1
|
Xie L, Zhuang Z, Guo B, Huang Y, Shi X, Huang Z, Xu Z, Chen Y, Cao Y, Zheng Y, Wu R, Ma S. Ketamine induced gut microbiota dysbiosis and barrier and hippocampal dysfunction in rats. iScience 2024; 27:111089. [PMID: 39493883 PMCID: PMC11530865 DOI: 10.1016/j.isci.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/02/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a pivotal role in drug addiction. However, the pathophysiological mechanism of MGBA in ketamine addiction remains elusive. The present study investigated the ketamine-induced gut microbiota disorders, intestinal barrier dysfunction, and the alterations in brain function, using a conditioned place preference (CPP) model of ketamine addiction in rats. Compared with the control group, ketamine induced decreased amplitude of low-frequency fluctuation (ALFF) values in the hippocampus, and pyknotic nuclei and concentrated cytoplasm in hippocampal neurons, as well as alterations in gut microbiota composition, shortened ileum villi, and thinner colonic mucosa. We also found that the abundance of gut microbiota exhibited correlations with CPP score, hippocampal ALFF value, length of ileum villi, and thickness of colonic mucosa. Our findings provide evidence for abnormal alterations in the MGBA of ketamine-addicted rats, which improves our understating of the mechanism of ketamine addiction and the potential for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zelin Zhuang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Baowen Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuehua Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiaoyan Shi
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zikai Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Ziquan Xu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yanbin Chen
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuyin Cao
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yanmin Zheng
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
2
|
Grodin EN, Burnette EM, Rodriguez C, Fulcher JA, Ray LA. The gut microbiome in alcohol use disorder and alcohol-associated liver disease: A systematic review of clinical studies. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1221-1242. [PMID: 38719790 DOI: 10.1111/acer.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
Evidence suggests that a relationship exists between the gut microbiome and the pathogenesis of alcohol use disorder (AUD) and alcohol-associated liver disease (AALD). This systematic review identified studies that investigated the gut microbiome in individuals with an AUD or an AALD. A search was conducted on October 27, 2022, in PubMed, Web of Science, and Embase databases. Fifty studies satisfied eligibility criteria. Most studies found evidence for gut dysbiosis in individuals with AUD and AALD. Microbiome intervention studies have mostly been conducted in AALD patients; fecal microbial transplant interventions show the most promise. Because most studies were conducted cross-sectionally, the causal relationship between the gut microbiome and alcohol use is unknown. Furthermore, almost all studies have been conducted in predominantly male populations, leaving critical questions regarding sex differences and generalizability of the findings. The study summaries and recommendations provided in this review seek to identify areas for further research and to highlight potential gut microbial interventions for treating AUD and AALD.
Collapse
Affiliation(s)
- Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Elizabeth M Burnette
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Crystal Rodriguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer A Fulcher
- Division of Infectious Diseases, David Gefen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
He L, Zhou JH, Li H, Zhang WL, Liu TQ, Jiang HF, Zhai RW, Zhang XJ. Characterization of Gut Microbiota in Rats and Rhesus Monkeys After Methamphetamine Self-administration. Mol Neurobiol 2024:10.1007/s12035-024-04318-x. [PMID: 38922485 DOI: 10.1007/s12035-024-04318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Methamphetamine (MA) is one of the most abused drugs globally, but the mechanism of its addiction remains unclear. Several animal studies have shown that the gut microbiota (GM) influences addictive behaviors, but the pattern of GM changes during addiction in animals of different species remains unclear. The aim of this study was to explore the association between dynamic changes in GM and MA self-administration acquisition among two classical mammals, rhesus monkeys (Macaca mulatta) and rats, MA self-administration models. Male Sprague-Dawley rats and male rhesus monkeys were subjected to classical MA self-administration training, and fecal samples were collected before and after MA self-administration training, respectively. 16S rRNA sequencing was used for GM analyses. We found that GM changes were more pronounced in rats than in rhesus monkeys, as evidenced by more GM taxa producing significant differences before and after MA self-administration training in rats than in monkeys. We also found that the expression of the genus Clostridia_vadinBB60_group significantly decreased after MA self-administration training in both rats and rhesus monkeys. Lactobacillus changes were significantly negatively correlated with total MA uptake in rats (Pearson R = - 0.666, p = 0.035; Spearman R = - 0.721, p = 0.023), whereas its change was also highly negatively correlated with total MA uptake in rhesus monkeys (Pearson R = - 0.882, p = 0.118; Spearman R = - 1.000, p = 0.083), although this was not significant. These findings suggest that MA causes significant alterations in GM in both rhesus monkeys and rats and that the genus Lactobacillus might be a common therapeutic target for MA uptake prevention across the species.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jia-Hui Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Li
