognitive testing prior to participating in brain imaging scanning using magnetic resonance spectroscopy and diffusion tensor imaging to determine the relationship between their symptoms and their glutamate levels and white matter integrity. RESULTS TRS patients scored lower than HCs on all cognitive domains; early-onset patients performed better than adult-onset patients only on the Symbol Coding domain. TRS correlated with symptom severity, especially negative symptoms. Glutamate levels and glutamate/creatine were increased in anterior cingulate cortex. Diffusion tensor imaging showed low fractional anisotropy in TRS patients in specific white matter tracts compared to HCs (bilateral anterior thalamic radiation, cortico-spinal tract, forceps minor, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, and right uncinate fasciculus). CONCLUSIONS We identified specific magnetic resonance spectroscopy and diffusion tensor imaging alterations in TRS patients. Adult-onset TRS differed little from early-onset TRS on most measures; this points to alterations being present since the outset of schizophrenia and may constitute a biological signature of treatment-resistance.
Collapse
Affiliation(s)
- Marta Matrone
- Section of Psychiatry Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Georgios D Kotzalidis
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Andrea Romano
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Alessandro Bozzao
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Sapienza University of Rome, Faculty of Medicine and Psychology, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Ilaria Cuomo
- UOC SM I Distretto ASL ROMA 1, C.C. Regina Cœli, Via della Lungara 29, 00165 Rome, Italy.
| | - Francesca Valente
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy; Department of Human Neurosciences, Institute of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, Italy.
| | - Chiara Gabaglio
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Ginevra Lombardozzi
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Giada Trovini
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Emanuela Amici
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Filippo Perrini
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy; UOC SMREE Distretto ASL ROMA 6, TSMREE, Via S. Biagio, 12, 00049, Velletri, Rome, Italy.
| | - Simone De Persis
- UOSD Attività Terapeutiche Riabilitative per i Disturbi da uso di Sostanze e nuove Dipendenze, ASL Rieti, Via Salaria per Roma 36, 02100 Rieti, Italy.
| | - Felice Iasevoli
- Section of Psychiatry Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy.
| | - Sergio De Filippis
- Clinica Neuropsichiatrica Villa von Siebenthal, Department of Neuropsychiatry, Via della Madonnina 1, 00045 Genzano di Roma, RM, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
12
|
Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23031539. [PMID: 35163460 PMCID: PMC8835961 DOI: 10.3390/ijms23031539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.
Collapse
|
13
|
Millgate E, Hide O, Lawrie SM, Murray RM, MacCabe JH, Kravariti E. Neuropsychological differences between treatment-resistant and treatment-responsive schizophrenia: a meta-analysis. Psychol Med 2022; 52:1-13. [PMID: 36415088 PMCID: PMC8711103 DOI: 10.1017/s0033291721004128] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Antipsychotic treatment resistance affects up to a third of individuals with schizophrenia. Of those affected, 70-84% are reported to be treatment resistant from the outset. This raises the possibility that the neurobiological mechanisms of treatment resistance emerge before the onset of psychosis and have a neurodevelopmental origin. Neuropsychological investigations can offer important insights into the nature, origin and pathophysiology of treatment-resistant schizophrenia (TRS), but methodological limitations in a still emergent field of research have obscured the neuropsychological discriminability of TRS. We report on the first systematic review and meta-analysis to investigate neuropsychological differences between TRS patients and treatment-responsive controls across 17 published studies (1864 participants). Five meta-analyses were performed in relation to (1) executive function, (2) general cognitive function, (3) attention, working memory and processing speed, (4) verbal memory and learning, and (5) visual-spatial memory and learning. Small-to-moderate effect sizes emerged for all domains. Similarly to previous comparisons between unselected, drug-naïve and first-episode schizophrenia samples v. healthy controls in the literature, the largest effect size was observed in verbal memory and learning [dl = -0.53; 95% confidence interval (CI) -0.29 to -0.76; z = 4.42; p < 0.001]. A sub-analysis of language-related functions, extracted from across the primary domains, yielded a comparable effect size (dl = -0.53, 95% CI -0.82 to -0.23; z = 3.45; p < 0.001). Manipulating our sampling strategy to include or exclude samples selected for clozapine response did not affect the pattern of findings. Our findings are discussed in relation to possible aetiological contributions to TRS.
