1
|
Li Y, Xu H, Chen B, Ding Y, Zhu Y, Wang Y, Chen X, Su H. Local connections enhancement as a neuroprotective strategy against depression recurrence: Insights from structural brain network analysis. J Psychiatr Res 2025; 185:74-83. [PMID: 40163972 DOI: 10.1016/j.jpsychires.2025.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Depression recurrence significantly impacts patients' well-being and presents a major clinical challenge. Identifying the risk of recurrence during remission could enable early intervention and prevent disease progression. METHODS This study included 115 patients in remission from their first depressive episode and 47 healthy controls (HCs). Participants underwent diffusion tensor imaging (DTI), neuropsychological assessments, and follow-up evaluations every three months over a two-year period. Structural brain networks were constructed using deterministic fiber tracking and graph theory analysis. RESULTS Non-recurrence patients exhibited significantly higher baseline local connections compared to the recurrence group (t = 8.148; P < 0.001), which emerged as a robust negative predictor of recurrence (AUC = 0.853 [95 % CI: 0.774-0.912]; OR = 0.594 [95 % CI: 0.489-0.722]; P < 0.001). Rich-club connections were inversely correlated with depression severity (r = -0.510; P < 0.001) and duration (r = -0.221; P = 0.018). Additionally, increases in local connections during remission correlated positively with subsequent rich-club connections (r = 0.540; P < 0.05). CONCLUSION Elevated local connections during remission after the first depressive episode significantly reduce the risk of recurrence. This suggests a compensatory neuroprotective mechanism, where enhanced local connections stabilize rich-club connections, thereby maintaining the integrity of the whole-brain network. These findings highlight local connections as a critical factor in preventing depression recurrence and as a potential target for early clinical intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Chen
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Ding
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Zhu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Wang
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China
| | - Xingbing Chen
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China.
| | - Hui Su
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
2
|
Jarukasemkit S, Tam KM, Yoadsanit S, Easley T, Modi H, Stahl L, Kampaengtip A, Chansakul T, Janamnuaysook R, Hiransuthikul A, Chunharas C, Bijsterbosch JD. Depression and the prefrontal-hippocampal pathway - A multimodal neuroimaging study in transgender women. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2025; 22:100288. [PMID: 40129859 PMCID: PMC11930721 DOI: 10.1016/j.cpnec.2025.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
This study aims to investigate functional and neurotransmitter signaling in the prefrontal-hippocampal pathway in relation to depression in a cohort of Thai transgender women. Twenty participants completed mental health surveys and imaging between January and March 2024. Depression severity was measured by Patient Health Questionnaire-9 (PHQ-9) scores. Higher PHQ-9 scores were associated with lower GABA levels in the hippocampus, and with lower fractional amplitude of low-frequency fluctuations (fALFF) in the dorsolateral prefrontal cortex. However, removal of the hippocampal GABA outlier resulted in a non-significant relationship with PHQ-9. Therefore, future studies with larger datasets should further investigate the association between GABA and depression in a transgender cohort. These findings revealed interactions between neurotransmitter signaling and functional brain activity of the hippocampal-prefrontal circuit in depression.
Collapse
Affiliation(s)
- Setthanan Jarukasemkit
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Personomics Lab, Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Cognitive Clinical and Computational Neuroscience (CCCN) Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Karen M. Tam
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Seksan Yoadsanit
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ty Easley
- Personomics Lab, Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hailey Modi
- Personomics Lab, Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Lyn Stahl
- Personomics Lab, Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Adun Kampaengtip
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Rena Janamnuaysook
- Institute of HIV Research and Innovation (IHRI), Bangkok, Thailand
- Center of Excellence in Transgender Health, Chulalongkorn University, Bangkok, Thailand
| | - Akarin Hiransuthikul
- Institute of HIV Research and Innovation (IHRI), Bangkok, Thailand
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaipat Chunharas
- Cognitive Clinical and Computational Neuroscience (CCCN) Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Janine D. Bijsterbosch
- Personomics Lab, Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Sun S, Yan C, Qu S, Luo G, Liu X, Tian F, Dong Q, Li X, Hu B. Resting-state dynamic functional connectivity in major depressive disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111076. [PMID: 38972502 DOI: 10.1016/j.pnpbp.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.
Collapse
Affiliation(s)
- Shuting Sun
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Chang Yan
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Shanshan Qu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Gang Luo
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xuesong Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Fuze Tian
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| |
Collapse
|
4
|
Fang Z, Lynn E, Knott VJ, Jaworska N. Functional connectivity profiles in remitted depression and their relation to ruminative thinking. Neuroimage Clin 2024; 45:103716. [PMID: 39622113 PMCID: PMC11648890 DOI: 10.1016/j.nicl.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 11/24/2024] [Indexed: 03/17/2025]
Abstract
The triple network model suggests that dysfunction in three major brain networks - the default mode network (DMN), central executive network (CEN), and salience network (SN) - might contribute to cognitive impairments in various psychiatric disorders, including major depressive disorder (MDD). While hyperconnectivity in the DMN, hypoconnectivity in the CEN, and abnormal SN connectivity have been observed in acutely depressed patients, evidence for network alterations during remission is limited. Further, there are few studies examining connectivity in people in remission from MDD (rMDD) during emotional processing tasks, including during affective cognition (i.e., tasks that encompass affective processing in the context of cognitive processes, such as inhibition). To address these literature gaps, this study compared functional connectivity (FC) between resting and task conditions, specifically during the emotional Stroop (eStroop) task, as well as between rMDD and healthy volunteers (HVs), within and between nodes of the three networks. We also explored how FC relates to rumination in the rMDD group, given that rumination tends to persist in rMDD and involves affective and cognitive networks. We unexpectedly found greater FC during the task vs. rest condition within the DMN, and decreased FC during the task vs. rest conditions within the CEN and SN across the groups. Greater FC during the task vs. rest condition between DMN and SN nodes, as well as between CEN and SN nodes were also observed. These effects were more pronounced in the rMDD group as per our exploratory analyses. Additionally, the rMDD vs. HV group showed higher FC between DMN-CEN nodes, regardless of condition. Higher hopeless rumination scores were associated with decreased resting FC within the DMN, while higher active problem-solving scores were associated with increased task FC within the DMN in the rMDD group. These findings suggest that tasks engaging affective cognition processes influence FC within and among the three networks, with this effect more pronounced in the rMDD group. This might indicate potential protective and compensatory mechanisms in rMDD and expands our understanding of large-scale intrinsic network connectivity alterations during remission from depression. However, given the limited sample and the exploratory nature of some of our analyses, replication is necessary.
Collapse
Affiliation(s)
- Zhuo Fang
- University of Ottawa Institute of Mental Health Research, ON, Canada
| | - Emma Lynn
- University of Ottawa Institute of Mental Health Research, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, ON, Canada
| | - Verner J Knott
- University of Ottawa Institute of Mental Health Research, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, ON, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
5
|
Tong X, Xie H, Wu W, Keller CJ, Fonzo GA, Chidharom M, Carlisle NB, Etkin A, Zhang Y. Individual deviations from normative electroencephalographic connectivity predict antidepressant response. J Affect Disord 2024; 351:220-230. [PMID: 38281595 PMCID: PMC10923099 DOI: 10.1016/j.jad.2024.01.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo, partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient's response to treatment. Here we develop a novel normative modeling framework to quantify individual deviations in psychopathological dimensions that offers a promising avenue for the personalized treatment for psychiatric disorders. METHODS We built a normative model with resting-state electroencephalography (EEG) connectivity data from healthy controls of three independent cohorts. We characterized the individual deviation of MDD patients from the healthy norms, based on which we trained sparse predictive models for treatment responses of MDD patients (102 sertraline-medicated and 119 placebo-medicated). Hamilton depression rating scale (HAMD-17) was assessed at both baseline and after the eight-week antidepressant treatment. RESULTS We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework successfully distinguished subclinical and diagnostic variabilities among subjects. From the predictive models, we identified key connectivity signatures in resting-state EEG for antidepressant treatment, suggesting differences in neural circuit involvement between sertraline and placebo responses. CONCLUSIONS Our findings and highly generalizable framework advance the neurobiological understanding in the potential pathways of antidepressant responses, enabling more targeted and effective personalized MDD treatment. TRIAL REGISTRATION Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC), NCT#01407094.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; George Washington University School of Medicine, Washington, DC, USA
| | - Wei Wu
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Veterans Affairs Palo Alto Healthcare System, Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, TX, USA
| | | | | | - Amit Etkin
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA; Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
6
|
Dong D, Pizzagalli DA, Bolton TAW, Ironside M, Zhang X, Li C, Sun X, Xiong G, Cheng C, Wang X, Yao S, Belleau EL. Sex-specific resting state brain network dynamics in patients with major depressive disorder. Neuropsychopharmacology 2024; 49:806-813. [PMID: 38218921 PMCID: PMC10948777 DOI: 10.1038/s41386-024-01799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Sex-specific neurobiological changes have been implicated in Major Depressive Disorder (MDD). Dysfunctions of the default mode network (DMN), salience network (SN) and frontoparietal network (FPN) are critical neural characteristics of MDD, however, the potential moderating role of sex on resting-state network dynamics in MDD has not been sufficiently evaluated. Thus, resting-state functional magnetic resonance imaging (fMRI) data were collected from 138 unmedicated patients with first-episode MDD (55 males) and 243 healthy controls (HCs; 106 males). Recurring functional network co-activation patterns (CAPs) were extracted, and time spent in each CAP (the total amount of volumes associated to a CAP), persistence (the average number of consecutive volumes linked to a CAP), and transitions across CAPs involving the SN, DMN and FPN were quantified. Relative to HCs, MDD patients exhibited greater persistence in a CAP involving activation of the DMN and deactivation of the FPN (DMN + FPN-). In addition, relative to the sex-matched HCs, the male MDD group spent more time in two CAPs involving the SN and DMN (i.e., DMN + SN- and DMN-SN + ) and transitioned more frequently from the DMN + FPN- CAP to the DMN + SN- CAP relative to the male HC group. Conversely, the female MDD group showed less persistence in the DMN + SN- CAP relative to the female HC group. Our findings highlight that the imbalance between SN and DMN could be a neurobiological marker supporting sex differences in MDD. Moreover, the dominance of the DMN accompanied by the deactivation of the FPN could be a sex-independent neurobiological correlate related to depression.