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wen-Lei Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tie-Qiao Liu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hai-Feng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xiao-Jie Zhang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
5
|
Zaparte A, Dore E, White S, Paliarin F, Gabriel C, Copenhaver K, Basavanhalli S, Garcia E, Vaddavalli R, Luo M, Taylor CM, Welsh DA, Maiya R. Standard rodent diets differentially impact alcohol consumption, preference, and gut microbiome diversity. Front Neurosci 2024; 18:1383181. [PMID: 38803684 PMCID: PMC11129685 DOI: 10.3389/fnins.2024.1383181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Alcohol use disorder (AUD) is a complex and widespread disease with limited pharmacotherapies. Preclinical animal models of AUD use a variety of voluntary alcohol consumption procedures to recapitulate different phases of AUD, including binge alcohol consumption and dependence. However, voluntary alcohol consumption in mice is widely variable, making it difficult to reproduce results across labs. Accumulating evidence indicates that different brands of commercially available rodent chow can profoundly influence alcohol intake. In this study, we investigated the effects of three commercially available and widely used rodent diet formulations on alcohol consumption and preference in C57BL/6 J mice using the 24 h intermittent access procedure. The three brands of chow tested were LabDiet 5,001 (LD5001), LabDiet 5,053 (LD5053), and Teklad 2019S (TL2019S) from two companies (Research Diets and Envigo, respectively). Mice fed LD5001 and LD5053 displayed higher levels of alcohol consumption and preference compared to mice fed TL2019S. We also found that alcohol consumption and preference could be rapidly switched by changing the diet 48 h prior to alcohol administration. Sucrose, saccharin, and quinine preferences were not altered, suggesting that the diets did not alter sweet and bitter taste perception. We also found that mice fed LD5001 displayed increased quinine-resistant alcohol intake compared to mice fed TL2019S, suggesting that diets could influence the development of compulsive behaviors such as alcohol consumption. We profiled the gut microbiome of water- and alcohol-drinking mice that were maintained on different diets and found significant differences in bacterial alpha- and beta-diversities, which could impact the gut-brain axis signaling and alcohol consumption.
Collapse
Affiliation(s)
- Aline Zaparte
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Evan Dore
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Selby White
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Cameron Gabriel
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Katherine Copenhaver
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Samhita Basavanhalli
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Emily Garcia
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Rishith Vaddavalli
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - David Allen Welsh
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|
6
|
Warren A, Nyavor Y, Beguelin A, Frame LA. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: a narrative review. Front Immunol 2024; 15:1365871. [PMID: 38756771 PMCID: PMC11096445 DOI: 10.3389/fimmu.2024.1365871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Aaron Beguelin
- The Department of Biotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
7
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
8
|
Zaparte A, Dore E, White S, Paliarin F, Gabriel C, Copenhaver K, Basavanhalli S, Garcia E, Vaddavalli R, Luo M, Taylor CM, Welsh D, Maiya R. Standard rodent diets differentially impact alcohol consumption and preference and gut microbiome diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579237. [PMID: 38370762 PMCID: PMC10871281 DOI: 10.1101/2024.02.06.579237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Alcohol Use Disorder (AUD) is a complex and widespread disease with limited pharmacotherapies. Preclinical animal models of AUD use a variety of voluntary alcohol consumption procedures to recapitulate different phases of AUD including binge alcohol consumption and dependence. However, voluntary alcohol consumption in mice is widely variable rendering it difficult to reproduce results across labs. Accumulating evidence indicates that different brands of commercially available rodent chow can profoundly influence alcohol intake. In this study, we investigated the effects of three commercially available and widely used rodent diet formulations on alcohol consumption and preference in C57BL/6J mice using the 24h intermittent access procedure. The three brands of chow tested were LabDiet 5001 (LD 5001), LabDiet 5053 (LD 5053), and Teklad 2019S (TL2019S) from two companies (Research Diets and Envigo respectively). Mice fed LD5001 displayed the highest levels of alcohol consumption and preference followed by LD5053 and TL2019S. We also found that alcohol consumption and preference could be rapidly switched by changing the diet 48h prior to alcohol administration. Sucrose, saccharin, and quinine preference were not altered suggesting that the diets did not alter taste perception. We also found that mice fed LD5001 displayed increased quinine-resistant alcohol intake compared to mice fed TL2019S, suggesting that diets could influence the development of "compulsive" like alcohol consumption. We profiled the gut microbiome of water and alcohol drinking mice that were maintained on different diets and found significant differences in bacterial alpha and beta diversity, which could impact gut-brain axis signaling and alcohol consumption.