Collapse
Affiliation(s)
- Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Olga Hide
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
Kogure M, Kanahara N, Miyazawa A, Oishi K, Nakata Y, Oda Y, Iyo M. Interacting Roles of COMT and GAD1 Genes in Patients with Treatment-Resistant Schizophrenia: a Genetic Association Study of Schizophrenia Patients and Healthy Controls. J Mol Neurosci 2021; 71:2575-2582. [PMID: 34125398 DOI: 10.1007/s12031-021-01866-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The projection from dopaminergic neurons to gamma-aminobutyric acid (GABA) interneurons in the prefrontal cortex is involved in the etiology of schizophrenia. The impact of interacting effects between dopamine signals and the expression of GABA on the clinical phenotypes of schizophrenia has not been studied. Since these interactions could be closely involved in prefrontal cortex functions, patients with specific alleles of these relevant molecules (which lead to lower or vulnerable genetic functions) may develop treatment-refractory symptoms. We conducted a genetic association study focusing on COMT and GAD1 genes for a treatment-resistant schizophrenia (TRS) group (n=171), a non-TRS group (n=592), and healthy controls (HC: n=447), and we examined allelic combinations specific to TRS. The results revealed that the percentage of subjects with Met allele of rs4680 on the COMT gene and C/C homozygote of rs3470934 on the GAD1 gene was significantly higher in the TRS group than the other two groups. There was no significant difference between the non-TRS group and HC groups. Considering the direction of functions of these single-nucleotide polymorphisms revealed by previous studies, we speculate that subjects with the Met/CC allelic combination could have a higher dopamine level and a lower expression of GABA in the prefrontal cortex. Our results suggest that an interaction between the dopaminergic signal and GABA signal intensities could differ between TRS patients and patients with other types of schizophrenia and healthy subjects.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Chiba, Japan
| | - Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Cyclic Innovation, Japan Agency for Medical Research Development, Tokyo, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
15
|
Smart SE, Kępińska AP, Murray RM, MacCabe JH. Predictors of treatment resistant schizophrenia: a systematic review of prospective observational studies. Psychol Med 2021; 51:44-53. [PMID: 31462334 PMCID: PMC7856410 DOI: 10.1017/s0033291719002083] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
Treatment-resistant schizophrenia, affecting approximately 20-30% of patients with schizophrenia, has a high burden both for patients and healthcare services. There is a need to identify treatment resistance earlier in the course of the illness, in order that effective treatment, such as clozapine, can be offered promptly. We conducted a systemic literature review of prospective longitudinal studies with the aim of identifying predictors of treatment-resistant schizophrenia from the first episode. From the 545 results screened, we identified 12 published studies where data at the first episode was used to predict treatment resistance. Younger age of onset was the most consistent predictor of treatment resistance. We discuss the gaps in the literature and how future prediction models can identify predictors of treatment response more robustly.
Collapse
Affiliation(s)
- S. E. Smart
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, 16 de Crespigny Park, London, SE5 8AF, UK
| | - A. P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, 16 de Crespigny Park, London, SE5 8AF, UK
| | - R. M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, 16 de Crespigny Park, London, SE5 8AF, UK
| | - J. H. MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, 16 de Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
16
|
Nakata Y, Kanahara N, Kimura A, Niitsu T, Komatsu H, Oda Y, Ishikawa M, Hasegawa T, Kamata Y, Yamauchi A, Inazumi K, Kimura H, Iyo M. Autistic traits and cognitive profiles of treatment-resistant schizophrenia. Schizophr Res Cogn 2020; 22:100186. [PMID: 32760657 PMCID: PMC7390750 DOI: 10.1016/j.scog.2020.100186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022]
Abstract
The complex pathophysiology of treatment-resistant schizophrenia (TRS) includes severe positive symptoms but also other symptom domains. The overlapping psychological profiles of schizophrenia and autistic spectrum disorder (ASD) are not established. We compared TRS patients (n = 30) with schizophrenia patients in remission (RemSZ, n = 28) and ASD patients (n = 28), focusing on both neurodevelopmental aspects and general and social cognitive impairments. The TRS group performed the worst on general neurocognition (measured by the MATRICS Consensus Cognitive Battery) and social cognition (measured by the theory of mind and emotional expression). The RemSZ group performed the best among the three groups. Regarding autistic traits, all measurements by the Autism-Spectrum Quotient/Autism Screening Questionnaire/Pervasive Developmental Disorder Assessment Rating Scale showed that (1) the ASD patients had the highest autistic traits (2) the TRS patients' scores were less severe than the ASD group's, but (3) the overall trends placed the TRS group between the ASD and the RemSZ group. These findings indicate that TRS patients and remitted patients could have distinctive neurodevelopmental and cognitive profiles. Further, the degrees of social cognitive dysfunction and autistic traits in TRS patients could be close to those of ASD patients, suggesting similarities between TRS and ASD.
