1
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Tsushima Y, Nachawi N, Pantalone KM, Griebeler ML, Alwahab UA. Ketogenic diet improves fertility in patients with polycystic ovary syndrome: a brief report. Front Nutr 2024; 11:1395977. [PMID: 39328462 PMCID: PMC11424527 DOI: 10.3389/fnut.2024.1395977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) affects up to 20 % of reproductive-age individuals and is strongly linked to obesity. The impacts of ketogenic diet on fertility in people with PCOS are unknown. This study aims to determine the effect of a ketogenic diet on restoration of regular menstrual cycles and fertility. Methods After approval from the Institutional Review Boards of Cleveland Clinic, a retrospective analysis was conducted using the electronic health record system. We analyzed data from thirty patients (n = 30) with polycystic ovary syndrome who followed a ketogenic diet for at least 3 months at the Cleveland Clinic, Cleveland, Ohio, USA. Main outcomes were percentage of women with restoration of regular menstrual cycles and pregnancy rate. Results All women (n = 30) had restoration of regular menstrual cycles. The overall pregnancy rate of women desiring pregnancy (n = 18) was 55.6% (n = 10). Pregnancy rate was 38.5% for women on metformin and 100% for those who were not (P = 0.036). Pregnancy rate was 62.5% for women using ovulation induction agents and 50.0% for those who did not (P = 0.66). Percent weight change between the pregnant and non-pregnant groups did not significantly differ [-8.1 ± 6.2, vs -6.4 ± 8.4, P = 0.64, respectively]. Conclusion This study reports a higher rate of pregnancy with the ketogenic diet in women with PCOS compared to existing literature.
Collapse
Affiliation(s)
- Yumiko Tsushima
- Department of Medicine, Diabetes and Metabolic Care Center, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Noura Nachawi
- Department of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Kevin M. Pantalone
- Endocrinology and Metabolism Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Marcio L. Griebeler
- Endocrinology and Metabolism Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ula Abed Alwahab
- Endocrinology and Metabolism Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
3
|
Ari C, D'Agostino DP, Cha BJ. Neuroregeneration Improved by Sodium-D,L-Beta-Hydroxybutyrate in Primary Neuronal Cultures. Pharmaceuticals (Basel) 2024; 17:1160. [PMID: 39338322 PMCID: PMC11435142 DOI: 10.3390/ph17091160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Ketone bodies are considered alternative fuels for the brain when glucose availability is limited. To determine the neuroregenerative potential of D,L-sodium-beta-hydroxybutyrate (D/L-BHB), Sprague Dawley rat primary cortical neurons were exposed to simulated central nervous system injury using a scratch assay. The neuronal cell migration, cell density and degree of regeneration in the damaged areas (gaps) in the absence (control) and presence of BHB (2 mM) were documented with automated live-cell imaging by the CytoSMART system over 24 h, which was followed by immunocytochemistry, labeling synapsin-I and β3-tubulin. The cell density was significantly higher in the gaps with BHB treatment after 24 h compared to the control. In the control, only 1.5% of the measured gap areas became narrower over 24 h, while in the BHB-treated samples 49.23% of the measured gap areas became narrower over 24 h. In the control, the gap expanded by 63.81% post-injury, while the gap size decreased by 10.83% in response to BHB treatment, compared to the baseline. The cell density increased by 97.27% and the gap size was reduced by 74.64% in response to BHB, compared to the control. The distance travelled and velocity of migrating cells were significantly higher with BHB treatment, while more synapsin-I and β3-tubulin were found in the BHB-treated samples after 24 h, compared to the control. The results demonstrate that D/L-BHB enhanced neuronal migration and molecular processes associated with neural regeneration and axonogenesis. These results may have clinical therapeutic applications in the future for nervous system injuries, such as for stroke, concussion and TBI patients.