Collapse
Affiliation(s)
- Aline Zaparte
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - Evan Dore
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Selby White
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Cameron Gabriel
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Katherine Copenhaver
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Samhita Basavanhalli
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Emily Garcia
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Rishith Vaddavalli
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| | - Meng Luo
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - Christopher M Taylor
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - David Welsh
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
9
|
Hoisington AJ, Stearns-Yoder KA, Stamper CE, Holliday R, Brostow DP, Penzenik ME, Forster JE, Postolache TT, Lowry CA, Brenner LA. Association of homelessness and diet on the gut microbiome: a United States-Veteran Microbiome Project (US-VMP) study. mSystems 2024; 9:e0102123. [PMID: 38132705 PMCID: PMC10804991 DOI: 10.1128/msystems.01021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Military veterans account for 8% of homeless individuals living in the United States. To highlight associations between history of homelessness and the gut microbiome, we compared the gut microbiome of veterans who reported having a previous experience of homelessness to those from individuals who reported never having experienced a period of homelessness. Moreover, we examined the impact of the cumulative exposure of prior and current homelessness to understand possible associations between these experiences and the gut microbiome. Microbiome samples underwent genomic sequencing and were analyzed based on alpha diversity, beta diversity, and taxonomic differences. Additionally, demographic information, dietary data, and mental health history were collected. A lifetime history of homelessness was found to be associated with alcohol use disorder, substance use disorder, and healthy eating index compared to those without such a history. In terms of differences in gut microbiota, beta diversity was significantly different between veterans who had experienced homelessness and veterans who had never been homeless (P = 0.047, weighted UniFrac), while alpha diversity was similar. The microbial community differences were, in part, driven by a lower relative abundance of Akkermansia in veterans who had experienced homelessness (mean; range [in percentages], 1.07; 0-33.9) compared to veterans who had never been homeless (2.02; 0-36.8) (P = 0.014, ancom-bc2). Additional research is required to facilitate understanding regarding the complex associations between homelessness, the gut microbiome, and mental and physical health conditions, with a focus on increasing understanding regarding the longitudinal impact of housing instability throughout the lifespan.IMPORTANCEAlthough there are known stressors related to homelessness as well as chronic health conditions experienced by those without stable housing, there has been limited work evaluating the associations between microbial community composition and homelessness. We analyzed, for the first time, bacterial gut microbiome associations among those with experiences of homelessness on alpha diversity, beta diversity, and taxonomic differences. Additionally, we characterized the influences of diet, demographic characteristics, military service history, and mental health conditions on the microbiome of veterans with and without any lifetime history of homelessness. Future longitudinal research to evaluate the complex relationships between homelessness, the gut microbiome, and mental health outcomes is recommended. Ultimately, differences in the gut microbiome of individuals experiencing and not experiencing homelessness could assist in identification of treatment targets to improve health outcomes.