Collapse
Affiliation(s)
- Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
- Corresponding author at: Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba-shi, Chiba 260-8670, Japan.
| | - Atsushi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Komatsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masatomo Ishikawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Hasegawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Palliative Care Center, Chiba University Hospital, Chiba, Japan
| | - Yu Kamata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Yamauchi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Psychiatry, Chiba Rosai Hospital, Ichihara, Japan
| | - Kazuhiko Inazumi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
17
|
Wolf RC, Rashidi M, Schmitgen MM, Fritze S, Sambataro F, Kubera KM, Hirjak D. Neurological Soft Signs Predict Auditory Verbal Hallucinations in Patients With Schizophrenia. Schizophr Bull 2020; 47:433-443. [PMID: 33097950 PMCID: PMC7965075 DOI: 10.1093/schbul/sbaa146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological soft signs (NSS) are well documented in individuals with schizophrenia (SZ), yet so far, the relationship between NSS and specific symptom expression is unclear. We studied 76 SZ patients using magnetic resonance imaging (MRI) to determine associations between NSS, positive symptoms, gray matter volume (GMV), and neural activity at rest. SZ patients were hypothesis-driven stratified according to the presence or absence of auditory verbal hallucinations (AVH; n = 34 without vs 42 with AVH) according to the Brief Psychiatric Rating Scale. Structural MRI data were analyzed using voxel-based morphometry, whereas intrinsic neural activity was investigated using regional homogeneity (ReHo) measures. Using ANCOVA, AVH patients showed significantly higher NSS in motor and integrative functions (IF) compared with non-hallucinating (nAVH) patients. Partial correlation revealed that NSS IF were positively associated with AVH symptom severity in AVH patients. Such associations were not confirmed for delusions. In region-of-interest ANCOVAs comprising the left middle and superior temporal gyri, right paracentral lobule, and right inferior parietal lobule (IPL) structure and function, significant differences between AVH and nAVH subgroups were not detected. In a binary logistic regression model, IF scores and right IPL ReHo were significant predictors of AVH. These data suggest significant interrelationships between sensorimotor integration abilities, brain structure and function, and AVH symptom expression.
Collapse
Affiliation(s)
- Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,To whom correspondence should be addressed; Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Voßstraße 4, 69115 Heidelberg, Germany; tel: +49-6221-564405, fax: +49-6221-564481, e-mail:
| | - Mahmoud Rashidi
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy,Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
El Abdellati K, De Picker L, Morrens M. Antipsychotic Treatment Failure: A Systematic Review on Risk Factors and Interventions for Treatment Adherence in Psychosis. Front Neurosci 2020; 14:531763. [PMID: 33162877 PMCID: PMC7584050 DOI: 10.3389/fnins.2020.531763] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Objective: Antipsychotic medication non-adherence has detrimental effects on patients' clinical outcome. It is unclear which risk factors affect adherence most and which interventions are effective at improving adherence to antipsychotic medication. The aim of this systematic review is to summarize evidence exploring risk factors of non-adherence to antipsychotic treatment and effectiveness of intervention to improve adherence in patients with psychotic spectrum disorders. Methods: We conducted a systematic search in PubMed from 1994 to 2019 using a structured search strategy. Studies were quality assessed, and studies reporting on possible risk factors and intervention strategies were synthesized. Results: We reviewed 26 studies on factors related to antipsychotic medication adherence and 17 studies on interventions to improve adherence in patients with psychosis spectrum disorders. Risk factors of non-adherence included younger age, poor illness insight, cannabis abuse, and the presence of severe positive symptoms. Antipsychotic medication adherence was associated with positive attitude toward medication of both patients and their family, family involvement, and illness insight. Somewhat consistent evidence was found for interventions involving family and technology-based interventions and strategies combining depot medication with psychoeducation. However, given the wide range of heterogeneous interventions and methodological limitations, findings must be interpreted with caution. Conclusion: Despite much effort invested in the research area of antipsychotic medication adherence, the heterogeneity in study design and outcome, adding to confounding effects and possible biases, and methodological restraints complicate comparability of the results. Future research in this field should therefore be conducted on patient-tailored interventions, considering risk factors affecting the patient and implementing well-validated, standardized assessment methods. Accordingly, this systematic review seeks to facilitate endeavors improving adherence to antipsychotic treatment by identifying modifiable and non-modifiable risk factors, outlining effective intervention strategies, and proposing recommendations to enhance adherence strategies.
