1
|
Liu F, Bai Q, Tang W, Zhang S, Guo Y, Pan S, Ma X, Yang Y, Fan H. Antioxidants in neuropsychiatric disorder prevention: neuroprotection, synaptic regulation, microglia modulation, and neurotrophic effects. Front Neurosci 2024; 18:1505153. [PMID: 39703344 PMCID: PMC11655488 DOI: 10.3389/fnins.2024.1505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Oxidative stress, caused by an imbalance between the generation of reactive oxygen species (ROS) and the body's intrinsic antioxidant defenses, plays a critical role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. Beyond these conditions, recent evidence indicates that dysregulated redox balance is implicated in neuropsychiatric disorders, including schizophrenia, major depressive disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic plasticity, reducing microglial overactivation and promoting synaptogenesis. This review explores the role of oxidative stress in the pathogenesis of neuropsychiatric disorders. It provides an overview of the current evidence on antioxidant therapy's pharmacological effects, as demonstrated in animal models and clinical studies. It also discusses the underlying mechanisms and future directions for developing antioxidant-based adjuvant therapies. Given the limitations and side effects of existing treatments for neuropsychiatric disorders, antioxidant therapy presents a promising, safer alternative. Further research is essential to deepen our understanding and investigate the clinical efficacy and mechanisms underlying these therapies.
Collapse
Affiliation(s)
- Fangfei Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qianqian Bai
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wenchao Tang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shumin Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yan Guo
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shunji Pan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyu Ma
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanhui Yang
- Department of Trauma Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research and Innovation, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Ben-Azu B, Fokoua AR, Annafi OS, Adebayo OG, Del Re EC, Okuchukwu N, Aregbesola GJ, Ejenavi AEC, Isiwele DM, Efezino AJ, Okpu ID. Effective action of silymarin against ketamine-induced schizophrenia in male mice: Insight into the biochemical and molecular mechanisms of action. J Psychiatr Res 2024; 179:141-155. [PMID: 39293119 DOI: 10.1016/j.jpsychires.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neurochemical dysregulations resulting from N-methyl-D-aspartate hypofunction (NMDA), are exacerbated by neuroimmune and oxidative stress and are known risk factors for neuropsychiatric disorders like schizophrenia-like diseases. Here, we investigate the protective and curative effects, and mechanisms of silymarin, a polyphenolic flavonoid with neuroprotective functions in preventive-reversal model of ketamine, an NMDA antagonist in mice. METHODS Mice were grouped into 6 cohorts (n = 9). In the pre-treatment, groups 1 and 2 received saline (10 mL/kg/p.o.), groups 3 and 4 (silymarin, 50 and 100 mg/kg/p.o.), and group 5 (risperidone, 0.5 mg/kg/p.o.) consecutively for 14 days, then combined with ketamine (20 mg/kg/i.p.) injection in groups 2-5 from days 8-14. However, mice in reversal study received intraperitoneal injection of ketamine for 14 days before silymarin (50 and 100 mg/kg, p.o) and risperidone (0.5 mg/kg, p.o.) treatment between days 8-14. The consequences on schizophrenia-like behavior, neurochemistry, inflammation, and oxidative/nitrergic stress markers were evaluated in critical brain regions of the disease. RESULTS Silymarin prevented and reversed ketamine-induced increase in dopamine, 5-hydroxyltryptamine, acetylcholinesterase, malondialdehyde and nitrite levels in the striatum, prefrontal-cortex and hippocampus. These were accompanied by improvement in hyperlocomotion, stereotypy, memory, and social impairments, notably devoid of cataleptogenic potential. Complementarily, silymarin reduced myeloperoxidase, tumor-necrosis factor-α, and interleukin-6 concentrations relative to the ketamine group. Moreover, ketamine-induced decreased brain-derived neurotrophic factor, glutathione, catalase, superoxide-dismutase levels were normalized by silymarin in the brain regions relative to ketamine. CONCLUSIONS Overall, these findings suggest that silymarin's antipsychotic effect might be primarily associated, among other mechanisms, with the normalization of neurochemical and neurotrophic changes in the mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Division of Medical Sciences, University of Victoria, Canada.
| | - Aliance R Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Research Unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Olajide S Annafi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Elisabetta C Del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton, MA, United States; Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nneka Okuchukwu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gbemileke J Aregbesola
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Akpor-Esiri C Ejenavi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - David M Isiwele
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Arausi J Efezino
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ifelunwa D Okpu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
3
|
Bai L, Jiang Y, Wang K, Xie C, Yan H, You Y, Liu H, Chen J, Wang J, Wei C, Li Y, Lei J, Su H, Sun S, Deng F, Guo X, Wu S. Ambient Air Pollution and Hospitalizations for Schizophrenia in China. JAMA Netw Open 2024; 7:e2436915. [PMID: 39356505 PMCID: PMC11447564 DOI: 10.1001/jamanetworkopen.2024.36915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/27/2024] [Indexed: 10/03/2024] Open
Abstract
Importance Schizophrenia episodes may be triggered by short-term environmental stimuli. Short-term increases in ambient air pollution levels may elevate the risk of schizophrenia episodes, yet few epidemiologic studies have examined this association. Objective To investigate whether short-term increases in air pollution levels are associated with an additional risk of schizophrenia episodes, independent of absolute air pollution concentrations, and whether sustained increases in air pollution levels for several days are associated with more pronounced risks of schizophrenia episodes. Design, Setting, and Participants This nationwide, population-based, time-stratified case-crossover study was performed based on hospitalization records for schizophrenia across 295 administrative divisions of prefecture-level or above cities in China. Records were extracted from 2 major health insurance systems from January 1, 2013, to December 31, 2017. Thirty-six cities with a small number of schizophrenia hospitalizations (n < 50) were excluded. Data analysis for this study was performed from January to March 2024. Exposure Daily absolute concentrations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide were collected. Air pollution increases between neighboring days (APINs) were generated as the differences in absolute air pollution concentrations on the current day minus that on the previous day. Sustained increases (APIN ≥5 μg/m3 for PM2.5 and PM10, APIN ≥1 μg/m3 for nitrogen dioxide and sulfur dioxide, and APIN ≥0.05 mg/m3 for carbon monoxide) lasting for 1 or more to 4 or more days were defined for different air pollutants. Main Outcome and Measure Patients with schizophrenia episodes were identified by principal discharge diagnoses of schizophrenia. A conditional logistic regression model was used to capture the associations of absolute concentrations, APINs, and sustained increase events for different air pollutants with risks of schizophrenia hospitalizations. Results The study included 817 296 hospitalization records for schizophrenia across 259 Chinese cities (30.6% aged 0-39 years, 56.4% aged 40-64 years, and 13.0% aged ≥65 years; 55.04% male). After adjusting for the absolute concentrations of respective air pollutants, per-IQR increases in 6-day moving average (lag0-5) APINs of PM2.5, PM10, nitrogen dioxide, sulfur dioxide, and carbon monoxide were associated with increases of 2.37% (95% CI, 0.88%-3.88%), 2.95% (95% CI, 1.46%-4.47%), 4.61% (95% CI, 2.93%-6.32%), 2.16% (95% CI, 0.59%-3.76%), and 2.02% (95% CI, 0.39%-3.68%) in schizophrenia hospitalizations, respectively. Greater risks of schizophrenia hospitalizations were associated with sustained increases in air pollutants lasting for longer durations up to 4 or more days. Conclusions and Relevance This case-crossover study of the association between ambient air pollution increases and schizophrenia hospitalizations provides novel evidence that short-term increases in ambient air pollution levels were positively associated with an elevated risk of schizophrenia episodes. Future schizophrenia prevention practices should pay additional attention to APINs, especially sustained increases in air pollution levels for longer durations, besides the absolute air pollution concentrations.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Yunxing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Cuiyao Xie