Collapse
Affiliation(s)
- Andrew J. Hoisington
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA
| | - Kelly A. Stearns-Yoder
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher E. Stamper
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Holliday
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana P. Brostow
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molly E. Penzenik
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeri E. Forster
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Teodor T. Postolache
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Veterans Affairs, Veterans Integrated Service Networks (VISN) 5 MIRECC, Baltimore, Maryland, USA
| | - Christopher A. Lowry
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lisa A. Brenner
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
11
|
Kesh K, Tao J, Ghosh N, Jalodia R, Singh S, Dawra R, Roy S. Prescription opioids induced microbial dysbiosis worsens severity of chronic pancreatitis and drives pain hypersensitivity. Gut Microbes 2024; 16:2310291. [PMID: 38329115 PMCID: PMC10857465 DOI: 10.1080/19490976.2024.2310291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Opioids, such as morphine and oxycodone, are widely used for pain management associated with chronic pancreatitis (CP); however, their impact on the progression and pain sensitivity of CP has never been evaluated. This report investigates the impact of opioid use on the severity of CP, pain sensitivity, and the gut microbiome. C57BL/6 mice were divided into control, CP, CP with morphine/oxycodone, and either morphine or oxycodone alone groups. CP was induced by administration of caerulein (50ug/kg/h, i.p. hourly x7, twice a week for 10 weeks). The mouse-to-pancreas weight ratio, histology, and Sirius red staining were performed to measure CP severity. Tail flick and paw pressure assays were used to measure thermal and mechanical pain. DNA was extracted from the fecal samples and subjected to whole-genome shotgun sequencing. Germ-free mice were used to validate the role of gut microbiome in sensitizing acute pancreatic inflammation. Opioid treatment exacerbates CP by increasing pancreatic necrosis, fibrosis, and immune-cell infiltration. Opioid-treated CP mice exhibited enhanced pain hypersensitivity and showed distinct clustering of the gut microbiome compared to untreated CP mice, with severely compromised gut barrier integrity. Fecal microbiota transplantation (FMT) from opioid-treated CP mice into germ-free mice resulted in pancreatic inflammation in response to a suboptimal caerulein dose. Together, these analyses revealed that opioids worsen the severity of CP and induce significant alterations in pain sensitivity and the gut microbiome in a caerulein CP mouse model. Microbial dysbiosis plays an important role in sensitizing the host to pancreatic inflammation.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nillu Ghosh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
12
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Ray S, Sil S, Kannan M, Periyasamy P, Buch S. Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11092. [PMID: 38389809 PMCID: PMC10880759 DOI: 10.3389/adar.2023.11092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2024]
Abstract
Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
14
|
Dickerson F, Dilmore AH, Godoy-Vitorino F, Nguyen TT, Paulus M, Pinto-Tomas AA, Moya-Roman C, Zuniga-Chaves I, Severance EG, Jeste DV. The Microbiome and Mental Health Across the Lifespan. Curr Top Behav Neurosci 2023; 61:119-140. [PMID: 35947353 DOI: 10.1007/7854_2022_384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The combined genetic material of the microorganisms in the human body, known as the microbiome, is being increasingly recognized as a major determinant of human health and disease. Although located predominantly on mucosal surfaces, these microorganisms have profound effects on brain functioning through the gut-brain axis. METHOD The content of the chapter is based on a study group session at the annual meeting of the American College of Neuropsychopharmacology (ACNP). The objective was to discuss the emerging relationship between the human microbiome and mental health as relevant to ACNP's interests in developing and evaluating novel neuropsychiatric treatment strategies. The focus is on specific brain disorders, such as schizophrenia, substance use, and Alzheimer's disease, as well as on broader clinical issues such as suicidality, loneliness and wisdom in old age, and longevity. RESULTS Studies of schizophrenia indicate that the microbiome of individuals with this disorder differs from that of non-psychiatric comparison groups in terms of diversity and composition. Differences are also found in microbial metabolic pathways. An early study in substance use disorders found that individuals with this disorder have lower levels of beta diversity in their oral microbiome than a comparison group. This measure, along with others, was used to distinguish individuals with substance use disorders from controls. In terms of suicidality, there is preliminary evidence that persons who have made a suicide attempt differ from psychiatric and non-psychiatric comparison groups in measures of beta diversity. Exploratory studies in Alzheimer's disease indicate that gut microbes may contribute to disease pathogenesis by regulating innate immunity and neuroinflammation and thus influencing brain function. In another study looking at the microbiome in older adults, positive associations were found between wisdom and alpha diversity and negative associations with subjective loneliness. In other studies of older adults, here with a focus on longevity, individuals with healthy aging and unusually long lives had an abundance of specific microorganisms which distinguished them from other individuals. DISCUSSION Future studies would benefit from standardizing methods of sample collection, processing, and analysis. There is also a need for the standardized collection of relevant demographic and clinical data, including diet, medications, cigarette smoking, and other potentially confounding factors. While still in its infancy, research to date indicates a role for the microbiome in mental health disorders and conditions. Interventions are available which can modulate the microbiome and lead to clinical improvements. These include microbiome-altering medications as well as probiotic microorganisms capable of modulating the inflammation in the brain through the gut-brain axis. This research holds great promise in terms of developing new methods for the prevention and treatment of a range of human brain disorders.