Collapse
Affiliation(s)
- Kawtar El Abdellati
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| |
Collapse
|
19
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
20
|
Fountoulakis KN, Panagiotidis P, Kimiskidis V, Nimatoudis I. 12-Month stability of neurological soft signs in stabilized patients with schizophrenia. Nord J Psychiatry 2019; 73:451-461. [PMID: 31393751 DOI: 10.1080/08039488.2019.1649724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: Neurological soft signs (NSS) are a group of minor non-localizable neurological abnormalities found more often in patients with schizophrenia. The aim of the current study was to investigate their temporal stability and relationship to the overall outcome over a 12-month period. Material and methods: The study sample included 133 stabilized patients suffering from schizophrenia (77 males and 56 females; aged 33.55 ± 11.22 years old). The assessment included the application at baseline and after 12 months of the Neurological Evaluation Scale (NES), and a number of scales assessing the clinical symptoms and adverse effects. The statistical analysis included ANOVA, exploratory t-test and Pearson correlation coefficients with Bonferroni correction. Results: In stabilized patients, NSS are stable over a 12-month period with only the subscale of NES-sensory integration manifesting a significant worsening, while, in contrast, most of the clinical variables improved significantly. There was no relationship of NES scores with the magnitude of improvement. The only significant negative correlation was between NES-motor coordination and Positive and Negative Syndrome Scale-GP change at 1 year. Discussion: The results of the current study suggest that after stabilization of patients with schizophrenia, there are probably two separate components, a 'trait' which is stable over a 12-month period, and a 'degenerative' component with a tendency to worsen probably in parallel with the progression of the illness and in correlation with the worsening of negative symptoms. However, the statistical support of the 'degenerative' component is weak. Significant outcomes Neurological softs signs are stable over a 12-month period, with the exception of 'sensory integration' which manifests significant improvement irrespective of treatment response. They do not respond to treatment with antipsychotics. They do not constitute a prognostic factor to predict improvement over a period of 1 year. Neurological soft signs constitute a trait symptom of schizophrenia which is stable though time. Limitations All the subjects have been previously hospitalized which may represent a more severe form of schizophrenia. Also, all patients were under antipsychotic and some also under benzodiazepine medications. Patients with comorbid somatic disorders were excluded which may decrease generalizability of results.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- Third Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Panagiotis Panagiotidis
- Third Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Vasilios Kimiskidis
- Laboratory of Clinical Neurophysiology, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Ioannis Nimatoudis
- Third Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
21
|
Lin AS, Chan HY, Peng YC, Chen WJ. Severity in sustained attention impairment and clozapine-resistant schizophrenia: a retrospective study. BMC Psychiatry 2019; 19:220. [PMID: 31299940 PMCID: PMC6626410 DOI: 10.1186/s12888-019-2204-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Among patients with treatment-resistant schizophrenia (TRS), some exhibited further clozapine resistance (CR). This study aimed to investigate whether greater severity of treatment resistance in schizophrenia is associated with greater impairments in sustained attention. METHODS Patients with a DSM-IV-defined schizophrenia were recruited from a psychiatric center in northern Taiwan (April 2010 to October 2010). Both TRS and CR were determined retrospectively from participants' medical records following the consensus guidelines. The patients were divided into three groups: 102 non-TRS, 48 TRS without CR, and 54 TRS with CR. They underwent both undegraded and degraded Continuous Performance Tests (CPT), and their performance scores (d') were standardized against a community sample to derive age-, sex-, and education-adjusted z scores. RESULTS The TRS with CR group had significantly lower adjusted z scores of d' on both undegraded and degraded CPTs than the other two groups. Meanwhile, the differences between the TRS without CR group and the non-TRS group were not significant. Multivariable linear regression analyses with adjustment for covariates revealed a trend of gradient impairments on the degraded CPT from non-TRS to TRS without CR and to TRS with CR. The proportions of attentional deficits (an adjusted z score of ≤ - 2.5) on the degraded CPT also exhibited a significant trend, from 36.3% in the non-TRS group to 62.5% in the TRS without CR group and to 83.3% in the TRS with CR group. CONCLUSIONS Greater severity of treatment resistance in schizophrenia was associated with greater impairments in sustained attention, indicating some common vulnerability.