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Hairong Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Yu You
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Juan Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Jinxi Wang
- Yunyi Health Technology Co Ltd, Beijing, China
| | - Chen Wei
- Yunyi Health Technology Co Ltd, Beijing, China
| | - Yinxiang Li
- China-Europe Association for Technical and Economic Cooperation, Beijing, China
| | - Jian Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shiquan Sun
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Center for Single-Cell Omics and Health, Key Laboratory of Trace Elements and Endemic Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Yang H, Sun W, Yang M, Li J, Zhang J, Zhang X. Variations to plasma H 2O 2 levels and TAC in chronical medicated and treatment-resistant male schizophrenia patients: Correlations with psychopathology. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:45. [PMID: 38605069 PMCID: PMC11009317 DOI: 10.1038/s41537-024-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Accumulating evidence suggests that imbalanced oxidative stress (OS) may contribute to the mechanism of schizophrenia. The aim of the present study was to evaluate the associations of OS parameters with psychopathological symptoms in male chronically medicated schizophrenia (CMS) and treatment-resistant schizophrenia (TRS) patients. Levels of hydrogen peroxide (H2O2), hydroxyl radical (·OH), peroxidase (POD), α-tocopherol (α-toc), total antioxidant capacity (TAC), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were assayed in males with CMS and TRS, and matched healthy controls. Schizophrenia symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). The results demonstrated significant differences in the variables H2O2 (F = 5.068, p = 0.008), ·OH (F = 31.856, p < 0.001), POD (F = 14.043, p < 0.001), α-toc (F = 3.711, p = 0.027), TAC (F = 24.098, p < 0.001), and MMP-9 (F = 3.219, p = 0.043) between TRS and CMS patients and healthy controls. For TRS patients, H2O2 levels were correlated to the PANSS positive subscale (r = 0.386, p = 0.032) and smoking (r = -0,412, p = 0.021), while TAC was significantly negatively correlated to the PANSS total score (r = -0.578, p = 0.001) and POD and TAC levels were positively correlated to body mass index (r = 0.412 and 0.357, p = 0.021 and 0.049, respectively). For patients with CMS, ·OH levels and TAC were positively correlated to the PANSS general subscale (r = 0.308, p = 0.031) and negatively correlated to the PANSS total score (r = -0.543, p < 0.001). Furthermore, H2O2, α-toc, and ·OH may be protective factors against TRS, and POD was a risk factor. Patients with CMS and TRS exhibit an imbalance in OS, thus warranting future investigations.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Wenxi Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| |
Collapse
|
5
|
Bahnamiri PJ, Hajizadeh Moghaddam A, Ranjbar M, Nazifi E. Effects of Nostoc commune extract on the cerebral oxidative and neuroinflammatory status in a mice model of schizophrenia. Biochem Biophys Rep 2024; 37:101594. [PMID: 38371525 PMCID: PMC10873873 DOI: 10.1016/j.bbrep.2023.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 02/20/2024] Open
Abstract
Cyanobacterium Nostoc commune has long been used to alleviate various diseases. This research examines the effects of Nostoc commune extract (NCE) against behavioral disorders, cerebral oxidative stress, and inflammatory damage in the ketamine-induced schizophrenia model. Oral NCE administration (70 and 150 mg/kg/d) is performed after intraperitoneal ketamine injection (20 mg/kg) for 14 consecutive days. The forced swimming and open field tests are used to assess schizophrenia-like behaviors. After the behavioral test, dopamine (DA) level, oxidative stress markers, as well as the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression are measured in the cerebral cortex. The results show that NCE treatment ameliorates KET-induced anxiety and depressive-like behaviors in OFT and FST, respectively. NCE considerably decreases the malondialdehyde (MDA) and DA levels and IL-6 and TNF-α expressions in mice with schizophrenia-like symptoms. Also, a significant increase is observed in the glutathione (GSH) level and catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GRx) activity in cerebral tissue. The present study shows that NCE treatment effectively improves KET-induced schizophrenia-like behaviors and oxidative and inflammatory damage. Therefore, NCE, via its bioactive constituents, could have strong neuroprotective effects in the schizophrenia-like model.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Ehsan Nazifi
- Department of Plant Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Korkmaz ŞA, Kaymak SU, Neşelioğlu S, Erel Ö. Thiol-disulphide Homeostasis in Patients with Schizophrenia: The Potential Biomarkers of Oxidative Stress in Acute Exacerbation of Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:139-150. [PMID: 38247420 PMCID: PMC10811387 DOI: 10.9758/cpn.23.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 01/23/2024]
Abstract
Objective : Recent evidence suggests that oxidative stress contributes to the pathophysiology of schizophrenia. This study aimed to compare thiol-disulphide homeostasis in acute and stable phases of schizophrenia for the first time. Methods : Among the patients with schizophrenia, 61 in the acute-phase and 61 in the stable phase of their illness were enrolled in the study. Native thiol (NT), total thiol (TT), disulphide (SS), disulphide/native thiol, disulphide/total thiol, and native thiol/total thiol for thiol-disulphide homeostasis were compared between the groups. The Brief Psychiatric Rating Scale (BPRS), Scale for the Assessment of Positive/Negative Symptoms (SAPS/SANS), Clinical Global Impression-Severity Scale (CGI-S), Barnes Akathisia Rating Scale, and Simpson-Angus Scale were used to assess symptoms. Results : After controlling for age, sex, body mass index, and smoking status there were significant differences in NT, TT, SS/NT, SS/TT, and NT/TT, but not SS. Thiol/disulphide homeostasis has shifted in favour of the oxidative side in patients with acute-phase compared to that in stable schizophrenia. BPRS, SAPS, and CGI-S scores were significantly correlated with all six thiol-disulphide parameters, but not SANS, when controlling for age and sex. Significant receiver operating characteristic (ROC) curves were obtained for all thiol-disulphide homeostasis parameters. Discriminant analysis was found to be statistically significant in discriminating between groups. Conclusion : These results show that oxidative status increases thiol-disulphide homeostasis in patients with acute-phase schizophrenia compared to those with stable schizophrenia. These findings suggest that thiol-disulphide parameters can be used as biomarkers for the acute exacerbation of schizophrenia.