Collapse
Affiliation(s)
- Csilla Ari
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Ketone Technologies LLC, Tampa, FL 33612, USA
| | - Dominic P D'Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Byeong J Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
4
|
Diamond DM, Mason P, Bikman BT. Opinion: Are mental health benefits of the ketogenic diet accompanied by an increased risk of cardiovascular disease? Front Nutr 2024; 11:1394610. [PMID: 38751739 PMCID: PMC11095042 DOI: 10.3389/fnut.2024.1394610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- David M. Diamond
- Department of Psychology, University of South Florida, Tampa, FL, United States
| | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. Int Microbiol 2024:10.1007/s10123-024-00518-6. [PMID: 38561477 DOI: 10.1007/s10123-024-00518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Diet is one of the most important external factor shaping the composition and metabolic activities of the gut microbiome. The gut microbiome plays a crucial role in host health, including immune system development, nutrients metabolism, and the synthesis of bioactive molecules. In addition, the gut microbiome has been described as critical for the development of several mental disorders. Nutritional psychiatry is an emerging field of research that may provide a link between diet, microbial function, and brain health. In this study, we have reviewed the influence of different diet types, such as Western, Mediterranean, vegetarian, and ketogenic, on the gut microbiota composition and function, and their implication in various neuropsychiatric and psychological disorders.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina BIONAND, Málaga, Spain.
| |
Collapse
|
6
|
Sung H, Vaziri A, Wilinski D, Woerner RKR, Freddolino PL, Dus M. Nutrigenomic regulation of sensory plasticity. eLife 2023; 12:e83979. [PMID: 36951889 PMCID: PMC10036121 DOI: 10.7554/elife.83979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the D. melanogaster gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons' responses to sugar and the flies' ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons.
Collapse
Affiliation(s)
- Hayeon Sung
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Anoumid Vaziri
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of MichiganAnn ArborUnited States
| | - Daniel Wilinski
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Riley KR Woerner
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Peter L Freddolino
- Department of Biological Chemistry, The University of Michigan Medical SchoolAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical SchoolAnn ArborUnited States
| | - Monica Dus
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of MichiganAnn ArborUnited States
- The Michigan Neuroscience InstituteAnn ArborUnited States
| |
Collapse
|
7
|
Imdad K, Abualait T, Kanwal A, AlGhannam ZT, Bashir S, Farrukh A, Khattak SH, Albaradie R, Bashir S. The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients 2022; 14:5074. [PMID: 36501104 PMCID: PMC9738161 DOI: 10.3390/nu14235074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a long-term neurological condition that results in recurrent seizures. Approximately 30% of patients with epilepsy have drug-resistant epilepsy (DRE). The ketogenic diet (KD) is considered an effective alternative treatment for epileptic patients. The aim of this study was to identify the metabolic role of the KD in epilepsy. Ketone bodies induce chemical messengers and alterations in neuronal metabolic activities to regulate neuroprotective mechanisms towards oxidative damage to decrease seizure rate. Here, we discuss the role of KD on epilepsy and related metabolic disorders, focusing on its mechanism of action, favorable effects, and limitations. We describe the significant role of the KD in managing epilepsy disorders.