Collapse
Affiliation(s)
- An-Sheng Lin
- grid.454740.6Department of General Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hung-Yu Chan
- grid.454740.6Office of Superintendent, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan ,0000 0004 0546 0241grid.19188.39Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chieh Peng
- grid.454740.6Department of General Psychiatry, Bali Psychiatric Center, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Wei J. Chen
- 0000 0004 0546 0241grid.19188.39Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan ,0000 0004 0546 0241grid.19188.39Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 100 Taiwan
| |
Collapse
|
22
|
Iasevoli F, D'Ambrosio L, Notar Francesco D, Razzino E, Buonaguro EF, Giordano S, Patterson TL, de Bartolomeis A. Clinical evaluation of functional capacity in treatment resistant schizophrenia patients: Comparison and differences with non-resistant schizophrenia patients. Schizophr Res 2018; 202:217-225. [PMID: 29934250 DOI: 10.1016/j.schres.2018.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/05/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
Treatment resistant schizophrenia (TRS) is defined by poor or non-response to conventional antipsychotic agents. Functional capacity is defined as the baseline potential of a patient to function in the community, irrespective of actual achievements gained, and has never been studied in TRS. Here, we screened 182 patients with psychotic symptoms and separated them in TRS (n = 28) and non-TRS (n = 32) ones, to evaluate whether they exhibited differential extents and predictive clinical variables of functional capacity. Functional capacity was measured by the UCSD Performance-Based Skills Assessment (UPSA). Psychotic symptoms by PANSS, social functioning by PSP and SLOF, clinical severity of the illness, cognitive functioning, and neurological soft signs (NSS) were assessed. TRS patients had non-significant lower UPSA scores compared to non-TRS (t-test: p > 0.05). In TRS, UPSA score correlated with multiple clinical variables. The highest effect sizes were observed for PANSS negative score (r = -0.67, p < 0.005); SLOF Area1 score (r = 0.66, p < 0.005); NSS severity (r = -0.61, p < 0.005). Multivariate analysis showed that main predictors of UPSA score in TRS patients were PANSS negative score, education years, NSS, Problem Solving performances, and PSP score (F = 11.12, R2 = 0.75, p < 0.0005). These variables were not predictive of UPSA score in non-TRS patients. Hierarchical analysis found that variance in UPSA score mainly depended on negative symptoms, NSS, and problem solving (F = 15.21, R2 = 0.65, p < 0.0005). Path analysis individuated two separate paths to UPSA score. These results delineate a limited and independent group of candidate predictors to be putatively accounted for therapeutic interventions to improve functional capacity, and possibly social functioning, in TRS patients.
Collapse
Affiliation(s)
- Felice Iasevoli
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Luigi D'Ambrosio
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Danilo Notar Francesco
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Eugenio Razzino
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Sara Giordano
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Thomas L Patterson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Andrea de Bartolomeis
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy.