Collapse
Affiliation(s)
- Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Diego A Pizzagalli
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thomas A W Bolton
- Connectomics Laboratory, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Maria Ironside
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Xiaocui Zhang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| | - Emily L Belleau
- McLean Hospital, Belmont, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
de Cates AN, Martens MAG, Wright LC, Gibson D, Spitz G, Gould van Praag CD, Suri S, Cowen PJ, Murphy SE, Harmer CJ. 5-HT 4 Receptor Agonist Effects on Functional Connectivity in the Human Brain: Implications for Procognitive Action. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1124-1134. [PMID: 37098409 PMCID: PMC10914664 DOI: 10.1016/j.bpsc.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Cognitive deficits are often comorbid with mood disorders and can cause significant functional impairment even after resolution of the primary mood symptoms. We do not currently have pharmacological treatments that adequately address these deficits. 5-HT4 receptor agonists show promise as potential procognitive agents in animal and early human translational studies. Optimal cognitive performance in humans is directly associated with appropriate functional connectivity between specific resting-state neural networks. However, so far the effect of 5-HT4 receptor agonism on resting-state functional connectivity (rsFC) in the brain in humans is unknown. METHODS We collected resting-state functional magnetic resonance imaging scans from 50 healthy volunteers, of whom 25 received 6 days × 1 mg prucalopride (a highly selective 5-HT4 receptor agonist) and 25 received placebo in a randomized double-blind design. RESULTS Network analyses identified that participants in the prucalopride group had enhanced rsFC between the central executive network and the posterior/anterior cingulate cortex. Seed analyses also showed greater rsFC between the left and right rostral anterior cingulate cortex and the left lateral occipital cortex, and reduced rsFC between the hippocampus and other default mode network regions. CONCLUSIONS Similar to other potentially procognitive medications, low-dose prucalopride in healthy volunteers appeared to enhance rsFC between regions involved in cognitive networks and reduce rsFC within the default mode network. This suggests a mechanism for the behavioral cognitive enhancement previously seen with 5-HT4 receptor agonists in humans and supports the potential for 5-HT4 receptor agonists to be used in clinical psychiatric populations.
Collapse
Affiliation(s)
- Angharad N de Cates
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom.
| | - Marieke A G Martens
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Lucy C Wright
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Daisy Gibson
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia; Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Cassandra D Gould van Praag
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Centre for Human Brain Activity and Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Centre for Human Brain Activity and Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Susannah E Murphy
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom; Oxford Centre for Human Brain Activity and Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Liu C, Belleau EL, Dong D, Sun X, Xiong G, Pizzagalli DA, Auerbach RP, Wang X, Yao S. Trait- and state-like co-activation pattern dynamics in current and remitted major depressive disorder. J Affect Disord 2023; 337:159-168. [PMID: 37245549 PMCID: PMC10897955 DOI: 10.1016/j.jad.2023.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Distinguishing between trait- and state-like neural alternations in major depressive disorder (MDD) may advance our understanding of this recurring disorder. We aimed to investigate dynamic functional connectivity alternations in unmedicated individuals with current or past MDD using co-activation pattern analyses. METHODS Resting-state functional magnetic resonance imaging data were acquired from individuals with first-episode current MDD (cMDD, n = 50), remitted MDD (rMDD, n = 44), and healthy controls (HCs, n = 64). Using a data-driven consensus clustering technique, four whole-brain states of spatial co-activation were identified and associated metrics (dominance, entries, transition frequency) were analyzed with respect to clinical characteristics. RESULTS Relative to rMDD and HC, cMDD showed increased dominance and entries of state 1 (primarily involving default mode network (DMN)), and decreased dominance of state 4 (mostly involving frontal-parietal network (FPN)). Among cMDD, state 1 entries correlated positively with trait rumination. Conversely, relative to cMDD and HC, individuals with rMDD were characterized by increased state 4 entries. Relative to HC, both MDD groups showed increased state 4-to-1 (FPN to DMN) transition frequency but reduction in state 3 (spanning visual attention, somatosensory, limbic networks), with the former metric specifically related to trait rumination. LIMITATIONS Further confirmation with longitudinal studies are required. CONCLUSIONS Regardless of symptoms, MDD was characterized by increased FPN-to-DMN transitions and reduced dominance of a hybrid network. State-related effect emerged in regions critically implicated in repetitive introspection and cognitive control. Asymptomatic individuals with past MDD were uniquely linked to increased FPN entries. Our findings identify trait-like brain network dynamics that might increase vulnerability to future MDD.
Collapse
Affiliation(s)
- Chengwen Liu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Emily L Belleau
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| |
Collapse
|
9
|
Cao W, Liu Y, Zhong M, Liao H, Cai S, Chu J, Zheng S, Tan C, Yi J. Altered intrinsic functional network connectivity is associated with impulsivity and emotion dysregulation in drug-naïve young patients with borderline personality disorder. Borderline Personal Disord Emot Dysregul 2023; 10:21. [PMID: 37331972 DOI: 10.1186/s40479-023-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Despite impulse control and emotion regulation being altered in borderline personality disorder (BPD), the specific mechanism of these clinical features remains unclear. This study investigated the functional connectivity (FC) abnormalities within- and between- default mode network (DMN), salience network (SN), and central executive network (CEN) in BPD, and examined the association between aberrant FC and clinical features. We aimed to explore whether the abnormal large-scale networks underlie the pathophysiology of impulsivity and emotion dysregulation in BPD. METHODS Forty-one young, drug-naïve patients with BPD (24.98 ± 3.12 years, 20 males) and 42 healthy controls (HCs; 24.74 ± 1.29 years, 17 males) were included in resting-state functional magnetic resonance imaging analyses. Independent component analysis was performed to extract subnetworks of the DMN, CEN, and SN. Additionally, partial correlation was performed to explore the association between brain imaging variables and clinical features in BPD. RESULTS Compared with HCs, BPD showed significant decreased intra-network FC of right medial prefrontal cortex in the anterior DMN and of right angular gyrus in the right CEN. Intra-network FC of right angular gyrus in the anterior DMN was significantly negatively correlated with attention impulsivity in BPD. The patients also showed decreased inter-network FC between the posterior DMN and left CEN, which was significantly negatively correlated with emotion dysregulation. CONCLUSION These findings suggest that impaired intra-network FC may underlie the neurophysiological mechanism of impulsivity, and abnormal inter-network FC may elucidate the neurophysiological mechanism of emotion dysregulation in BPD.
Collapse
Affiliation(s)
- Wanyi Cao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Medical Psychological Institute, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Ying Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Medical Psychological Institute, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Mingtian Zhong
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Chu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Medical Psychological Institute, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Shuxin Zheng
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Medical Psychological Institute, Central South University, Changsha, China.