Collapse
Affiliation(s)
- Şükrü Alperen Korkmaz
- Department of Psychiatry, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Semra Ulusoy Kaymak
- Department of Psychiatry, Gülhane Education and Research Hospital, University of Health Science, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Özcan Erel
- Department of Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
7
|
Yang H, Zhang C, Yang M, Liu J, Zhang Y, Liu D, Zhang X. Variations of plasma oxidative stress levels in male patients with chronic schizophrenia. Correlations with psychopathology and matrix metalloproteinase-9: a case-control study. BMC Psychiatry 2024; 24:20. [PMID: 38172869 PMCID: PMC10765744 DOI: 10.1186/s12888-023-05479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Accumulating evidence has indicated that oxidative stress (OS) and matrix metalloproteinase-9 (MMP-9) may contribute to the mechanism of schizophrenia. In the present study, we aimed to evaluate the associations of OS parameters and MMP-9 levels with psychopathological symptoms in male chronic schizophrenia patients. METHODS This study was an observational, cross-sectional, retrospective case-control study. Plasma hydrogen peroxide (H2O2), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), serum matrix metalloproteinase-9 (MMP-9), and tissue inhibitors of metalloproteinases-1 (TIMP-1) levels were assayed in 80 male patients with chronic schizophrenia and 80 matched healthy controls. Schizophrenia symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). Multivariate regression was used to analyze relationships between OS parameters and MMP-9, and clinical symptoms. RESULTS Our results demonstrated that levels of antioxidant enzymes, SOD, GSH-Px, H2O2, and MDA were significantly decreased, whereas CAT and MMP-9 levels were increased in patients with schizophrenia, when compared with healthy controls (all P < 0.05). In schizophrenia patients, correlation analyses showed that H2O2 levels were significantly and positively correlated with PANSS positive scores, CAT and MDA levels were significant negatively correlated with PANSS negative scores and PANSS total scores, and MDA levels were significantly positively correlated with MMP-9 levels (all P < 0.05). However, we did not find that MMP-9 played an interaction role between OS parameters and PANSS total scores and subscales scores (all P > 0.05). CONCLUSIONS Our results showed that alterations of plasma OS parameters in male patients with chronic schizophrenia were associated with psychopathology and MMP-9, suggesting that OS and neuroinflammation may play important role in the mechanism of schizophrenia.
Collapse
Affiliation(s)
- Haidong Yang
- Medical College of Soochow University, 215137, Suzhou, PR China
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, 215137, Suzhou, P.R. China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Junjun Liu
- Medical College of Soochow University, 215137, Suzhou, PR China
| | - Yuting Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Dongliang Liu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Xiaobin Zhang
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, 215137, Suzhou, P.R. China.
| |
Collapse
|
8
|
Korkmaz ŞA, Kızgın S, Oğuz EF, Neşelioğlu S, Erel Ö. Thiol-disulphide homeostasis, ischemia-modified albumin, complete blood count-derived inflammatory markers and C-reactive protein from acute mania to early remission in bipolar disorder. J Affect Disord 2023; 339:426-434. [PMID: 37459969 DOI: 10.1016/j.jad.2023.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES There is much recent evidence that inflammation contributes to the pathophysiology of acute mania in bipolar disorder (BD). However, no study was evaluated in which the change in thiol-disulphide homeostasis, ischemia-modified albumin (IMA), complete blood count-derived inflammatory markers (CBC-IMs) and C-reactive protein (CRP) levels in bipolar patients was followed-up from acute mania to early remission. METHODS Seventy-seven bipolar patients in acute mania and ninety-one HC were enrolled. We measured levels of thiol-disulphide parameters, IMA, and CBC-IMs such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), red-cell-distribution-width (RDW)-to-platelet ratio (RPR), systemic immune-inflammatory index (SII), and systemic inflammatory response index (SIRI), CRP and platelet-to-albumin ratio (PAR), after adjusting for age, gender, body-mass index (BMI) and smoking status, during acute mania to subsequent early remission. The results were compared with HC. RESULTS The levels or ratios of all thiol-disulphide parameters except for disulphide, IMA and CRP of bipolar patients in both acute mania and early remission were significantly different from HC, after adjusting for confounders. The NLR, SII, CRP and PAR values of bipolar patients were significantly higher in only acute mania compared to HC. Significant changes in thiol-disulphide parameters and IMA levels were not found in early remission after acute mania. LIMITATIONS Short follow-up period and lack of drug-naive patients. CONCLUSIONS Our results suggest that thiol-disulphide parameters, IMA level and SIRI value might be a trait biomarkers of inflammation in BD. In addition, NLR, SII and PAR values and CRP level might be a state biomarker of inflammation in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Şükrü Alperen Korkmaz
- Çanakkale Onsekiz Mart University, Faculty of Medicine, Department of Psychiatry, Çanakkale, Turkey.