| |
Collapse
|
23
|
Evaluation of a few discrete clinical markers may predict categorization of actively symptomatic non-acute schizophrenia patients as treatment resistant or responders: A study by ROC curve analysis and multivariate analyses. Psychiatry Res 2018; 269:481-493. [PMID: 30195742 DOI: 10.1016/j.psychres.2018.08.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/04/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
Here, we used Receiver Operating Characteristic (ROC) curve analysis to determine whether clinical factors may aid predicting the categorization of schizophrenia patients as Treatment Resistant (TRS) or antipsychotic responsive schizophrenia (ARS). Patients with an established condition of TRS or ARS were assessed for: clinical presentation and course; neurological soft signs (NES); psychopathology by PANSS; cognitive performances; quality of life scale (QLS); functional capacity; social functioning (PSP and SLOF scales). In ROC curve analysis, significance indicated that the Area under curve (AUC) allowed distinguishing between TRS and ARS. Multivariate analyses were additionally used to provide independent predictive analysis. Multiple clinical variables showed significant AUCs. The largest significant AUCs were found for: NES total score; SLOF Area2; QLS subscale; antipsychotic doses. The highest sensitivity was found for NES total score, the highest specificity for previous hospitalizations. The highest Odds Ratio of being included within the TRS category were found for: NES total score (7.5); QLS total score (5.49); and previous hospitalizations (4.76). This same circumscribed group of variables was also found to be predictive of TRS when adopting stepwise logistic regression or discriminant analysis. We concluded that the evaluation of few clinical factors may provide reliable and accurate predictions on whether one schizophrenia patient may be categorized as a TRS.
Collapse
|
24
|
Sagud M, Tudor L, Uzun S, Perkovic MN, Zivkovic M, Konjevod M, Kozumplik O, Vuksan Cusa B, Svob Strac D, Rados I, Mimica N, Mihaljevic Peles A, Nedic Erjavec G, Pivac N. Haplotypic and Genotypic Association of Catechol- O-Methyltransferase rs4680 and rs4818 Polymorphisms and Treatment Resistance in Schizophrenia. Front Pharmacol 2018; 9:705. [PMID: 30018555 PMCID: PMC6037851 DOI: 10.3389/fphar.2018.00705] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) continues to be a challenge. It was related to different factors, including alterations in the activity of brain dopaminergic system, which could be influenced by the dopamine-degrading enzyme, catechol-O-methyltransferase (COMT). Variants of the COMT gene have been extensively studied as risk factors for schizophrenia; however, their association with TRS has been poorly investigated. The aim of the present study was to determine the haplotypic and genotypic association of COMT rs4680 and rs4818 polymorphisms with the presence of TRS. Overall, 931 Caucasian patients diagnosed with schizophrenia (386 females and 545 males) were included, while 270 participants met the criteria for TRS. In males, no significant haplotypic and genotypic associations between COMT rs4680 and rs4818 polymorphisms and TRS were detected. However, genotypic analyses demonstrated higher frequency of COMT rs4680 AA genotype carriers compared to G-allele carriers (p = 0.033) and higher frequency of COMT rs4818 CC genotype carriers than G-allele carriers (p = 0.014) in females with TRS. Haplotype analyses confirmed that the presence of the G allele in females was associated with lower risk of TRS. In women with TRS, the high activity G-G/G-G haplotype was rare, while carriers of other haplotypes were overrepresented (p = 0.009). Such associations of COMT rs4680 and rs4818 high-activity (G variants), as well as G-G/G-G haplotype, with the lower risk of TRS in females, but not in males, suggest significant, but sex-specific influence of COMT variants on the development of treatment-resistance in patients with schizophrenia. However, due to relatively low number of females, those findings require replication in a larger sample.