Collapse
Affiliation(s)
- Faith Dickerson
- Sheppard Pratt, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Amanda Hazel Dilmore
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, USA
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | - Tanya T Nguyen
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | | | | | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, Microbial Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily G Severance
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dilip V Jeste
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| |
Collapse
|
15
|
Cuesta S, Burdisso P, Segev A, Kourrich S, Sperandio V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe 2022; 30:1615-1629.e5. [PMID: 36323315 PMCID: PMC9669251 DOI: 10.1016/j.chom.2022.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) and Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Rosario, Santa Fe, Argentina
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; The Center of Excellence in Research on Orphan Diseases - Foundation Courtois, Université du Québec à Montréal, Montréal, QC, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Tarantino G, Cataldi M, Citro V. Could Alcohol Abuse and Dependence on Junk Foods Inducing Obesity and/or Illicit Drug Use Represent Danger to Liver in Young People with Altered Psychological/Relational Spheres or Emotional Problems? Int J Mol Sci 2022; 23:ijms231810406. [PMID: 36142317 PMCID: PMC9499369 DOI: 10.3390/ijms231810406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recent data show that young people, mainly due to the pressure of some risk factors or due to disrupted interpersonal relationships, utilise greater reward value and display greater sensitivity to the reinforcing properties of “pleasurable stimuli”, specifically in those situations in which an enhanced dopamine release is present. Alcoholic beverages, foods rich in sugar and fat, and illicit drug use are pleasurable feelings associated with rewards. Research shows that there is a link between substance abuse and obesity in brain functioning. Still, alcohol excess is central in leading to obesity and obesity-related morbidities, such as hepatic steatosis, mainly when associated with illicit drug dependence and negative eating behaviours in young people. It is ascertained that long-term drinking causes mental damage, similarly to drug abuse, but also affects liver function. Indeed, beyond the pharmacokinetic interactions of alcohol with drugs, occurring in the liver due to the same metabolic enzymes, there are also pharmacodynamic interactions of both substances in the CNS. To complicate matters, an important noxious effect of junk foods consists of inducing obesity and obesity-related NAFLD. In this review, we focus on some key mechanisms underlying the impact of these addictions on the liver, as well as those on the CNS.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, 80131 Naples, Italy
- Correspondence:
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, “Federico II” University of Naples, 80138 Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy
| |
Collapse
|
17
|
Wang Q, Guo X, Yue Q, Zhu S, Guo L, Li G, Zhou Q, Xiang Y, Chen G, Yin W, Sun J. Exploring the role and mechanism of gut microbiota in methamphetamine addiction using antibiotic treatment followed by fecal microbiota transplantation. Anat Rec (Hoboken) 2022; 306:1149-1164. [PMID: 36054423 DOI: 10.1002/ar.25055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Recently, the role of the gut microbiota in the context of drug addiction has attracted the attention of researchers; however, the specific effects and underlying mechanisms require further exploration. To accomplish this, C57BL/6 mice were firstly treated with methamphetamine (MA). Conditioned place preference (CPP) behavior changes, gut permeability and function, microglial activation, and inflammatory cytokine expression were systematically analyzed in antibiotics-treated mice with microbiota depletion and in fecal microbiota transplantation mice with microbiota reconstitution. MA treatment altered microbiota composition and caused gut dysbiosis. Depletion of gut microbiota with antibiotics inhibited MA-induced CPP formation, and fecal microbiota transplantation reversed this inhibition. Mechanistic analyses indicated that antibiotic treatment decreased gut permeability and neuroinflammation, while fecal microbiota transplantation offset the impact of antibiotic treatment. Additionally, MA-induced microglial activation was suppressed by antibiotics but restored by microbiota transplantation, and this correlated well with the CPP score. Compared to antibiotic treatment, microbiota transplantation significantly increased 5-HT4 receptor expression in both the nucleus accumbens and the hippocampus. Furthermore, when fecal microbiota from healthy mice was transplanted into MA-treated mice, the CPP scores decreased. Our results provide a novel avenue for understanding MA addiction and suggest a potential future intervention strategy.