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
10
|
Tong X, Xie H, Wu W, Keller C, Fonzo G, Chidharom M, Carlisle N, Etkin A, Zhang Y. Individual Deviations from Normative Electroencephalographic Connectivity Predict Antidepressant Response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290434. [PMID: 37292874 PMCID: PMC10246152 DOI: 10.1101/2023.05.24.23290434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo. This modest efficacy is partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient's response to treatment - the approved antidepressants only benefit a portion of patients, calling for personalized psychiatry based on individual-level prediction of treatment responses. Normative modeling, a framework that quantifies individual deviations in psychopathological dimensions, offers a promising avenue for the personalized treatment for psychiatric disorders. In this study, we built a normative model with resting-state electroencephalography (EEG) connectivity data from healthy controls of three independent cohorts. We characterized the individual deviation of MDD patients from the healthy norms, based on which we trained sparse predictive models for treatment responses of MDD patients. We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework successfully distinguished subclinical and diagnostic variabilities among subjects. From the predictive models, we identified key connectivity signatures in resting-state EEG for antidepressant treatment, suggesting differences in neural circuit involvement between treatment responses. Our findings and highly generalizable framework advance the neurobiological understanding in the potential pathways of antidepressant responses, enabling more targeted and effective MDD treatment.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- George Washington University School of Medicine, Washington, DC, USA
| | - Wei Wu
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Corey Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Gregory Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, TX, USA
| | | | - Nancy Carlisle
- Department of Psychology, Lehigh University, Bethlehem, PA, USA
| | - Amit Etkin
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
11
|
Transcutaneous Electrical Cranial-Auricular Acupoint Stimulation Modulating the Brain Functional Connectivity of Mild-to-Moderate Major Depressive Disorder: An fMRI Study Based on Independent Component Analysis. Brain Sci 2023; 13:brainsci13020274. [PMID: 36831816 PMCID: PMC9953795 DOI: 10.3390/brainsci13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evidence has shown the roles of taVNS and TECS in improving depression but few studies have explored their synergistic effects on MDD. Therefore, the treatment responsivity and neurological effects of TECAS were investigated and compared to escitalopram, a commonly used medication for depression. Fifty patients with mild-to-moderate MDD (29 in the TECAS group and 21 in another) and 49 demographically matched healthy controls were recruited. After an eight-week treatment, the outcomes of TECAS and escitalopram were evaluated by the effective rate and reduction rate based on the Montgomery-Asberg Depression Rating Scale, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale. Altered brain networks were analyzed between pre- and post-treatment using independent component analysis. There was no significant difference in clinical scales between TECAS and escitalopram but these were significantly decreased after each treatment. Both treatments modulated connectivity of the default mode network (DMN), dorsal attention network (DAN), right frontoparietal network (RFPN), and primary visual network (PVN), and the decreased PVN-RFPN connectivity might be the common brain mechanism. However, there was increased DMN-RFPN and DMN-DAN connectivity after TECAS, while it decreased in escitalopram. In conclusion, TECAS could relieve symptoms of depression similarly to escitalopram but induces different changes in brain networks.
Collapse
|
12
|
Berhe O, Höflich A, Moessnang C, Reichert M, Kremer T, Gan G, Ma R, Braun U, Reininghaus U, Ebner-Priemer U, Meyer-Lindenberg A, Tost H. Reduced Real-life Affective Well-being and Amygdala Habituation in Unmedicated Community Individuals at Risk for Depression and Anxiety. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:111-120. [PMID: 35760353 DOI: 10.1016/j.bpsc.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Early identification of risk for depression and anxiety disorders is important for prevention, but real-life affective well-being and its biological underpinnings in the population remain understudied. Here, we combined methods from epidemiology, psychology, ecological momentary assessment, and functional magnetic resonance imaging to study real-life and neural affective functions in individuals with subclinical anxiety and depression from a population-based cohort of young adults. METHODS We examined psychological measures, real-life affective valence, functional magnetic resonance imaging amygdala habituation to negative affective stimuli, and the relevance of neural readouts for daily-life affective function in 132 non-help-seeking community individuals. We compared psychological and ecological momentary assessment measures of 61 unmedicated individuals at clinical risk for depression and anxiety (operationalized as subthreshold depression and anxiety symptoms or a former mood or anxiety disorder) with those of 48 nonrisk individuals and 23 persons with a mood or anxiety disorder. We studied risk-associated functional magnetic resonance imaging signals in subsamples with balanced sociodemographic and image quality parameters (26 nonrisk, 26 at-risk persons). RESULTS Compared with nonrisk persons, at-risk individuals showed significantly decreased real-life affective valence (p = .038), reduced amygdala habituation (familywise error-corrected p = .024, region of interest corrected), and an intermediate psychological risk profile. Amygdala habituation predicted real-life affective valence in control subjects but not in participants at risk (familywise error-corrected p = .005, region of interest corrected). CONCLUSIONS Our data suggest real-life and neural markers for affective alterations in unmedicated community individuals at risk for depression and anxiety and highlight the significance of amygdala habituation measures for the momentary affective experience in real-world environments.
Collapse
Affiliation(s)
- Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anna Höflich
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus Reichert
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Mental mHealth Lab, Department of Sport and Sport Science, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of eHealth and Sports Analytics, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Kremer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gabriela Gan
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ren Ma
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Reininghaus
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Centre for Epidemiology and Public Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; ESRC Centre for Society and Mental Health, King's College London, London, United Kingdom
| | - Ulrich Ebner-Priemer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Mental mHealth Lab, Department of Sport and Sport Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
13
|
Ye Y, Wang C, Lan X, Li W, Fu L, Zhang F, Liu H, Zhang Z, Wu K, Zhou Y, Ning Y. Abnormal amygdala functional connectivity in MDD patients with insomnia complaints. Psychiatry Res Neuroimaging 2023; 328:111578. [PMID: 36525761 DOI: 10.1016/j.pscychresns.2022.111578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Insomnia is one of the major symptom relevant factors in major depressive disorder (MDD), but the neurological mechanisms underlying the multiple effect between insomnia and depression have not been well interpreted. This study aimed at exploring the potential mechanisms between insomnia and depression based on amygdala-based resting-state functional connectivity (RSFC). METHODS In total 56 MDD patients with low insomnia (MDD-LI) patients, 46 MDD patients with high insomnia (MDD-HI) patients, and 57 healthy controls (HCs) were employed and underwent a resting-state functional magnetic resonance imaging (fMRI) scan. ANOVA test was performed on RSFC value for three groups. Correlation analysis was conducted to evaluate the relationship between abnormal RSFC values and clinical features. RESULTS We found that MDD-HI mainly showed increased RSFC in (bilateral superior temporal gyrus (STG), and decreased RSFC in left supplementary motor area (SMA) and bilateral postcentral gyrus (PoCG) compared with MDD-LI. Correlation analysis indicated that RSFC of the bilateral amygdala with STG were positively associated with the sleep disturbance score and adjust HAMD score. CONCLUSION Our findings suggest that RSFC in temporal lobe and other specifically activated regions may be associated with neural circuits involved with insomnia in MDD. These provide new evidence for understanding the potential mechanisms of major depression and insomnia from the perspective of functional connectivity.
Collapse
Affiliation(s)
- Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Ling Fu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Fan Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Haiyan Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Zhipei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| |
Collapse
|
14
|
Sun J, Du Z, Ma Y, Chen L, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Han M, Cao J, Hou X, Xiao X, Tian J, Yu X, Fang J, Zhao Y. Altered functional connectivity in first-episode and recurrent depression: A resting-state functional magnetic resonance imaging study. Front Neurol 2022; 13:922207. [PMID: 36119680 PMCID: PMC9475213 DOI: 10.3389/fneur.2022.922207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) studies examining differences in the activity of brain networks between the first depressive episode (FDE) and recurrent depressive episode (RDE) are limited. The current study observed and compared the altered functional connectivity (FC) characteristics in the default mode network (DMN), cognitive control network (CCN), and affective network (AN) between the RDE and FDE. In addition, we further investigated the correlation between abnormal FC and clinical symptoms. Methods We recruited 32 patients with the RDE, 31 patients with the FDE, and 30 healthy controls (HCs). All subjects underwent resting-state fMRI. The seed-based FC method was used to analyze the abnormal brain networks in the DMN, CCN, and AN among the three groups and further explore the correlation between abnormal FC and clinical symptoms. Results One-way analysis of variance showed significant differences the FC in the DMN, CCN, and AN among the three groups in the frontal, parietal, temporal, and precuneus lobes and cerebellum. Compared with the RDE group, the FDE group generally showed reduced FC in the DMN, CCN, and AN. Compared with the HC group, the FDE group showed reduced FC in the DMN, CCN, and AN, while the RDE group showed reduced FC only in the DMN and AN. Moreover, the FC in the left posterior cingulate cortices and the right inferior temporal gyrus in the RDE group were positively correlated with the 17-item Hamilton Rating Scale for Depression (HAMD-17), and the FC in the left dorsolateral prefrontal cortices and the right precuneus in the FDE group were negatively correlated with the HAMD-17. Conclusions The RDE and FDE groups showed multiple abnormal brain networks. However, the alterations of abnormal FC were more extensive and intensive in the FDE group.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiliang Fang
| | - Yanping Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yanping Zhao
| |
Collapse
|
15
|
Li Q, Zhao W, Liu S, Zhao Y, Pan W, Wang X, Liu Z, Xu Y. Partial resistance to citalopram in a Wistar-Kyoto rat model of depression: An evaluation using resting-state functional MRI and graph analysis. J Psychiatr Res 2022; 151:242-251. [PMID: 35500452 DOI: 10.1016/j.jpsychires.2022.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Wistar-Kyoto (WKY) rats as an endogenous depression model partially lack a response to classic selective serotonin reuptake inhibitors (SSRIs). Thus, this strain has the potential to be established as a model of treatment-resistant depression (TRD). However, the SSRI resistance in WKY rats is still not fully understood. In this study, WKY and control rats were subjected to a series of tests, namely, a forced swim test (FST), a sucrose preference test (SPT), and an open field test (OFT), and were scanned in a 7.0-T MRI scanner before and after three-week citalopram or saline administration. Behavioral results demonstrated that WKY rats had increased immobility in the FST and decreased sucrose preference in the SPT and central time spent in the OFT. However, citalopram did not improve immobility in the FST. The amplitude of low-frequency fluctuation (ALFF) analysis showed regional changes in the striatum and hippocampus of WKY rats. However, citalopram partially reversed the ALFF value in the dorsal part of the two regions. Functional connectivity (FC) analysis showed that FC strengths were decreased in WKY rats compared with controls. Nevertheless, citalopram partially increased FC strengths in WKY rats. Based on FC, global graph analysis demonstrated decreased network efficiency in WKY + saline group compared with control + saline group, but citalopram showed weak network efficiency improvement. In conclusion, resting-state fMRI results implied widely affected brain function at both regional and global levels in WKY rats. Citalopram had only partial effects on these functional changes, indicating a potential treatment resistance mechanism.