| | - Sadice Kızgın
- Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Esra Fırat Oğuz
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara/Turkey
| | - Salim Neşelioğlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara/Turkey
| | - Özcan Erel
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara/Turkey
| |
Collapse
|
9
|
Korkmaz ŞA, Kızgın S. Neutrophil/high-density lipoprotein cholesterol (HDL), monocyte/HDL and platelet/HDL ratios are increased in acute mania as markers of inflammation, even after controlling for confounding factors. Curr Med Res Opin 2023; 39:1383-1390. [PMID: 37725087 DOI: 10.1080/03007995.2023.2260302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE Recent studies show that inflammation is related to the pathogenesis of acute mania of bipolar disorder. Neutrophil/high-density lipoprotein (HDL) ratio (NHR), lymphocyte/HDL ratio (LHR), monocyte/HDL ratio (MHR) and platelet/HDL ratio (PHR) have recently been investigated as novel markers of inflammation. In addition, the atherogenic index of plasma (AIP) and atherogenic coefficient (AC) are the leading atherogenic indices. The study aimed to investigate these inflammation and atherogenic index markers in acute mania of bipolar disorder. Another aim was to determine whether there is a relationship between these markers and disease severity and psychotic symptoms. METHODS A total of 109 BD-M and 101 (HC) were enrolled in the study. The differences in NHR, LHR, MHR, PHR, AIP and AC and their association with illness severity and psychotic symptoms were analyzed after adjusting for age, sex, total cholesterol level, body-mass index and smoking status. Then, a receiver operating characteristic (ROC) curve and linear discriminant analysis (LDA) were used to analyze these parameters' diagnostic potential. Moreover, the Young Mania Rating Scale (YMRS) and Clinical Global Impression Scale for use in bipolar illness-Severity subscale (CGI-BP-S) were used to assess the severity of clinical symptoms. RESULTS We found higher levels of NHR, MHR, PHR and AIP, but not LHR and AC, after adjusting confounding factors in patients with BD-M compared to HCs. In logistic regression analysis, higher levels of MHR and NHR were associated with BD-M. MHR, NHR and PHR were predictors for differentiating the BD-M group from the HC group. However, the severity of the illness or the psychotic feature of the manic episode did not significantly affect the parameters. In the ROC curve analysis of BD-M, the indicators with an area under the curve (AUC) higher than 0.6 were the MHR, NHR, PHR and LHR. CONCLUSIONS These results provide information about the role of inflammation in the pathophysiology of BD-M. Even after controlling for confounding factors, MHR, NHR, PHR and AIP are potential biomarkers for BD-M. Moreover, the increase in AIP may explain the co-morbidity between BD and cardiovascular diseases. However, the severity of the illness or the psychotic feature of the manic episode did not significantly affect the levels of inflammation ratios used in our study. Due to the low cost and widespread use of lipid metabolism and related inflammation rates, it may be beneficial to know the MHR, NHR, PHR and AIP levels in BD-M patients.
Collapse
Affiliation(s)
| | - Sadice Kızgın
- Department of Psychiatry, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Lin CH, Li TM, Huang YJ, Chen SJ, Lane HY. Differential Impacts of Endogenous Antioxidants on Clinical Symptoms and Cognitive Function in Acute and Chronic Schizophrenia Patients. Int J Neuropsychopharmacol 2023; 26:576-583. [PMID: 37422918 PMCID: PMC10464923 DOI: 10.1093/ijnp/pyad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Impaired antioxidant defense is implicated in the pathophysiology of schizophrenia, and superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) are 3 first-line endogenous antioxidants. Various cognitive functions decline differently during the schizophrenia course. The characteristic roles of the 3 antioxidants in clinical and cognitive profiles in acute and chronic phases of schizophrenia require study. METHODS We recruited 311 patients with schizophrenia, including 92 acutely exacerbated patients who had been off antipsychotics for at least 2 weeks and 219 chronic patients who had been stable on medication for at least 2 months. Blood SOD, CAT, and GSH levels; clinical symptoms; and 9 cognitive test scores were measured. RESULTS Blood CAT levels were higher in the acute patients than in the chronic patients, whereas SOD and GSH levels were similar to one another. Higher CAT levels were correlated with less positive symptoms, better working memory and problem solving in the acute phase, and less negative symptoms, less general psychopathology, better global assessment of function, and better cognitive function (in speed of processing, attention, problem solving) in the chronic period. Higher SOD levels were correlated with better global assessment of function in the acute phase and better speed of processing, working memory, and verbal learning and memory in the chronic period. GSH influenced neither clinical nor cognitive manifestations. CONCLUSIONS This study showed that blood CAT affected different clinical and cognitive domains between acute and chronic stages of schizophrenia, SOD influenced cognitive functions in chronic state, but GSH affected none. Further studies are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tin-May Li
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Jhen Huang
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung, Taiwan
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
12
|
Lin S, Li P, Qin J, Liu Q, Zhang J, Meng N, Jia C, Zhu K, Lv D, Sun L, Shang T, Lin Y, Niu W, Wang T. Exploring the key factors of schizophrenia relapse by integrating LC-MS/ 1H NMR metabolomics and weighted correlation network analysis. Clin Chim Acta 2023; 541:117252. [PMID: 36781041 DOI: 10.1016/j.cca.2023.117252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Lack of comprehending key factors of schizophrenia relapse has impeded its effective treatment, indicating that the mechanism clarification and available intervention of schizophrenia relapse required further amelioration. METHOD Based on the integration of LC-MS and 1H NMR metabolomics, a weighted correlation network was established to screen pivotal factors of accelerating schizophrenia relapse. Then, the cluster most correlated with schizophrenia relapse was explored, and the biological function of cluster was investigated. Next, the key biomarker related to schizophrenia relapse was obtained through multiple algorithms. Moreover, the Lilikoi algorithm and correlation analysis were implemented to reveal the association between key biomarker and schizophrenia relapse. RESULT Results showed that 458 different forms of metabolites were identified for structuring the weighted correlation network. The module-trait correlation indicated that the turquoise module was the most highly correlated with schizophrenia relapse. Further, network analysis revealed that, in turquoise module, cluster 1 composed of 139 metabolites (involved in lipid metabolism and energy metabolism) was the most important subnetwork relevant to schizophrenia relapse. Finally, phenylalanylphenylalanine was recommended as the key biomarker related to schizophrenia relapse. Moreover, the correlation analysis indicated that phenylalanylphenylalanine might affect the progression of schizophrenia by intervening in energy metabolism. CONCLUSION In summary, critical factors of schizophrenia relapse have been revealed in our research, expounding the schizophrenia progression more systemically, which could shed some light on improving the intervention of schizophrenia relapse.