Collapse
Affiliation(s)
- Marina Sagud
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Maja Zivkovic
- Department of Integrative Psychiatry, University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Oliver Kozumplik
- Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Bjanka Vuksan Cusa
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Iva Rados
- Department of Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | - Alma Mihaljevic Peles
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
25
|
Iasevoli F, Avagliano C, Altavilla B, Barone A, D'Ambrosio L, Matrone M, Notar Francesco D, Razzino E, de Bartolomeis A. Disease Severity in Treatment Resistant Schizophrenia Patients Is Mainly Affected by Negative Symptoms, Which Mediate the Effects of Cognitive Dysfunctions and Neurological Soft Signs. Front Psychiatry 2018; 9:553. [PMID: 30429802 PMCID: PMC6220073 DOI: 10.3389/fpsyt.2018.00553] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
This post-hoc study was aimed at assessing whether disease severity was higher in a sample of Treatment Resistant Schizophrenia patients (TRS) compared to schizophrenia patients responsive to antipsychotics (non-TRS). Determinants of disease severity were also investigated in these groups. Eligible patients were screened by standardized diagnostic algorithm to categorize them as TRS or non-TRS. All patients underwent the following assessments: CGI-S; PANSS; DAI; NES; a battery of cognitive tests. Socio-demographic and clinical variables were also recorded. TRS patients exhibited significantly higher disease severity and psychotic symptoms, either as PANSS total score or subscales' scores. A preliminary correlation analysis ruled out clinical and cognitive variables not associated with disease severity in the two groups. Hierarchical linear regression showed that negative symptoms were the clinical variable explaining the highest part of variation in disease severity in TRS, while in non-TRS patients PANSS-General Psychopathology was the variable explaining the highest variation. Mediation analysis showed that negative symptoms mediate the effects of verbal fluency dysfunctions and high-level neurological soft signs (NSS) on TRS' disease severity. These results show that determinants of disease severity sharply differ in TRS and non-TRS patients, and let hypothesize that TRS may stem from cognitive disfunctions and putatively neurodevelopmental aberrations.
Collapse
Affiliation(s)
- Felice Iasevoli
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Camilla Avagliano
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Benedetta Altavilla
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Annarita Barone
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Luigi D'Ambrosio
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Marta Matrone
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Danilo Notar Francesco
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Eugenio Razzino
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| |
Collapse
|
26
|
Clerici M, de Bartolomeis A, De Filippis S, Ducci G, Maremmani I, Martinotti G, Schifano F. Patterns of Management of Patients With Dual Disorder (Psychosis) in Italy: A Survey of Psychiatrists and Other Physicians Focusing on Clinical Practice. Front Psychiatry 2018; 9:575. [PMID: 30483161 PMCID: PMC6243108 DOI: 10.3389/fpsyt.2018.00575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with severe psychotic disorders such as schizophrenia, schizoaffective, and bipolar disorders frequently suffer from concomitant substance use disorders (SUDs)-Dual Disorder (DD) patients. In order to better understand current practices for management of patients with psychotic episodes and concomitant SUD in Italy, we carried out a survey of psychiatrists on current routine practice among prescribers. These aspects can help to identify at-risk patients, improve current prescribing practices, and favor early intervention. An ad hoc survey of 17 questions was administered to psychiatrists via electronic polling and on-line distribution; 448 completed questionnaires were collected. Comorbid substance abuse was most frequently diagnosed within the context of anxiety disorder (46%), followed by bipolar disorder (25%), and schizophrenia/schizoaffective disorder (12%). The vast majority of respondents felt that patient management was becoming more complex due to substance abuse. The areas reported to be most affected in patients with SUD were functioning, interpersonal relations, and impulsivity, while sensory perception disorders, ideation, agitation, and impulsivity were the most frequently reported symptoms. In the acute setting, haloperidol was used as the first-line agent of choice followed by aripiprazole and olanzapine. In the maintenance phase, aripiprazole was the dominantly used first-line agent, followed by olanzapine. Almost half of respondents used long-acting agents, while about one-third did not. Among those prescribing long-acting agents, efficacy, control of impulsivity, and control of specific symptoms were cited as motivators, while in the maintenance phase, better adherence, and tolerability were mainly cited. From the responses to the present survey, it is clear that the respondents are aware of the problem of SUD in psychotic patients. While treatment be optimized in terms of the choice and formulation of antipsychotics, greater emphasis should be placed on efficacy, tolerability, and the negative metabolic consequences of some antipsychotics. When considering the ideal antipsychotic, long-acting agents were considered to be superior in reducing relapse, even if current treatment guidelines often give preference to oral formulations.
Collapse
Affiliation(s)
- Massimo Clerici
- School of Medicine and Surgery-University of Milano Bicocca, Milan, Italy.,Psychiatric Department, Azienda Socio Sanitaria Territoriale (ASST) di Monza, Monza, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, Italy
| | - Giuseppe Ducci
- Mental Health Department, Azienda Sanitaria Locale Roma 1, Rome, Italy
| | - Icro Maremmani
- Santa Chiara University Hospital, University of Pisa, Pisa, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G.d'Annunzio" Chieti-Pescara, Chieti, Italy.,Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|