Collapse
Affiliation(s)
- Qi Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China; National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China
| | - Weixing Pan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Xiao Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Mental Health, Shanxi Medical University, Taiyuan, China; National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
16
|
Jamieson AJ, Harrison BJ, Razi A, Davey CG. Rostral anterior cingulate network effective connectivity in depressed adolescents and associations with treatment response in a randomized controlled trial. Neuropsychopharmacology 2022; 47:1240-1248. [PMID: 34782701 PMCID: PMC9018815 DOI: 10.1038/s41386-021-01214-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
The rostral anterior cingulate cortex (rACC) is consistently implicated in the neurobiology of depression. While the functional connectivity of the rACC has been previously associated with treatment response, there is a paucity of work investigating the specific directional interactions underpinning these associations. We compared the fMRI resting-state effective connectivity of 94 young people with major depressive disorder and 91 healthy controls. Following the fMRI scan, patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or a placebo. Using spectral dynamic causal modelling, we examined the effective connectivity of the rACC with eight other regions implicated in depression: the left and right anterior insular cortex (AIC), amygdalae, and dorsolateral prefrontal cortex (dlPFC); and in the midline, the subgenual (sgACC) and dorsal anterior cingulate cortex (dACC). Parametric empirical Bayes was used to compare baseline differences between controls and patients and responders and non-responders to treatment. Depressed patients demonstrated greater inhibitory connectivity from the rACC to the dlPFC, AIC, dACC and left amygdala. Moreover, treatment responders illustrated greater inhibitory connectivity from the rACC to dACC, greater excitatory connectivity from the dACC to sgACC and reduced inhibitory connectivity from the sgACC to amygdalae at baseline. The inhibitory hyperconnectivity of the rACC in depressed patients aligns with hypotheses concerning the dominance of the default mode network over other intrinsic brain networks. Surprisingly, treatment responders did not demonstrate connectivity which was more similar to healthy controls, but rather distinct alterations that may have predicated their enhanced treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, VIC, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, VIC, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Zhang ZQ, Yang MH, Guo ZP, Liao D, Sörös P, Li M, Walter M, Wang L, Liu CH. Increased prefrontal cortex connectivity associated with depression vulnerability and relapse. J Affect Disord 2022; 304:133-141. [PMID: 35219743 DOI: 10.1016/j.jad.2022.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent mood disorder, characterized by depressed mood, reduced capabilities to concentrate, impaired cognition, as well as a high risk of relapse. Unaffected siblings who have high risks for MDD development and yet without clinical symptoms may be helpful for understanding the neural mechanisms of MDD traits. METHODS We investigated both regional fluctuation and inter-regional synchronization in 31 fully remitted MDD patients, 29 unaffected siblings and 43 age, gender, and educational level matched helathy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). The 17-item HAMD and neurocognitive scales were performed. Fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) strength were investigated. RESULTS Compared with healthy control group, patients with remitted MDD and unaffected siblings showed increased fALFF in the left dorsomedial prefrontal cortex (dmPFC) and increased FC between the left dmPFC and the right ventromedial prefrontal cortex (vmPFC). In addition, a negative correlation was observed between the fALFF value in the left dmPFC and the speed of Trail Making Test in the remitted MDD patients. Higher vmPFC-dmPFC FC was positively correlated with Wisconsin Card Sorting Test (WCST) total correct, and negatively correlated with WCST random errors. CONCLUSIONS In the absence of clinical symptoms, individuals with remitted MDD and unaffected siblings showed increased fALFF in left dmPFC as well as the vmPFC-dmPFC connectivity. These results suggest a specific trait abnormality in the default mode network associated with vulnerability to MDD, which may have implications for developing effective therapies using this network as a target.
Collapse
Affiliation(s)
- Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen 72074, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen 72074, Germany; Leibniz Institute for Neurobiology, Magdeburg 39118, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China.
| |
Collapse
|
18
|
Zhang ZQ, Guo ZP, Lv XY, Sörös P, Wang XX, Wang L, Liu CH. Effect and neural mechanisms of the transcutaneous vagus nerve stimulation for relapse prevention in patients with remitted major depressive disorder: protocol for a longitudinal study. BMJ Open 2022; 12:e050446. [PMID: 35193903 PMCID: PMC8867334 DOI: 10.1136/bmjopen-2021-050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION After the first episode, patients with remitted major depressive disorder (MDD) have a 60% chance of experiencing a second episode. There are currently no accepted, effective methods to prevent the recurrence of MDD in remission. Transcutaneous vagus nerve stimulation (taVNS) is a non-invasive, safe and economical approach based on the efficacy of VNS in improving clinical depression symptoms. This clinical trial will study the efficacy of taVNS in preventing MDD relapse and investigate the underlying mechanisms of this. METHODS AND ANALYSIS We will conduct a multicentre, randomised, patient-blinded and evaluators double-blinded trial. We will randomise 90 eligible participants with recurrent MDD in remission in a 1:1 ratio into a real or sham taVNS group. All participants will be given six biopsychosocial assessments: proinflammatory cytokines, serum monoamine neurotransmitters, cognition, affective neuropsychology, multimodal neuroimaging and endocrinology. After the baseline measurements, all participants will be given corresponding interference for 6 months and then complete a 1-year follow-up. The assessments will be performed three times: at baseline, post-treatment and at the end of 1-year follow-up (except for multimodal MRI scanning, which will be conducted at the first two assessments only). Change in 17-item Hamilton Depression Rating Scale scores for MDD is the primary outcome parameter. ETHICS AND DISSEMINATION The study protocol was approved by the Medical Ethical Committee of Beijing Hospital of Traditional Chinese Medicine on 18 January 2019 (2018BL-076). The trial results will be published in peer-reviewed journals and at conferences. TRIAL REGISTRATION NUMBER ChiCTR1900022618.
Collapse
Affiliation(s)
- Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xue-Yu Lv
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Xiao-Xu Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Ji S, Liu B, Li Y, Chen N, Fu Y, Shi J, Zhao Z, Yao Z, Hu B. Trait and state alterations in excitatory connectivity between subgenual anterior cingulate cortex and cerebellum in patients with current and remitted depression. Psychiatry Res Neuroimaging 2021; 317:111356. [PMID: 34509806 DOI: 10.1016/j.pscychresns.2021.111356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Neuroimaging studies have indicated that the altered functional connectivity (FC) of the subgenual anterior cingulate cortex (sgACC) might be potential pathophysiology of major depressive disorder (MDD). However, directed connectivity is proven to be more closely to neurophysiological processes underlying brain activity than FC. This study aimed to identify the alterations underlying directed connectivity of the sgACC in patients with current and remitted MDD. We conducted a cross-sectional neuroimaging study by recruiting 36 patients with current MDD, 20 patients with remitted MDD, and 36 matched healthy controls. Multiple linear regression was employed to estimate bidirectional connectivity between bilateral sgACC and 115 brain regions over 230 time points. Besides, graph theory was applied to further investigate the information transfer across bilateral sgACC and abnormal brain regions. We found that both patients with current and remitted MDD showed a similar abnormality in bidirectional excitatory connectivity between the left sgACC and the right cerebellum. Patients with current MDD exhibited an increase in excitatory connectivity from the left cerebellum to the right sgACC, which was positively correlated with the HAMD score. Meanwhile, significantly decreased betweenness of the left sgACC was detected in all depressive patients. Our findings suggest that the changed bidirectional excitatory connectivity between the left sgACC and the right cerebellum might be a trait alteration and the abnormal increased excitatory connectivity from the left cerebellum to the right sgACC might be a state alteration of MDD. This work may provide a valuable contribution to identify trait and state alterations in the brain for depression.