Collapse
Affiliation(s)
- Song Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Ping Li
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Jinglei Qin
- Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150000, China
| | - Qi Liu
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Jinling Zhang
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Nana Meng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Cuicui Jia
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Kunjie Zhu
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Dan Lv
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Lei Sun
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Tinghuizi Shang
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Yan Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Weipan Niu
- Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150000, China
| | - Tianyang Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China.
| |
Collapse
|
13
|
Yang M, Wang C, Zhao G, Kong D, Liu L, Yuan S, Chen W, Feng C, Li Z. Comparative Analysis of the Pre- and Post-Medication Effects of Antipsychotic Agents on the Blood-Based Oxidative Stress Biomarkers in Patients with Schizophrenia: A Meta-Analysis. Curr Neuropharmacol 2023; 21:340-352. [PMID: 35794775 PMCID: PMC10190148 DOI: 10.2174/1570159x20666220706101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Studies have shown that oxidative stress (OS) is related to the pathophysiology of schizophrenia (SCZ), but whether antipsychotics can induce OS has not been investigated well. Moreover, antipsychotics have differential effects on the OS level modulation, i.e., different types of antipsychotics have different effects on the cellular antioxidants or pro-oxidants. METHODS We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and investigated the OS indicators including both enzymatic and nonenzymatic markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), vitamin C, etc., of SCZ patients at baseline and follow-up of mono-medication. RESULTS Twenty studies met the inclusion criteria, with a total of 1162 patients enrolled at baseline, and 1105 patients completed the follow-up. OS markers were changed after a period of antipsychotic treatment in SCZ patients. The GPx activity and MDA level decreased in the whole blood (P<0.05), also the serum MDA level decreased (P<0.05). For the first-episode SCZ patients, the activity of GPx and the level of MDA decreased, while the level of vitamin C increased (all P<0.05). The levels of MDA in patients receiving atypical antipsychotics decreased (P<0.05), while the level of GSH in patients with typical antipsychotics decreased (P=0.05). CONCLUSION Antipsychotic medication may cause changes in the levels of OS markers in different blood samples of SCZ patients. However, the available studies might not be sufficient to reveal the underlying facts accurately due to the poor quality of experimental designs in the published literature.
Collapse
Affiliation(s)
- Mi Yang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Chunzhi Wang
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Guocheng Zhao
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Di Kong
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Liju Liu
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shuai Yuan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Wei Chen
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Can Feng
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Psychiatry, Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
14
|
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr 2023; 79:103400. [PMID: 36521406 DOI: 10.1016/j.ajp.2022.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammatory pathways play an important role in the pathophysiology of schizophrenia. The present study investigated the relationship between OS, inflammatory cytokines, and clinical features in male patients with treatment-resistant schizophrenia (TRS). METHOD We measured plasma OS parameters, including manganese-superoxide dismutase (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD), total-SOD (T-SOD), malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px); and serum inflammatory cytokines, including interleukin (IL)- 1α, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN)-γ, from 80 male patients with chronic schizophrenia (31 had TRS and 49 had chronic stable schizophrenia (CSS)), and 42 healthy controls. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared with healthy controls, plasma Mn-SOD, CuZn-SOD, T-SOD, GSH-Px, and MDA levels were significantly lower, while CAT and serum IL-6 levels were higher in both TRS and CSS male patients (all P < 0.05). Significant differences in the activities of CAT (F = 6.068, P = 0.016) and IL-6 levels (F = 6.876, P = 0.011) were observed between TRS and CSS male patients after analysis of covariance. Moreover, a significant positive correlation was found between IL-6 levels and PANSS general psychopathology subscores (r = 0.485, P = 0.006) and between CAT activity and PANSS total scores (r = 0.409, P = 0.022) in TRS male patients. CAT and IL-6 levels were predictors for TRS. Additionally, in chronic schizophrenia patients, a significant positive correlation was observed between IL-6 and GSH-Px (r = 0.292, P = 0.012), and the interaction effect of IL-6 and GSH-Px was positively associated with PANSS general psychopathology scores (r = 0.287, P = 0.014). CONCLUSION This preliminary study indicated that variations in OS and inflammatory cytokines may be involved in psychopathology for patients with chronic schizophrenia, especially in male patients with TRS.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China; Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Yujun Sun
- Department of Psychiatry, Kunshan Mental Health Center, Kunshan 215311, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| |
Collapse
|
15
|
Wang DM, Du YX, Zhu RR, Tian Y, Chen JJ, Chen DC, Wang L, Zhang XY. The relationship between cognitive impairment and superoxide dismutase activity in untreated first-episode patients with schizophrenia. World J Biol Psychiatry 2022; 23:517-524. [PMID: 34918615 DOI: 10.1080/15622975.2021.2013093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objectives: Cognitive decline is an essential characteristic of schizophrenia and may be due to the disturbance between reactive oxygen species generation and antioxidant capacity. The study aimed to explore the association between cognitive deficits and antioxidant defence parameters in untreated first-episode patients with schizophrenia.Methods: We determined important antioxidant enzymes, total superoxide dismutase (SOD) and manganese SOD (MnSOD), and their relationship with cognitive impairment in 168 untreated patients with first-episode schizophrenia and 168 age- and sex-matched healthy controls. The evaluation of psychopathological symptoms of all patients was based on the Positive and Negative Syndrome Scale (PANSS). We measured cognitive function by the Repeated Battery for the Assessment of Neuropsychological Status (RBANS) and activities of total SOD and MnSOD in all participants.Results: The results showed that untreated patients with first-episode schizophrenia had deficient cognitive functioning in four RBANS indices and total scores, except for the visuospatial/constructional index, as well as higher plasma total SOD activity compared with the control subjects. In addition, significant negative correlations were identified between MnSOD activity and attention index or RBANS total score in patients.Conclusions: Our results suggest that oxidative stress may be partly responsible for cognitive dysfunction in the early course of schizophrenia.
Collapse
Affiliation(s)
- Dong Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Xuan Du
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Rong Zhu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Tian
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Jing Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Manzoor S, Khan A, Hasan B, Mushtaq S, Ahmed N. Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210121151004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may
lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to
oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and
activities of enzymatic and antioxidant systems in schizophrenia.
Objectives:
Present study focuses on identification of HNE-protein adducts and its related molecular consequences in
schizophrenia pathology due to oxidative stress, particularly lipid peroxidation.
Material and Methods:
Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus
region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances
(TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also
estimated.
Results:
Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy
control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of
schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ±
1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated
TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects
an increased lipid peroxidation (LPO).
Conclusion:
Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of
schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production.
Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative
stress in schizophrenia pathology.