Collapse
Affiliation(s)
- Kaleem Imdad
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ammara Kanwal
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Ziyad Tareq AlGhannam
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Shahab Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Anum Farrukh
- Department of General Medicine, Fauji Foundation Hospital, Rawalpindi 45000, Pakistan
| | - Sahir Hameed Khattak
- National Institute for Genomics and Advanced Biotechnology (N.I.G.A.B.), National Agriculture Research Centre (NARC), Islamabad 44000, Pakistan
| | - Raidah Albaradie
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| |
Collapse
|
8
|
Deledda A, Palmas V, Heidrich V, Fosci M, Lombardo M, Cambarau G, Lai A, Melis M, Loi E, Loviselli A, Manzin A, Velluzzi F. Dynamics of Gut Microbiota and Clinical Variables after Ketogenic and Mediterranean Diets in Drug-Naïve Patients with Type 2 Diabetes Mellitus and Obesity. Metabolites 2022; 12:1092. [PMID: 36355175 PMCID: PMC9693465 DOI: 10.3390/metabo12111092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a progressive chronic metabolic disease that has increasingly spread worldwide, enhancing the mortality rate, particularly from cardiovascular diseases (CVD). Lifestyle improvement through diet and physical activity is, together with drug treatment, the cornerstone of T2DM management. The Mediterranean diet (MD), which favors a prevalence of unprocessed vegetable foods and a reduction in red meats and industrial foods, without excluding any food category, is usually recommended. Recently, scientific societies have promoted a very low-calorie ketogenic diet (VLCKD), a multiphasic protocol that limits carbohydrates and then gradually re-introduces them, with a favorable outcome on body weight and metabolic parameters. Indeed, gut microbiota (GM) modifications have been linked to overweight/obesity and metabolic alterations typical of T2DM. Diet is known to affect GM largely, but only a few studies have investigated the effects of VLCKD on GM, especially in T2DM. In this study, we have compared anthropometric, biochemical, lifestyle parameters, the quality of life, and the GM of eleven patients with recently diagnosed T2DM and overweight or obesity, randomly assigned to two groups of six and five patients who followed the VLCKD (KETO) or hypocaloric MD (MEDI) respectively; parameters were recorded at baseline (T0) and after two (T2) and three months (T3). The results showed that VLCKD had more significant beneficial effects than MD on anthropometric parameters, while biochemical improvements did not statistically differ. As for the GM, despite the lack of significant results regarding the alpha and beta diversity, and the Firmicutes/Bacteroidota ratio between the two groups, in the KETO group, a significant increase in beneficial microbial taxa such as Verrucomicrobiota phylum with its members Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia, Christensenellaceae family, Eubacterium spp., and a reduction in microbial taxa previously associated with obesity (Firmicutes and Actinobacteriota) or other diseases (Alistipes) was observed both at T2 and T3. With regards to the MEDI group, variations were limited to a significant increase in Actinobacteroidota phylum at T2 and T3 and Firmicutes phylum at T3. Moreover, a metagenomic alteration linked to some metabolic pathways was found exclusively in the KETO group. In conclusion, both dietary approaches allowed patients to improve their state of health, but VLCKD has shown better results on body composition as well as on GM profile.
Collapse
Affiliation(s)
- Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy
| | - Marietta Melis
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Elisabetta Loi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Hsieh TY, Hung PL, Su TY, Peng SJ. Graph Theory-Based Electroencephalographic Connectivity via Phase-Locking Value and Its Association with Ketogenic Diet Responsiveness in Patients with Focal Onset Seizures. Nutrients 2022; 14:nu14214457. [PMID: 36364720 PMCID: PMC9659238 DOI: 10.3390/nu14214457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ketogenic diets (KDs) are a promising alternative therapy for pediatric refractory epilepsy. Several predictors of KD responsiveness have been identified, including biochemical parameters, seizure types, and electroencephalography (EEG) examinations. We hypothesized that graph theory-based EEG functional connectivity could explain KD responses in patients presenting focal onset seizure (FOS). A total of 17 patients aged 0-30 years old with focal onset seizures (FOS) were recruited as a study group between January 2015 and July 2021. Twenty age-matched children presenting headache with no intracranial complications nor other medical issues were enrolled as a control group. Data were obtained at baseline and at 12 months after initiating KD therapy (KDT) using the child behavior checklist (CBCL) and brain functional connectivity parameters based on phase-locking value from 19 scalp EEG signals, including nodal strength, global efficiency, clustering coefficient, and betweenness centrality. Compared with age-matched controls, patients presenting FOS with right or bilateral EEG lateralization presented higher baseline functional connectivity, including parameters such as global efficiency, mean cluster coefficient and mean nodal strength in the delta and beta frequency bands. In patients presenting FOS with right or bilateral EEG lateralization, the global efficiency of functional connectivity parameters in the delta and theta frequency bands was significantly lower at 12 months after KDT treatment than before KDT. Those patients also presented a significantly lower mean clustering coefficient and mean nodal strength in the theta frequency band at 12 months after KDT treatment. Changes in brain functional connectivity were positively correlated with social problems, attention, and behavioral scores based on CBCL assessments completed by parents. This study provides evidence that KDT might be beneficial in the treatment of patients with FOS. Graph theoretic analysis revealed that the observed effects were related to decreased functional connectivity, particularly in terms of global efficiency. Our findings related to brain connectivity revealed lateralization to the right (non-dominant) hemisphere; however, we were unable to define the underlying mechanism. Our data revealed that in addition to altered brain connectivity, KDT improved the patient's behavior and emotional state.