Collapse
Affiliation(s)
- Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Bangshan Liu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, PR China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Yu Fu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Jie Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
20
|
Xiong G, Dong D, Cheng C, Jiang Y, Sun X, He J, Li C, Gao Y, Zhong X, Zhao H, Wang X, Yao S. Potential structural trait markers of depression in the form of alterations in the structures of subcortical nuclei and structural covariance network properties. NEUROIMAGE-CLINICAL 2021; 32:102871. [PMID: 34749291 PMCID: PMC8578037 DOI: 10.1016/j.nicl.2021.102871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
It has been proposed recently that major depressive disorder (MDD) could represent an adaptation to conserve energy after the perceived loss of an investment in a vital source, such as group identity, personal assets, or relationships. Energy conserving behaviors associated with MDD may form a persistent marker in brain regions and networks involved in cognition and emotion regulation. In this study, we examined whether subcortical regions and volume-based structural covariance networks (SCNs) have state-independent alterations (trait markers). First-episode drug-naïve currently depressed (cMDD) patients (N = 131), remitted MDD (RD) patients (N = 67), and healthy controls (HCs, N = 235) underwent structural magnetic resonance imaging (MRI). Subcortical gray matter volumes (GMVs) were calculated in FreeSurfer software, and group differences in GMVs and SCN were analyzed. Compared to HCs, major findings were decreased GMVs of left pallidum and pulvinar anterior of thalamus in the cMDD and RD groups, indicative of a trait marker. Relative to HCs, subcortical SCNs of both cMDD and RD patients were found to have reduced small-world-ness and path length, which together may represent a trait-like topological feature of depression. In sum, the left pallidum, left pulvinar anterior of thalamus volumetric alterations may represent trait marker and reduced small-world-ness, path length may represent trait-like topological feature of MDD.
Collapse
Affiliation(s)
- Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Jiayue He
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Haofei Zhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China.
| |
Collapse
|
21
|
Li J, Liu J, Zhong Y, Wang H, Yan B, Zheng K, Wei L, Lu H, Li B. Causal Interactions Between the Default Mode Network and Central Executive Network in Patients with Major Depression. Neuroscience 2021; 475:93-102. [PMID: 34487819 DOI: 10.1016/j.neuroscience.2021.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Two different but interacting neural systems exist in the human brain: the task positive networks and task negative networks. One of the most important task positive networks is the central executive network (CEN), while the task negative network generally refers to the default mode network (DMN), which usually demonstrates task-induced deactivation. Although previous studies have clearly shown the association of both the CEN and DMN with major depressive disorder (MDD), how the causal interactions between these two networks change in depressed patients remains unclear. In the current study, 99 subjects (43 patients with MDD and 56 healthy controls) were recruited with their resting-state fMRI data collected. After data preprocessing, spectral dynamic causal modeling (spDCM) was used to investigate the causal interactions within and between the DMN and CEN. Group commonalities and differences in causal interaction patterns within and between the CEN and DMN in patients and controls were assessed by a parametric empirical Bayes (PEB) model. Both subject groups demonstrated significant effective connectivity between regions of the CEN and DMN. In particular, we detected inhibitory influences from the CEN to the DMN with node-level PEB analyses, which may help to explain the anticorrelations between these two networks consistently reported in previous studies. Compared with healthy controls, patients with MDD showed increased effective connectivity within the CEN and decreased connectivity from regions of the CEN to DMN, suggesting impaired control of the DMN by the CEN in these patients. These findings might provide new insights into the neural substrates of MDD.
Collapse
Affiliation(s)
- Jiaming Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jian Liu
- Network Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yufang Zhong
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huaning Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Baoyu Yan
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaizhong Zheng
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Wei
- Network Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
22
|
Coupling of spatial and directional functional network connectivity reveals a physiological basis for salience network hubs in asthma. Brain Imaging Behav 2021; 16:176-185. [PMID: 34286477 DOI: 10.1007/s11682-021-00490-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 10/20/2022]
Abstract
Research findings have consistently indicated that asthma might be correlated with neural activity in brain circuits, especially the insular and anterior cingulate cortex (ACC), which are primary nodes of the salience network (SN). However, little is known about the relationships between the SN and other brain regions that are affected by asthma. Therefore, we explored the role of the SN to determine whether its neural activity was disrupted by asthma. Forty asthmatic patients and 40 well-matched healthy controls (HCs) underwent functional magnetic resonance imaging scanning and clinical assessments, including the asthma control test and 17-item Hamilton depression scale (HAMD). Altered spatial, network and temporal connections of the SN were investigated. Compared to HCs, patients showed increased functional connectivity (FC) between the dorsal ACC (dACC) and left middle frontal gyrus. In addition, network FC analysis suggested that the SN has increased connections with both the default mode network (DMN) and executive control network (ECN), which are both related to asthma. Asthma decreased the network connections between the DMN and ECN. Furthermore, Granger causality (GC) strengths from both the DMN and ECN to the bilateral anterior insula were increased in asthmatic patients. A positive correlation was found between GC strengths from the left parietal cortex to the right anterior insula and HAMD scores in asthmatic patients (r = 0.434, P = 0.005). The findings from this study suggested that the SN plays an important role in asthma. The aberrant spatial FC of the SN and its directional network connections with the DMN and ECN may contribute to the potential neural underpinnings of asthma.
Collapse
|
23
|
Ji X, Zhao J, Li H, Pizzagalli DA, Law S, Lin P, Fan L, Zhang P, Fang S, Wang X, Yao S, Wang X. From motivation, decision-making to action: An fMRI study on suicidal behavior in patients with major depressive disorder. J Psychiatr Res 2021; 139:14-24. [PMID: 34004553 DOI: 10.1016/j.jpsychires.2021.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We explored the neural mechanisms underlying disadvantageous risk decision making in un-medicated major depressive disorder patients who had recent suicide attempts. METHODS 53 patients with major depressive disorder (MDD), including 23 with a history of suicide attempts (SA) and 30 without (NS), and 30 healthy controls (HCs) completed pertinent psychometric assessments, and the dynamic decision making balloon analogue risk task (BART) under fMRI. We also built a 4-parameter Bayesian computational modeling for decision making analyses. RESULTS Several distinct findings emerged. First, SA patients had no depression intensity difference but higher pain avoidance in psychometrics, and more risk aversion in the BART when compared to the NS patients, with computational modeling confirming such reduced risk-taking propensity. Second, SA patients showed smaller left insular cortex activation than NS patients during the high risk, decisional phase of BART, and the modulation correlated with pain avoidance in both SA and NS groups. Third, during feedback phase of loss trials of the BART, SA patients had greater activation in the left dorsolateral prefrontal cortex (dlPFC) than NS patients. CONCLUSION Taken together, we present novel findings and propose interpretations that the differential insula activation likely relates to high uncertainty-aversion in SA patients, contrary to the typical view that they are impulsive and risk prone. The differential left dlPFC activation likely suggests hypersensitivity to loss, contributing to conservative decision-making at large, and extreme choices such as suicide when value estimations are compromised and emotionally overwhelmed. The interactive interpretation places a renewed focus on psychological pain avoidance as a robust motivator for suicidal behavior.