Collapse
Affiliation(s)
- Sobia Manzoor
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
17
|
Wei Q, Ji Y, Gao H, Yi W, Pan R, Cheng J, He Y, Tang C, Liu X, Song S, Song J, Su H. Oxidative stress-mediated particulate matter affects the risk of relapse in schizophrenia patients: Air purification intervention-based panel study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118348. [PMID: 34637828 DOI: 10.1016/j.envpol.2021.118348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter (PM) exposure increased the risk of hospital admission and was related to symptoms of schizophrenia (SCZ). However, there are limited studies on the relationship between PM exposure and SCZ relapse risk, and the underlying biological mechanisms remain unclear. We designed an air purification intervention study under a 16-day real air purifier scenario and another 16-day sham air purifier scenario, with a 2-day washout period. Twenty-four chronic stable male patients were recruited. The oxidative stress biomarkers were measured including serum catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), and nitric oxide (NO). The relapse risk was evaluated by the early signs scale (ESS). Linear mixed effect models were fitted to establish the associations between PM exposure and ESS and oxidative stress. Mediation model was performed to explore the mediation effect of oxidative stress on the PM-ESS association. Higher concentrations of PM2.5/PM10 exposure were associated with an elevated risk of relapse of SCZ. For each 10 μg/m3 in PM2.5 concentration, the scores of ESS and subscales of incipient psychosis (ESS-IP), depression/withdrawal (ESS-N), anxiety/agitation (ESS-A), and excitability/disinhibition (ESS-D) were increased by 4.112 (95% CI: 3.174, 5.050), 1.516 (95%CI: 1.178, 1.853), 1.143 (95%CI: 0.598, 1.689), 1.176 (95%CI: 0.727, 1.625) and 0.238 (95%CI: 0.013, 0.464), while logCAT, SOD and T-AOC were reduced by 0.039 U/ml (95% CI: 0.017, 0.060), 1.258 U/ml (95% CI: 0.541, 1.975), and 0.076 mmol/l (95% CI: 0.026, 0.126). In addition, pathways of "PM2.5→T-AOC→ESS-A″ and "PM2.5→T-AOC→ESS-D″ were found, with significant T-AOC mediated effects 15.70% (P = 0.02) and 52.99% (P = 0.04). Our findings suggest that PM may increase the risk of anxiety, depression, excitability, and incipient psychosis behaviors in SCZ patients, while reducing the function of the antioxidant system. The decrease of T-AOC may medicate the PM-ESS association in SCZ.
Collapse
Affiliation(s)
- Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Yifu Ji
- Anhui Mental Health Center, Hefei, China
| | - Hua Gao
- Anhui Mental Health Center, Hefei, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
18
|
Yang M, Li J, Yang H, Yan L, Liu D, Zhu L, Zhang X. Cognitive Impairment and Psychopathology Are Related to Plasma Oxidative Stress in Long Term Hospitalized Patients With Chronic Schizophrenia. Front Psychiatry 2022; 13:896694. [PMID: 35757215 PMCID: PMC9226302 DOI: 10.3389/fpsyt.2022.896694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study aimed to examine whether plasma oxidative stress is associated with cognitive impairment in long term hospitalized patients with chronic schizophrenia. METHOD Ninety-six chronic schizophrenia patients and 94 healthy unaffected subjects were enrolled. Plasma markers of oxidative stress, including malondialdehyde (MDA), manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidase (GSH-Px), were measured. Psychiatric symptoms and cognitive function were assessed with the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), respectively. RESULTS Plasma MDA levels and MnSOD and GSH-Px activities were significantly lower in schizophrenia patients than in healthy controls (P < 0.001), while plasma CAT activity was higher than in healthy controls (P < 0.005). Cognitive scores on the RBANS and all of its five subscales (all P < 0.001) were significantly lower in schizophrenia patients than in healthy unaffected subjects. CAT and GSH-Px activities were positively correlated with the cognitive function scores corresponding to Visuospatial/Constructional abilities in the patient group (r = 0.298, 0.213, respectively, P < 0.05). Also, the multiple regression analysis revealed that CAT and GSH-Px activities were independent and separate contributors to the Visuospatial/Constructional index of the RBANS. Meanwhile, CAT activity was negatively correlated with general pathological symptoms (r = -0.307, Bonferroni corrected P = 0.008) and the total score of the PANSS domains (r = -0.299, Bonferroni corrected P = 0.012). CONCLUSION Our results that the reduced of MDA level and the increased CAT activity in plasma in male patients with chronic schizophrenia suggest that redox imbalance may be associated with the pathophysiology of schizophrenia, and it can induce impaired cognition and psychiatric symptoms.