Collapse
Affiliation(s)
- Tzu-Yun Hsieh
- Division of Pediatric Neurology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pi-Lien Hung
- Division of Pediatric Neurology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (P.-L.H.); (S.-J.P.); Tel.: +886-7-731-7123 (ext. 8707) (P.-L.H.); +886-2-6638-2736 (ext. 1993) (S.-J.P.); Fax: +886-7-731-8762 (P.-L.H.); +886-2-2732-1956 (S.-J.P.)
| | - Ting-Yu Su
- Division of Pediatric Neurology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 10675, Taiwan
- Correspondence: (P.-L.H.); (S.-J.P.); Tel.: +886-7-731-7123 (ext. 8707) (P.-L.H.); +886-2-6638-2736 (ext. 1993) (S.-J.P.); Fax: +886-7-731-8762 (P.-L.H.); +886-2-2732-1956 (S.-J.P.)
| |
Collapse
|
10
|
Danan A, Westman EC, Saslow LR, Ede G. The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Front Psychiatry 2022; 13:951376. [PMID: 35873236 PMCID: PMC9299263 DOI: 10.3389/fpsyt.2022.951376] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND HYPOTHESIS The robust evidence base supporting the therapeutic benefit of ketogenic diets in epilepsy and other neurological conditions suggests this same metabolic approach may also benefit psychiatric conditions. STUDY DESIGN In this retrospective analysis of clinical care, 31 adults with severe, persistent mental illness (major depressive disorder, bipolar disorder, and schizoaffective disorder) whose symptoms were poorly controlled despite intensive psychiatric management were admitted to a psychiatric hospital and placed on a ketogenic diet restricted to a maximum of 20 grams of carbohydrate per day as an adjunct to conventional inpatient care. The duration of the intervention ranged from 6 to 248 days. STUDY RESULTS Three patients were unable to adhere to the diet for >14 days and were excluded from the final analysis. Among included participants, means and standard deviations (SDs) improved for the Hamilton Depression Rating Scale scores from 25.4 (6.3) to 7.7 (4.2), P < 0.001 and the Montgomery-Åsberg Depression Rating Scale from 29.6 (7.8) to 10.1 (6.5), P < 0.001. Among the 10 patients with schizoaffective illness, mean (SD) of the Positive and Negative Syndrome Scale (PANSS) scores improved from 91.4 (15.3) to 49.3 (6.9), P < 0.001. Significant improvements were also observed in metabolic health measures including weight, blood pressure, blood glucose, and triglycerides. CONCLUSIONS The administration of a ketogenic diet in this semi-controlled setting to patients with treatment-refractory mental illness was feasible, well-tolerated, and associated with significant and substantial improvements in depression and psychosis symptoms and multiple markers of metabolic health.
Collapse
Affiliation(s)
- Albert Danan
- Rangueil Faculty of Medicine, University of Toulouse, Toulouse, France
| | - Eric C Westman
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura R Saslow
- Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Georgia Ede
- Independent Researcher, Northampton, MA, United States
| |
Collapse
|
11
|
Igwe O, Sone M, Matveychuk D, Baker GB, Dursun SM. A review of effects of calorie restriction and fasting with potential relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110206. [PMID: 33316333 DOI: 10.1016/j.pnpbp.2020.110206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.