Collapse
Affiliation(s)
- Xinlei Ji
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Jiahui Zhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing, China
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Samuel Law
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lejia Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Panwen Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Shulin Fang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Xiaosheng Wang
- Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Central South University, Changsha, Hunan, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China.
| |
Collapse
|
24
|
Zhao H, Dong D, Sun X, Cheng C, Xiong G, Wang X, Yao S. Intrinsic brain network alterations in non-clinical adults with a history of childhood trauma. Eur J Psychotraumatol 2021; 12:1975951. [PMID: 34992756 PMCID: PMC8725707 DOI: 10.1080/20008198.2021.1975951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Childhood trauma is a major social public-health problem worldwide. Previous literature suggests childhood trauma is associated with the development of psychiatric disorders and maladaptive behaviours later in life, but little is known about the neural basis underlying these associations. OBJECTIVE The aim of the current study was to investigate intrinsic brain network alterations in non-clinical adults with childhood trauma. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were collected from 65 non-clinical adults with moderate or severe childhood trauma (CT group), according to the international demarcation criteria of the Childhood Trauma Questionnaire (CTQ), and 73 socio-demographically matched non-clinical controls without childhood trauma (no-CT group). Independent component analysis (ICA) was used to extract subnetworks of the default mode network (DMN), salience network (SN), and central executive network (CEN). RESULTS ICA revealed that the CT group had increased FC of the left medial prefrontal cortex (mPFC) in the anterior DMN (aDMN), increased functional connectivity (FC) of the left anterior insula in the SN, and decreased FC of the inferior parietal gyrus of the right CEN (rCEN). Compared to the controls, the CT group had decreased inter-network FCs between the SN and posterior DMN (pDMN), as well as between the pDMN and rCEN. CONCLUSIONS Impaired FC within the three key brain networks, decreased inter-FC between SN and rCEN, and decreased inter-FC between pDMN and rCEN may reflect biomarkers of childhood trauma.
Collapse
Affiliation(s)
- Haofei Zhao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Medical Psychological Institute of Central South University, Changsha, Hunan, P. R. China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, P. R. China
| |
Collapse
|
25
|
Liu G, Jiao K, Zhong Y, Hao Z, Wang C, Xu H, Teng C, Song X, Xiao C, Fox PT, Zhang N, Wang C. The alteration of cognitive function networks in remitted patients with major depressive disorder: an independent component analysis. Behav Brain Res 2020; 400:113018. [PMID: 33301816 DOI: 10.1016/j.bbr.2020.113018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/22/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Dysfunctional connectivity of resting-state functional networks has been observed in patients with major depressive disorder (MDD), particularly in cognitive function networks including the central executive network (CEN), default mode network (DMN) and salience network (SN). Findings from studies examining how aberrant functional connectivity (FC) changed after antidepressant treatment, however, have been inconsistent. Thus, the purpose of the present study was to explore potential mechanisms of altered cognitive function networks during resting-state between remitted major depressive disorder (rMDD) patients and healthy controls (HCs) and furthermore, the relationship between dysfunctional connectivity patterns in rMDD and clinical symptoms. METHODOLOGY In this study, 19 HCs and 19 rMDD patients were recruited for resting-state functional magnetic resonance imaging (fMRI) scanning. FC was evaluated with independent component analysis for CEN, DMN and SN. Two sample t tests were conducted to compare differences between rMDD and HCs. A Pearson correlation analysis was also performed to examine the relationship between connectivity of networks and cognitive function scores and clinical symptoms. RESULTS Compared to healthy controls, remitted patients showed lower connectivity in CEN, mostly in the superior frontal gyrus (SFG), middle frontal gyrus (MFG), inferior parietal lobule (IPL) and part of the supramarginal gyrus (SMG). Conversely, the bilateral insula, part of the SMG (a key node of the CEN) and dorsal anterior cingulate cortex (dACC) of the DMN showed higher connectivity in rMDD patients. Pearson correlation results demonstrated that connectivity of the right IPL in CEN was positively correlated with cognitive function scores, and connectivity of the left insula was negatively correlated with BDI scores. CONCLUSIONS Though rMDD patients reached the standard of clinal remission, unique impairments of FC in cognitive function networks remained. Aberrant FC between cognitive function networks responsible for executive control was observed in rMDD and may be associated with residual clinical symptoms.
Collapse
Affiliation(s)
- Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaili Jiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Zhengzhou Ninth People's Hospital, Zhengzhou, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing 210097, China
| | - Ziyu Hao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chiyue Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Teng
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiu Song
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; South Texas Veterans Healthcare System, University of Texas Health San Antonio, United States; Research Imaging Institute, University of Texas Health San Antonio, United States
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Shan X, Qiu Y, Pan P, Teng Z, Li S, Tang H, Xiang H, Wu C, Tan Y, Chen J, Guo W, Wang B, Wu H. Disrupted Regional Homogeneity in Drug-Naive Patients With Bipolar Disorder. Front Psychiatry 2020; 11:825. [PMID: 32922322 PMCID: PMC7456987 DOI: 10.3389/fpsyt.2020.00825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Studies on alterations in the regional neural activity in the brain of patients with bipolar disorder (BD) have provided conflicting results because of different medications used and study designs. A low bone mineral density (BMD) is also observed in patients with BD. This study aimed to further explore regional neural activities in unmedicated patients with BD and their association with BMD. METHODS In this study, 40 patients with BD and 42 healthy controls were scanned through resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with regional homogeneity (ReHo) and pattern classification. Pearson's correlation analyses were performed to explore the correlations between abnormal ReHo and BMD. RESULTS A significant increase in ReHo values in the left inferior frontal gyrus (IFG)/temporal pole, left cerebellum vermis I/vermis II/parahippocampal gyrus/brainstem, and right superior temporal gyrus (STG) and a decrease in ReHo in the occipital gyrus (OG; left middle OG/superior OG/bilateral cuneus) were found in the patients with BD (p < 0.05) compared with those in the healthy controls. No significant correlation was observed between the abnormal ReHo values in any of the brain regions of the patients with BMD.Support vector machine (SVM) analyses revealed that the ReHo values in the right STG for distinguishing patients from healthy controls showed an accuracy of 91.89%, a sensitivity of 75.68%, and a specificity of 83.78%. The ReHo values in the left cerebellum vermis I/vermis II/parahippocampal gyrus/brainstem indicated an accuracy of 78.38%, a sensitivity of 75.68%, and a specificity of 81.08%. CONCLUSION This study further confirms the abnormal brain activities in extensive regions, and these brain regions are primarily located in the fronto-temporal-occipital circuit and the cerebellum vermis of patients with BD. The regional neural activity in the right STG and the left cerebellum vermis I/vermis II/parahippocampal gyrus/brainstem may serve as potential imaging markers to distinguish patients with BD from healthy controls.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pan Pan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuxi Tan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
| | - Bolun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Zheng A, Yu R, Du W, Liu H, Zhang Z, Xu Z, Xiang Y, Du L. Two-week rTMS-induced neuroimaging changes measured with fMRI in depression. J Affect Disord 2020; 270:15-21. [PMID: 32275215 DOI: 10.1016/j.jad.2020.03.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/30/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To study the neuroimaging mechanisms of repetitive transcranial magnetic stimulation (rTMS) in treating major depressive disorder (MDD). METHODS Twenty-seven treatment-naive patients with major depressive disorder (MDD) and 27 controls were enrolled. All of them were scanned with resting-state functional magnetic resonance imaging (fMRI) at baseline, and 15 patients were rescanned after two-week rTMS. The amplitude of low frequency fluctuation (ALFF) and functional connection degree (FCD), based on voxels and 3 brain networks (default mode network [DMN], central executive network [CEN], salience network[SN]),were used as imaging indicators to analyze. The correlations of brain imaging changes after rTMS with clinical efficacy were calculated. RESULTS At baseline, patients groups showed increased ALFF in the right orbital frontal cortex (OFC) and decreased ALFF in the left striatal cortex and medial prefrontal cortex (PFC), while increased FCD in the right dorsal anterior cingulate cortex and OFC and decreased FCD in the right inferior parietal lobe and in the CEN. After rTMS, patients showed increased ALFF in the left dorsolateral prefrontal cortex (DLPFC)and superior frontal gyrus, FCD in the right dorsal anterior cingulate cortex, superior temporal gyrus and CEN, as well as decreased FCD in the bilateral lingual gyrus than pre-rTMS . These rTMS induced neuroimaging changes did not significantly correlated with clinical effecacy. CONCLUSIONS This study indicated that rTMS resulted in changes of ALFF and FCD in some brain regions and CEN. But we could not conclude this is the neuroimaging mechanism of rTMS according to the correlation analysis.