Collapse
Affiliation(s)
- Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Jin Li
- Department of Psychiatry, Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Linya Yan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Dongliang Liu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Lin Zhu
- Department of Clinical Laboratory, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Xiaobin Zhang
- Department of Psychiatry, Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Ishola IO, Ben-Azu B, Adebayo OA, Ajayi AM, Omorodion IL, Edje KE, Adeyemi OO. Prevention and reversal of ketamine-induced experimental psychosis in mice by the neuroactive flavonoid, hesperidin: The role of oxidative and cholinergic mechanisms. Brain Res Bull 2021; 177:239-251. [PMID: 34653559 DOI: 10.1016/j.brainresbull.2021.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Currently, prevailing evidence have identified cholinergic and oxidative pathways as important therapeutic targets for abating ketamine-induced schizophrenia-like behavior. Thus, this study evaluated the ability of hesperidin, a naturally occurring antioxidant and neuroprotective flavonoid, to prevent and reverse ketamine-induced schizophrenia-like behaviors and changes in cholinergic, oxidative and nitrergic status in mice. Forty-eight male Swiss mice were allotted into the preventive and reversal studies with 4 groups (n = 6) each. In the preventive study, groups 1 and 2 received vehicle (10 mL/kg/p.o./day), while groups 3 and 4 had hesperidin (100 mg/kg/p.o./day) for 14 days, but ketamine (20 mg/kg/i.p./day) was concurrently given to groups 2 and 4 from days 8-14. In the reversal study, groups 1 and 3 received vehicle, groups 2 and 4 were pretreated with ketamine for 14 days. Nevertheless, groups 3 and 4 additionally received hesperidin from days 8-14. Thereafter, schizophrenia-like behavior from exploratory activity, open-field (positive symptoms), Y-maze (cognitive symptoms) and social interaction (negative symptoms) tests were evaluated. Brain levels of oxidative/nitrergic (glutathione, superoxide-dismutase, malondialdehyde and nitrite levels) and cholinergic (acetylcholinesterase activity) markers were measured in the prefrontal-cortex, striatum and hippocampus. Hesperidin prevents and reverses ketamine-induced hyperactivities, social withdrawal and cognitive impairment. Also, hesperidin prevented and reversed ketamine-induced decrease in glutathione and superoxide-dismutase levels in the prefrontal-cortical, striatal and hippocampal brain regions in mice. Consequently, hesperidin attenuated ketamine-induced increase in malondialdehyde, nitrite levels and acetylcholinesterase activities in the prefrontal-cortex, striatum and hippocampus, respectively. The study showed that hesperidin prevents and reverses ketamine-induced schizophrenia-like behavior through inhibition of oxidative/nitrergic stress and acetylcholinesterase activity in mice brains. Therefore, these findings suggest that hesperidin dietary supplementation could provide natural nutritional intervention to protect against epigenetic-induced mental ill-health like schizophrenia, and thus serve as an important agent for nutritional psychiatry.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Oluwatosin A Adebayo
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iziegbe Lisa Omorodion
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Graduate Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Kesiena Emmanuel Edje
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, United Kingdom
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| |
Collapse
|
20
|
Kim E, Zhao Z, Rzasa JR, Glassman M, Bentley WE, Chen S, Kelly DL, Payne GF. Association of acute psychosocial stress with oxidative stress: Evidence from serum analysis. Redox Biol 2021; 47:102138. [PMID: 34555595 PMCID: PMC8458980 DOI: 10.1016/j.redox.2021.102138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence implicates an association between psychosocial stress and oxidative stress (OxSt) although there are not yet reliable biomarkers to study this association. We used a Trier Social Stress Test (TSST) and compared the response of a healthy control group (HC; N=10) against the response of a schizophrenia group (SCZ; N=10) that is expected to have higher levels of OxSt. Because our previous study showed inconsistent changes in conventional molecular markers for stress responses in the neuroendocrine and immune systems, we analyzed the same serum samples using a separate reducing capacity assay that provides a more global measurement of OxSt. This assay uses the moderately strong oxidizing agent iridium (Ir) to probe a sample's reducing capacity. Specifically, we characterized OxSt by this Ir-reducing capacity assay (Ir-RCA) using two measurement modalities (optical and electrochemical) and we tuned this assay by imposing an input voltage sequence that generates multiple output metrics for data-driven analysis. We defined five OxSt metrics (one optical and four electrochemical metrics) and showed: (i) internal consistency among each metric in the measurements of all 40 samples (baseline and post TSST for N=20); (ii) all five metrics were consistent with expectations of higher levels of OxSt for the SCZ group (three individual metrics showed statistically significant differences); and (iii) all five metrics showed higher levels of OxSt Post-TSST (one metric showed statistically significant difference). Using multivariant analysis, we showed that combinations of OxSt metrics could discern statistically significant increases in OxSt for both the SCZ and HC groups 90 min after the imposed acute psychosocial stress. Ir-reducing capacity assay (Ir-RCA) provides a robust global measure of oxidative stress in serum. The multiple oxidative stress (OxSt) output metrics of this Ir-RCA are useful for data-driven analysis. The combination of OxSt metrics can discern significant increases in OxStwithin 90 mins of an imposed psychosocial stress.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Zhiling Zhao
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - John Robertson Rzasa
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Matthew Glassman
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
21
|
Juchnowicz D, Dzikowski M, Rog J, Waszkiewicz N, Karakuła KH, Zalewska A, Maciejczyk M, Karakula-Juchnowicz H. Pro/Antioxidant State as a Potential Biomarker of Schizophrenia. J Clin Med 2021; 10:jcm10184156. [PMID: 34575267 PMCID: PMC8466193 DOI: 10.3390/jcm10184156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
To allow better diagnosis and management of psychiatric illnesses, the use of easily accessible biomarkers are proposed. Therefore, recognition of some diseases by a set of related pathogenesis biomarkers is a promising approach. The study aims to assess the usefulness of examining oxidative stress (OS) in schizophrenia as a potential biomarker of illness using the commonly used data mining decision tree method. The study group was comprised of 147 participants: 98 patients with schizophrenia (SZ group), and the control group (n = 49; HC). The patients with schizophrenia were divided into two groups: first-episode schizophrenia (n = 49; FS) and chronic schizophrenia (n = 49; CS). The assessment included the following biomarkers in sera of patients: catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase-1 (SOD-1), glutathione reductase (GR), reduced glutathione (GSH), total antioxidant capacity (TAC), ferric reducing ability of plasma (FRAP), advanced glycation end products (AGEs), advanced oxidation protein products (AOPP), dityrosine (DITYR), kynurenine (KYN), N-formylkynurenine (NFK), tryptophan (TRY), total oxidant status (TOS), nitric oxide (NO) and total protein. Maximum accuracy (89.36%) for distinguishing SZ from HC was attained with TOS and GPx (cut-off points: 392.70 and 15.33). For differentiating between FS and CS, the most promising were KYN, AOPP, TAC and NO (100%; cut-off points: 721.20, 0.55, 64.76 and 2.59). To distinguish FS from HC, maximum accuracy was found for GSH and TOS (100%; cut-off points: 859.96 and 0.31), and in order to distinguish CS from HC, the most promising were GSH and TOS (100%; cut-off points: 0.26 and 343.28). Using redox biomarkers would be the most promising approach for discriminating patients with schizophrenia from healthy individuals and, in the future, could be used as an add-on marker to diagnose and/or respond to treatment.
Collapse
Affiliation(s)
- Dariusz Juchnowicz
- Department of Psychiatric Nursing, Medical University of Lublin, 20-124 Lublin, Poland;
| | - Michał Dzikowski
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland; (M.D.); (K.H.K.); (H.K.-J.)
| | - Joanna Rog
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland; (M.D.); (K.H.K.); (H.K.-J.)