Collapse
Affiliation(s)
- Ogechi Igwe
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mari Sone
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
A ketogenic diet affects brain volume and metabolome in juvenile mice. Neuroimage 2021; 244:118542. [PMID: 34530134 DOI: 10.1016/j.neuroimage.2021.118542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ketogenic diet (KD) is a high-fat and low-carbohydrate therapy for medically intractable epilepsy, and its applications in other neurological conditions, including those occurring in children, have been increasingly tested. However, how KD affects childhood neurodevelopment, a highly sensitive and plastic process, is not clear. In this study, we explored structural, metabolic, and functional consequences of a brief treatment of a strict KD (weight ratio of fat to carbohydrate plus protein is approximately 6.3:1) in naive juvenile mice of different inbred strains, using a multidisciplinary approach. Systemic measurements using magnetic resonance imaging revealed that unexpectedly, the volumes of most brain structures in KD-fed mice were about 90% of those in mice of the same strain but fed a standard diet. The reductions in volumes were nonselective, including different regions throughout the brain, the ventricles, and the white matter. The relative volumes of different brain structures were unaltered. Additionally, as KD is a metabolism-based treatment, we performed untargeted metabolomic profiling to explore potential means by which KD affected brain growth and to identify metabolic changes in the brain. We found that brain metabolomic profile was significantly impacted by KD, through both distinct and common pathways in different mouse strains. To explore whether the volumetric and metabolic changes induced by this KD treatment were associated with functional consequences, we recorded spontaneous EEG to measure brain network activity. Results demonstrated limited alterations in EEG patterns in KD-fed animals. In addition, we observed that cortical levels of brain-derived neurotrophic factor (BDNF), a critical molecule in neurodevelopment, did not change in KD-fed animals. Together, these findings indicate that a strict KD could affect volumetric development and metabolic profile of the brain in inbred juvenile mice, while global network activities and BDNF signaling in the brain were mostly preserved. Whether the volumetric and metabolic changes are related to any core functional consequences during neurodevelopment and whether they are also observed in humans need to be further investigated. In addition, our results indicate that certain outcomes of KD are specific to the individual mouse strains tested, suggesting that the physiological profiles of individuals may need to be examined to maximize the clinical benefit of KD.
Collapse
|
13
|
Kapoor D, Garg D, Sharma S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann Indian Acad Neurol 2021; 24:470-480. [PMID: 34728937 PMCID: PMC8513984 DOI: 10.4103/aian.aian_20_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023] Open
Abstract
Ketogenic dietary therapies (KDTs) have been in use for refractory paediatric epilepsy for a century now. Over time, KDTs themselves have undergone various modifications to improve tolerability and clinical feasibility, including the Modified Atkins diet (MAD), medium chain triglyceride (MCT) diet and the low glycaemic index treatment (LGIT). Animal and observational studies indicate numerous benefits of KDTs in paediatric neurological conditions apart from their evident benefits in childhood intractable epilepsy, including neurodevelopmental disorders such as autism spectrum disorder, rarer neurogenetic conditions such as Rett syndrome, Fragile X syndrome and Kabuki syndrome, neurodegenerative conditions such as Pelizaeus-Merzbacher disease, and other conditions such as stroke and migraine. A large proportion of the evidence is derived from individual case reports, case series and some small clinical trials, emphasising the vast scope for research in this avenue. The term 'neuroketotherapeutics' has been coined recently to encompass the rapid strides in this field. In the 100th year of its use for paediatric epilepsy, this review covers the role of the KDTs in non-epilepsy neurological conditions among children.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
14
|
The ketogenic diet: a co-therapy in the treatment of mood disorders and obesity - a case report. CURRENT PROBLEMS OF PSYCHIATRY 2021. [DOI: 10.2478/cpp-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: There has been a growing interest in the ketogenic diet (KD) due to its suggested therapeutic potential to support numerous chronic diseases. KD is characterized by high amounts of fats and a reduced amount of carbohydrates and protein intake. During following the nutrition protocol, ketones are synthesised, which are the primary source of energy. The elevated concentration of ketones in blood serum inhibits hunger, what leads to reduced body weight. Some authors suggest KD has antidepressant potential and could stabilise mood by affecting neurotransmitters homeostasis in the central nervous system.
Material and methods: The aim of the study was to assess the effect of KD on body weight reduction and improvement of mood in the patients with mood disorder diagnosis. To interpret the results of nutritional intervention, the laboratory parameters and structuralised scales and questionnaires were used.