Collapse
Affiliation(s)
- Anhai Zheng
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Renqiang Yu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wanyi Du
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Huan Liu
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zhiwei Zhang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zhen Xu
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yisijia Xiang
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lian Du
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
28
|
Liu CH, Yang MH, Zhang GZ, Wang XX, Li B, Li M, Woelfer M, Walter M, Wang L. Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. J Neuroinflammation 2020; 17:54. [PMID: 32050990 PMCID: PMC7017619 DOI: 10.1186/s12974-020-01732-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively non-invasive alternative treatment for patients suffering from major depressive disorder (MDD). It has been postulated that acupuncture may achieve its treatment effects on MDD through suppression of vagal nerve inflammatory responses. Our previous research established that taVNS significantly increases amygdala-dorsolateral prefrontal cortex connectivity, which is associated with a reduction in depression severity. However, the relationship between taVNS and the central/peripheral functional state of the immune system, as well as changes in brain neural circuits, have not as yet been elucidated. In the present paper, we outline the anatomic foundation of taVNS and emphasize that it significantly modulates the activity and connectivity of a wide range of neural networks, including the default mode network, executive network, and networks involved in emotional and reward circuits. In addition, we present the inflammatory mechanism of MDD and describe how taVNS inhibits central and peripheral inflammation, which is possibly related to the effectiveness of taVNS in reducing depression severity. Our review suggests a link between the suppression of inflammation and changes in brain regions/circuits post taVNS.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
- Beijing Institute of Traditional Chinese Medicine, Beijing, 100010 China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Guang-Zhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Xiao-Xu Wang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, 100010 China
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743 Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743 Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
- Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39118 Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030 USA
| |
Collapse
|
29
|
Wang J, Wang Y, Huang H, Jia Y, Zheng S, Zhong S, Chen G, Huang L, Huang R. Abnormal dynamic functional network connectivity in unmedicated bipolar and major depressive disorders based on the triple-network model. Psychol Med 2020; 50:465-474. [PMID: 30868989 DOI: 10.1017/s003329171900028x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have analyzed brain functional connectivity to reveal the neural physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the triple-network model [involving the salience network, default mode network (DMN), and central executive network (CEN)]. However, most studies assumed that the brain intrinsic fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic functional network connectivity (dFNC) in the triple networks of BD and MDD. METHODS We collected resting state fMRI data from 51 unmedicated depressed BD II patients, 51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by using an independent component analysis, sliding window correlation and k-means clustering, and used the parameters of dFNC state properties and dFNC variability for group comparisons. RESULTS The dFNC within the triple networks could be clustered into four configuration states, three of them showing dense connections (States 1, 2, and 4) and the other one showing sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared with controls. The MDD patients showed specific decreased dFNC variability between anterior DMN and rCEN compared with controls. CONCLUSIONS This study revealed more common but less specific dFNC alterations within the triple networks in unmedicated depressed BD II and MDD patients, which indicated their decreased information processing and communication ability and may help us to understand their abnormal affective and cognitive functions clinically.
Collapse
Affiliation(s)
- Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou510006, China
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Huiyuan Huang
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Senning Zheng
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Ruiwang Huang
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| |
Collapse
|
30
|
Chen Y, Cui Q, Xie A, Pang Y, Sheng W, Tang Q, Li D, Huang J, He Z, Wang Y, Chen H. Abnormal dynamic functional connectivity density in patients with generalized anxiety disorder. J Affect Disord 2020; 261:49-57. [PMID: 31600587 DOI: 10.1016/j.jad.2019.09.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Numerous studies have revealed the abnormal static functional connectivity (FC) among different brain regions in patients with generalized anxiety disorder (GAD). However, little is known about the dynamic changes of FC in patients with GAD. METHODS This study investigated the whole-brain dynamic changes of FC in patients with GAD by combining global FC density (FCD) and sliding window correlation analyses. The standard deviation of dynamic FCD (dFCD) was calculated to evaluate its temporal variability along time. Support vector regression was then employed to predict the symptom severity of patients based on abnormal dynamic connectivity patterns. RESULTS The abnormal dFCD variability between 81 GAD patients and 80 healthy controls showed that the patients had higher dFCD variability in the bilateral dorsomedial prefrontal cortex (dmPFC) and left hippocampus while lower dFCD variability in the right postcentral gyrus. The abnormal dFCD variability of the left dmPFC is an important feature for anxiety prediction. LIMITATIONS The selection of sliding window length remains controversial, and most of our patients have been treated with medications. Future studies are expected to rule out the potential confounding effects from applying different parameters of the sliding window and recruiting large samples of medication-free patients. CONCLUSION The altered patterns of time-varying brain connectivity in the frontolimbic and sensorimotor areas may reflect abnormal dynamic neural communication between these regions and other regions of the brain, which may deepen our understanding of the disease.
Collapse
Affiliation(s)
- Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ailing Xie
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
31
|
Jiao K, Xu H, Teng C, Song X, Xiao C, Fox PT, Zhang N, Wang C, Zhong Y. Connectivity patterns of cognitive control network in first episode medication-naive depression and remitted depression. Behav Brain Res 2019; 379:112381. [PMID: 31770543 DOI: 10.1016/j.bbr.2019.112381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cognitive dysfunctions, such as impaired cognitive control, are frequently observed in patients with major depressive disorder (MDD). Although the cognitive control network (CCN) is widely considered a core feature of major depressive disorder (MDD), the relationship between cognitive dysfunction and symptom dimensions remains unclear. This study investigated differences in resting-state functional connectivity of the cognitive control network (CCN) between first-episode medication-naive MDD patients and remitted MDD. METHODS We collected resting-state functional MRI (rs-fMRI) data from 22 first-episode medication-naive major depressive disorder (fMDD) patients, 20 patients previously diagnosed with MDD in the remitted phase of depression (rMDD), and 20 healthy controls (HC). The CCN was derived from fMRI images using independent component analysis (ICA), a data-driven image analysis method. RESULTS Changes in functional connectivity (FC) within the CCN was mainly attenuated in the right dorsolateral prefrontal cortex and the left inferior parietal lobule, while strengthened in the right dorsal anterior cingulate cortex and the right insula in both fMDD and rMDD groups. Compared with the fMDD group, the rMDD group had decreased FC in the bilateral insula and the right dorsolateral prefrontal cortex. Further analysis explored that the FC in the bilateral insula, the right dorsal anterior cingulate cortex and the right inferior parietal lobule were correlated positively cognitive disturbance factor scores in both patients groups. CONCLUSIONS These findings are in agreement with the previous findings that the cognitive control network are impaired in MDD. Furthermore, our results suggest that the alteration of CCN might underpin the cognitive disturbance and the distinct patterns of the CCN between fMDD and rMDD patients may be an important target for effective cognitive remediation in MDD.
Collapse
Affiliation(s)
- Kaili Jiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Teng
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiu Song
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; South Texas Veterans Healthcare System, University of Texas Health Science Center at San Antonio, United States; Research Imaging Institute, University of Texas Health San Antonio, United States
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; School of Psychology, Nanjing Normal University, Nanjing, China.
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
32
|
Xiong G, Dong D, Cheng C, Jiang Y, Sun X, He J, Li C, Gao Y, Zhong X, Zhao H, Wang X, Yao S. State-independent and -dependent structural alterations in limbic-cortical regions in patients with current and remitted depression. J Affect Disord 2019; 258:1-10. [PMID: 31382099 DOI: 10.1016/j.jad.2019.07.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The high recurrence of major depressive disorder (MDD) may derive from underlying state-independent structural alterations. METHODS First-episode drug-naïve currently depressed (cMDD) patients (N = 97), remitted depressed (RD) patients (N = 72), and healthy controls (HCs, N = 100) underwent structural magnetic resonance imaging (MRI). Group differences in cortical thickness (CT), surface area (SA), and local gyrification index (lGI) were analyzed in FreeSurfer. RESULTS Both groups of depressed patients had significantly decreased CT, relative to HCs, in the left precentral gyrus and significantly increased lGI values in the left superior frontal gyrus (SFG) indicative of state-independent alterations. Relative to HCs, the cMDD group had decreased CT of the SFG, caudal middle frontal gyrus (MFG), posterior cingulate cortex (PCC), and lateral occipital regions as well as increased SA or lGI of the superior temporal gyrus, precuneus, and pericalcarine, whereas the RD group had increased SA or lGI of the SFG, caudal MFG, and supramarginal gyrus; these alterations appeared to be state-dependent. SA or lGI values of the fusiform gyrus, inferior temporal gyrus, and superior parietal lobule differed between the cMDD and RD groups, consistent with state-dependent alterations. Beck depression inventory scores correlated with CT or lGI values of the caudal MFG, lateral occipital cortex in depressed patients. LIMITATIONS The structural features of several subcortical limbic regions were not analyzed. CONCLUSIONS Left precentral gyrus CT and left SFG gyrification alterations may represent state-independent alterations in MDD.