- Correspondence:
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland;
| | - Kaja Hanna Karakuła
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland; (M.D.); (K.H.K.); (H.K.-J.)
| | - Anna Zalewska
- Experimental Dentistry Laboratory and Department of Restorative Dentistry, Medical University of Bialystok, 15-437 Bialystok, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Hanna Karakula-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland; (M.D.); (K.H.K.); (H.K.-J.)
| |
Collapse
|
22
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|
24
|
Pan Y, Dempster K, Jeon P, Théberge J, Khan AR, Palaniyappan L. Acute conceptual disorganization in untreated first-episode psychosis: a combined magnetic resonance spectroscopy and diffusion imaging study of the cingulum. J Psychiatry Neurosci 2021; 46:E337-E346. [PMID: 33904669 PMCID: PMC8327974 DOI: 10.1503/jpn.200167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Disorganized thinking is a core feature of acute psychotic episodes that is linked to social and vocational functioning. Several lines of evidence implicate disrupted cognitive control, excitatory overdrive and oxidative stress relating to the anterior cingulate cortex as mechanisms of conceptual disorganization (CD). We examined 3 candidate mechanistic markers related to CD in firstepisode psychosis: glutamate excess, cortical antioxidant (glutathione) status and the integrity of the cingulum bundle that connects regions implicated in cognitive control. METHODS We used fractional anisotropy maps from 7 T diffusion-weighted imaging to investigate the bilateral cingulum based on a probabilistic white matter atlas. We compared high CD, low CD and healthy control groups and performed probabilistic fibre tracking from the identified clusters (regions of interest within the cingulum) to the rest of the brain. We quantified glutamate and glutathione using magnetic resonance spectroscopy (MRS) in the dorsal anterior cingulate cortex. RESULTS We found a significant fractional anisotropy reduction in a cluster in the left cingulum in the high CD group compared to the low CD group (Cohen's d = 1.39; p < 0.001) and controls (Cohen's d = 0.86; p = 0.009). Glutamate levels did not vary among groups, but glutathione levels were higher in the high CD group than in the low CD group. We also found higher glutathione related to lower fractional anisotropy in the cingulum cluster in the high CD group. LIMITATIONS The MRS measures of glutamine were highly uncertain, and MRS was acquired from a single voxel only. CONCLUSION Acute CD relates to indicators of oxidative stress, as well as reduced white matter integrity of the cingulum, but not to MRI-based glutamatergic excess. We propose that both oxidative imbalance and structural dysconnectivity underlie acute disorganization.
Collapse
Affiliation(s)
- Yunzhi Pan
- From the Department of Psychiatry, Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Pan); the Robarts Research Institute, University of Western Ontario, London, Ont., Canada (Pan, Khan, Palaniyappan); the Lawson Health Research Institute, London, Ont., Canada (Théberge, Palaniyappan); the Department of Medical Biophysics, University of Western Ontario, London, Ont., Canada (Jeon, Théberge, Khan, Palaniyappan); the Department of Psychiatry, University of Western Ontario, London, Ont., Canada (Palaniyappan, Théberge); the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Dempster); the China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China (Pan); the China National Technology Institute on Mental Disorders, Changsha, Hunan, China (Pan); the Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China (Pan); and the Institute of Mental Health of Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Pan)
| | - Kara Dempster
- From the Department of Psychiatry, Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Pan); the Robarts Research Institute, University of Western Ontario, London, Ont., Canada (Pan, Khan, Palaniyappan); the Lawson Health Research Institute, London, Ont., Canada (Théberge, Palaniyappan); the Department of Medical Biophysics, University of Western Ontario, London, Ont., Canada (Jeon, Théberge, Khan, Palaniyappan); the Department of Psychiatry, University of Western Ontario, London, Ont., Canada (Palaniyappan, Théberge); the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Dempster); the China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China (Pan); the China National Technology Institute on Mental Disorders, Changsha, Hunan, China (Pan); the Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China (Pan); and the Institute of Mental Health of Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Pan)
| | - Peter Jeon
- From the Department of Psychiatry, Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Pan); the Robarts Research Institute, University of Western Ontario, London, Ont., Canada (Pan, Khan, Palaniyappan); the Lawson Health Research Institute, London, Ont., Canada (Théberge, Palaniyappan); the Department of Medical Biophysics, University of Western Ontario, London, Ont., Canada (Jeon, Théberge, Khan, Palaniyappan); the Department of Psychiatry, University of Western Ontario, London, Ont., Canada (Palaniyappan, Théberge); the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Dempster); the China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China (Pan); the China National Technology Institute on Mental Disorders, Changsha, Hunan, China (Pan); the Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China (Pan); and the Institute of Mental Health of Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Pan)
| | - Jean Théberge
- From the Department of Psychiatry, Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Pan); the Robarts Research Institute, University of Western Ontario, London, Ont., Canada (Pan, Khan, Palaniyappan); the Lawson Health Research Institute, London, Ont., Canada (Théberge, Palaniyappan); the Department of Medical Biophysics, University of Western Ontario, London, Ont., Canada (Jeon, Théberge, Khan, Palaniyappan); the Department of Psychiatry, University of Western Ontario, London, Ont., Canada (Palaniyappan, Théberge); the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Dempster); the China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China (Pan); the China National Technology Institute on Mental Disorders, Changsha, Hunan, China (Pan); the Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China (Pan); and the Institute of Mental Health of Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Pan)
| | - Ali R Khan
- From the Department of Psychiatry, Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Pan); the Robarts Research Institute, University of Western Ontario, London, Ont., Canada (Pan, Khan, Palaniyappan); the Lawson Health Research Institute, London, Ont., Canada (Théberge, Palaniyappan); the Department of Medical Biophysics, University of Western Ontario, London, Ont., Canada (Jeon, Théberge, Khan, Palaniyappan); the Department of Psychiatry, University of Western Ontario, London, Ont., Canada (Palaniyappan, Théberge); the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Dempster); the China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China (Pan); the China National Technology Institute on Mental Disorders, Changsha, Hunan, China (Pan); the Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China (Pan); and the Institute of Mental Health of Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Pan)
| | - Lena Palaniyappan
- From the Department of Psychiatry, Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Pan); the Robarts Research Institute, University of Western Ontario, London, Ont., Canada (Pan, Khan, Palaniyappan); the Lawson Health Research Institute, London, Ont., Canada (Théberge, Palaniyappan); the Department of Medical Biophysics, University of Western Ontario, London, Ont., Canada (Jeon, Théberge, Khan, Palaniyappan); the Department of Psychiatry, University of Western Ontario, London, Ont., Canada (Palaniyappan, Théberge); the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Dempster); the China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China (Pan); the China National Technology Institute on Mental Disorders, Changsha, Hunan, China (Pan); the Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China (Pan); and the Institute of Mental Health of Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Pan)
| |
Collapse
|
25
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|