Results: After following 4-week therapy, the reduction of body weight, correction of some laboratory measurements and reduction in mood symptoms were noticed.
Conclusions: The ketogenic diet affects the anthropometric measurements. However, a variety of simultaneous therapeutic approaches makes impossible determination of the effect on depressive symptoms.
Collapse
|
15
|
Low Carb and Ketogenic Diets Increase Quality of Life, Physical Performance, Body Composition, and Metabolic Health of Women with Breast Cancer. Nutrients 2021; 13:nu13031029. [PMID: 33806775 PMCID: PMC8004887 DOI: 10.3390/nu13031029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) patients often ask for a healthy diet. Here, we investigated a healthy standard diet (SD), a low carb diet (LCD), and a ketogenic diet (KD) for BC patients during the rehabilitation phase. KOLIBRI was an open-label non-randomized one-site nutritional intervention trial, combining inpatient and outpatient phases for 20 weeks. Female BC patients (n = 152; mean age 51.7 years) could select their diet. Data collected were: Quality of life (QoL), spiroergometry, body composition, and blood parameters. In total 30, 92, and 30 patients started the KD, LCD, and SD, respectively. Of those, 20, 76, and 25 completed the final examination. Patients rated all diets as feasible in daily life. All groups enhanced QoL, body composition, and physical performance. LCD participants showed the most impressive improvement in QoL aspects. KD participants finished with a very good physical performance and muscle/fat ratio. Despite increased cholesterol levels, KD patients had the best triglyceride/high-density lipoprotein (HDL) ratio and homeostatic model assessment of insulin resistance index (HOMA-IR). Most metabolic parameters significantly improved in the LCD group. SD participants ended with remarkably low cholesterol levels but did not improve triglyceride/HDL or HOMA-IR. In conclusion, both well-defined KDs and LCDs are safe and beneficial for BC patients and can be recommended during the rehabilitation phase.
Collapse
|
16
|
Operto FF, Matricardi S, Pastorino GMG, Verrotti A, Coppola G. The Ketogenic Diet for the Treatment of Mood Disorders in Comorbidity With Epilepsy in Children and Adolescents. Front Pharmacol 2020; 11:578396. [PMID: 33381032 PMCID: PMC7768824 DOI: 10.3389/fphar.2020.578396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
The ketogenic diet, used for over a century as an alternative therapy for the control of drug-resistant seizures in both children and adults, has recently drawn increasing interest in various neurological or psychiatric disorders other than epilepsy. In particular, there are a few preliminary studies in mood and neurodevelopmental disorders such as anxiety, depression and autism spectrum disorders. Mood disorders in comorbidity with epilepsy are commonly seen in adolescents and young adults both at the onset and during the course of the epileptic disorder. The rationale for the use of the ketogenic diet is based on the potential mood stabilizing effects through level modifications of metabolites such as dopamine and serotonin and the regulation of GABA/glutamatergic neurotransmission, mitochondrial function and oxidative stress. In this review, epilepsies with a higher risk of mood disorders in adolescents will be considered. A brief overview of the various types of ketogenic diet that can currently be offered to young patients in order to improve palatability and compliance with the diet, is also included. The efficacy and tolerability of the ketogenic diet options for the treatment of mood disorders, with or without drug therapy including mood stabilizers and antidepressant drugs, are as well discussed.
Collapse
Affiliation(s)
- Francesca Felicia Operto
- Department of Medicine, Surgery, and Odontoiatry, Child and Adolescent Neuropsychiatry, University of Salerno, Salerno, Italy
| | - Sara Matricardi
- Department of Child Neuropsychiatry, Children's Hospital "G. Salesi," Ospedali Riuniti Ancona, Ancona, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery, and Odontoiatry, Child and Adolescent Neuropsychiatry, University of Salerno, Salerno, Italy
| | | | - Giangennaro Coppola
- Department of Medicine, Surgery, and Odontoiatry, Child and Adolescent Neuropsychiatry, University of Salerno, Salerno, Italy
| |
Collapse
|