Collapse
Affiliation(s)
- Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Jiayue He
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental disorders (Xiangya), Changsha, Hunan 410011, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Haofei Zhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental disorders (Xiangya), Changsha, Hunan 410011, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental disorders (Xiangya), Changsha, Hunan 410011, China.
| |
Collapse
|
33
|
Altered dynamic functional connectivity in weakly-connected state in major depressive disorder. Clin Neurophysiol 2019; 130:2096-2104. [PMID: 31541987 DOI: 10.1016/j.clinph.2019.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/27/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Major depressive disorder (MDD) is accompanied by abnormal changes in dynamic functional connectivity (FC) among brain regions. The aim of this study is to investigate whether the abnormalities of dynamic FC in MDD are state-dependent (related to a specific connectivity state). METHODS We performed time-varying connectivity analysis on resting-state functional magnetic resonance imaging (rs-fMRI) of 49 MDD patients and 54 matched healthy controls (HCs). FC differences between groups in each connectivity state were analyzed and associations between disease severity and dynamics of aberrant FC were explored. RESULTS Two distinct connectivity states (i.e., weakly-connected and strongly-connected state) were identified. Compared to HCs, MDD patients were associated with increased mean dwell time and decreased FC between and within subnetworks in the weakly-connected state. Dynamics of reduced FC between cognitive control network and default mode network as well as within cognitive control network predicted individual differences in depression symptom severity. CONCLUSIONS Our findings suggested that the MDD-caused FC alterations mostly appeared in the weakly-connected state, which might contribute to clinical diagnosis of MDD. SIGNIFICANCE These findings provide new perspectives for understanding the state-dependent neurophysiological mechanisms in MDD.
Collapse
|
34
|
Lozupone M, La Montagna M, D'Urso F, Daniele A, Greco A, Seripa D, Logroscino G, Bellomo A, Panza F. The Role of Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:135-162. [PMID: 30747421 DOI: 10.1007/978-3-030-05542-4_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psychiatric illnesses are cognitive and behavioral disorders of the brain. At present, psychiatric diagnosis is based on DSM-5 criteria. Even if endophenotype specificity for psychiatric disorders is discussed, it is difficult to study and identify psychiatric biomarkers to support diagnosis, prognosis, or clinical response to treatment. This chapter investigates the innovative biomarkers of psychiatric diseases for diagnosis and personalized treatment, in particular post-genomic data and proteomic analyses.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, Lecce, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy. .,Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy. .,Department of Clinical Research in Neurology, University of Bari Aldo Moro, Lecce, Italy.
| |
Collapse
|
35
|
Wang J, Wang Y, Huang H, Jia Y, Zheng S, Zhong S, Huang L, Huang R. Abnormal intrinsic brain functional network dynamics in unmedicated depressed bipolar II disorder. J Affect Disord 2019; 253:402-409. [PMID: 31103805 DOI: 10.1016/j.jad.2019.04.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous studies analyzed brain functional connectivity (FC) based on resting-state fMRI (RS-fMRI) data to reveal the neuropathology of bipolar disorder (BD) and suggested that their FC alterations are at widespread network-level. However, few studies have analyzed the dynamic functional network connectivity (dFNC) in BD. Thus, we aimed to reveal the dFNC properties of BD in this study. METHODS The RS-fMRI data were collected from 51 unmedicated depressed BD II patients and 50 healthy controls. We analyzed the dFNC properties by using an independent component analysis, sliding window correlation, k-means clustering, and graph theory methods. RESULTS The intrinsic brain FNC could be clustered into three configuration states, one with sparse connections between all functional networks (State 1), another with negative correlations between the salience network, cerebellum, basal ganglia and the sensory networks (State 2), and a third with negative correlations between the default mode network and the other functional networks (State 3). The BD patients had increased time in State 2, decreased time in State 3, and increased transition number between states. And the time spent in State 2 was positively correlated with the HDRS24 score in the BD patients. In addition, the BD patients had increased dynamic variance in the small-world properties of FNC. LIMITATIONS This study did not examine data from BD patients in other episodes and other BD types. CONCLUSIONS This study detected abnormal dFNC properties in BD, which indicated their FNC unstability and provided new insights into the neuropathology of their affective and cognitive deficits.
Collapse
Affiliation(s)
- Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Huiyuan Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Senning Zheng
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
36
|
Dong D, Li C, Ming Q, Zhong X, Zhang X, Sun X, Jiang Y, Gao Y, Wang X, Yao S. Topologically state-independent and dependent functional connectivity patterns in current and remitted depression. J Affect Disord 2019; 250:178-185. [PMID: 30856495 DOI: 10.1016/j.jad.2019.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Identification of state-independent and -dependent neural biomarkers may provide insight into the pathophysiology and effective treatment of major depressive disorder (MDD), therefore we aimed to investigate the state-independent and -dependent topological alterations of MDD. METHOD Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 59 patients with unmedicated first episode current MDD (cMDD), 48 patients with remitted MDD (rMDD) and 60 demographically matched healthy controls (HCs). Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the global and nodal level. RESULTS At a global level, both patient groups showed decreased normalized clustering coefficient in relative to HCs. On a nodal level, both patient groups showed decreased nodal centrality, predominantly in cortex-mood-regulation brain regions including the dorsolateral prefrontal cortex, posterior parietal cortex and posterior cingulate cortex. By comparison to cMDD patients, rMDD group had a higher nodal centrality in right parahippocampal gyrus. LIMITATIONS The present study, an exploratory analysis, may require further confirmation with task-based and experimental studies. CONCLUSIONS Deficits in the topological organization of the whole brain and cortex-mood-regulation brain regions in both rMDD and cMDD represent state-independent biomarkers.
Collapse
Affiliation(s)
- Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Qingsen Ming
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiaocui Zhang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| |
Collapse
|
37
|
Liu CH, Tang LR, Gao Y, Zhang GZ, Li B, Li M, Woelfer M, Martin W, Wang L. Resting-state mapping of neural signatures of vulnerability to depression relapse. J Affect Disord 2019; 250:371-379. [PMID: 30877860 DOI: 10.1016/j.jad.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Patients with major depressive disorder (MDD) can frequently develop new depressive episodes after remission. However, the neural mechanisms underlying the increased risk for depressive relapse remain unclear. Herein, we aimed to explore whether the specific changes to regional and inter-regional spontaneous brain activities within DMN are associated with the course of episodes in pooled MDD patients. METHODS Resting-state functional magnetic resonance imaging was performed on patients with single-episode MDD (SEMDD, n = 30) and multiple-episode MDD (MEMDD, n = 54), and 71 age-, gender-, and educational level-matched healthy controls (HCs). We then accessed the differences in both the fractional amplitude of low-frequency fluctuations (fALFF) and functional connectivity by using the right precuneus as the seed among different groups. RESULTS Compared to the MEMDD and HC groups, the SEMDD group exhibited increased fALFF values in the right subgenual anterior cingulate cortex and right middle temporal gyrus. Decreased fALFF values in the right thalamus in the MEMDD group were also identified relative to the SEMDD and HC group. The peak values of fALFF in the right precuneus showed a negative correlation with the number of depressive episodes across the entire pool of MDD patients. No correlation was identified between functional connectivity using the right precuneus as the seed and the number of depressive episodes for the pooled MDD patients. LIMITATIONS Medication, a relatively small sample size, and hypothesis driven study. CONCLUSIONS Our neuroimaging results identified depression relapse-associated neural signatures and also indicated the role of reduced emotional appraisals in the thalamus. It is now possible to believe that the regional activity not inter-regional connectivity within the DMN may be involved in the pathology of depression relapse.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China; Department of Radiology and Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Li-Rong Tang
- Department of Radiology and Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yue Gao
- Department of Radiology and Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guang-Zhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Walter Martin
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Psychiatry, University of Tuebingen, Tubeingen, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
38
|
Cheng C, Dong D, Jiang Y, Ming Q, Zhong X, Sun X, Xiong G, Gao Y, Yao S. State-Related Alterations of Spontaneous Neural Activity in Current and Remitted Depression Revealed by Resting-State fMRI. Front Psychol 2019; 10:245. [PMID: 30804860 PMCID: PMC6378291 DOI: 10.3389/fpsyg.2019.00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Although efforts have been made to identify neurobiological characteristic of major depressive disorder (MDD) in recent years, trait- and state-related biological characteristics of MDD still remains unclear. Using functional magnetic resonance imaging (fMRI), the aim of this study was to explore whether altered spontaneous neural activities in MDD are trait- or state- related. Materials and Methods: Resting-state fMRI data were analyzed for 72 current MDD (cMDD) patients (first-episode, medication-naïve), 49 remitted MDD (rMDD) patients, and 78 age- and sex- matched healthy control (HC) subjects. The values of amplitude of low-frequency fluctuation (ALFF) were compared between groups. Results: Compared with the cMDD group, the rMDD group had increased ALFF values in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe. Besides, compared with the HC group, the cMDD group had decreased ALFF values in the left middle occipital gyrus. Further analysis explored that the mean ALFF values in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe were correlated positively with BDI scores in rMDD patients. Conclusion: Abnormal activity in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe may be state-specific in current (first-episode, medication-naïve) and remitted (medication-naïve) depression patients. Furthermore, the state-related compensatory effect was found in these brain areas.
Collapse
Affiliation(s)
- Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Preschool Education Department, Changsha Normal University, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingsen Ming
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|