Collapse
Affiliation(s)
- Qiuting Wang
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Xiuwen Guo
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Qingwei Yue
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Shaowei Zhu
- Department of Neurology Qilu Hospital of Shandong University Jinan China
| | - Liying Guo
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Guibao Li
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Qidi Zhou
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Yunzhi Xiang
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Ganggang Chen
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Wei Yin
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| |
Collapse
|
18
|
Colon-Perez L, Montesinos J, Monsivais M. The Future of Neuroimaging and Gut-Brain Axis Research for Substance Use Disorders. Brain Res 2022; 1781:147835. [DOI: 10.1016/j.brainres.2022.147835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
|
19
|
Deng D, Su H, Song Y, Chen T, Sun Q, Jiang H, Zhao M. Altered Fecal Microbiota Correlated With Systemic Inflammation in Male Subjects With Methamphetamine Use Disorder. Front Cell Infect Microbiol 2021; 11:783917. [PMID: 34869080 PMCID: PMC8637621 DOI: 10.3389/fcimb.2021.783917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Methamphetamine use disorder (MUD) is a major public health problem worldwide with limited effective treatment options. Previous studies have reported methamphetamine-associated alterations in gut microbiota. A potential role of gut microbiota in regulating methamphetamine-induced brain dysfunction through interactions with the host immune system has been proposed, but evidence for this hypothesis is limited. The present study aimed to investigate the alterations in the fecal microbiota and explore its relationship with systemic inflammation in MUD. Fecal samples were obtained from 26 male subjects with MUD and 17 sex- and age- matched healthy controls. Fecal microbial profiles were analyzed by 16S rRNA sequencing. Plasma inflammatory markers were measured using enzyme-linked immunosorbent assay. Associations between fecal microbiota, systemic inflammatory markers and clinical characteristics were examined by Spearman partial correlation analysis while controlling for possible confounders. Compared with healthy controls, individuals with MUD showed no difference in fecal microbial diversity, but exhibited differences in the relative abundance of several microbial taxa. At the genus level, a higher abundance of Collinsella, Odoribacter and Megasphaera and lower levels of Faecalibacterium, Blautia, Dorea and Streptococcus were detected in subjects with MUD. More importantly, altered fecal microbiota was found to be correlated with plasma levels of CRP, IL-2, IL-6 and IL-10. The order Lactobacillales, exhibiting lower abundance in participants with MUD, was positively related to the duration of methamphetamine abstinence and the plasma level of anti-inflammatory cytokine IL-10. This study is the first to provide evidence for a link between altered fecal microbiota and systemic inflammation in MUD. Further elucidation of interactions between gut microbiota and the host immune system may be beneficial for the development of novel therapeutic approaches for MUD.
Collapse
Affiliation(s)
- Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehong Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Ayoub SM, Piscitelli F, Silvestri C, Limebeer CL, Rock EM, Smoum R, Farag M, de Almeida H, Sullivan MT, Lacroix S, Boubertakh B, Nallabelli N, Lichtman AH, Leri F, Mechoulam R, Di Marzo V, Parker LA. Spontaneous and Naloxone-Precipitated Withdrawal Behaviors From Chronic Opiates are Accompanied by Changes in N-Oleoylglycine and N-Oleoylalanine Levels in the Brain and Ameliorated by Treatment With These Mediators. Front Pharmacol 2021; 12:706703. [PMID: 34603019 PMCID: PMC8479102 DOI: 10.3389/fphar.2021.706703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: The endocannabinoidome mediators, N-Oleoylglycine (OlGly) and N-Oleoylalanine (OlAla), have been shown to reduce acute naloxone-precipitated morphine withdrawal affective and somatic responses. Objectives: To determine the role and mechanism of action of OlGly and OlAla in withdrawal responses from chronic exposure to opiates in male Sprague-Dawley rats. Methods: Opiate withdrawal was produced: 1) spontaneously 24 h following chronic exposure to escalating doses of morphine over 14 days (Experiments 1 and 2) and steady-state exposure to heroin by minipumps for 12 days (Experiment 3), 2) by naloxone injection during steady-state heroin exposure (Experiment 4), 3) by naloxone injection during operant heroin self-administration (Experiment 5). Results: In Experiment 1, spontaneous morphine withdrawal produced somatic withdrawal reactions. The behavioral withdrawal reactions were accompanied by suppressed endogenous levels of OlGly in the nucleus accumbens, amygdala, and prefrontal cortex, N-Arachidonylglycerol and OlAla in the amygdala, 2-arachidonoylglycerol in the nucleus accumbens, amygdala and interoceptive insular cortex, and by changes in colonic microbiota composition. In Experiment 2, treatment with OlAla, but not OlGly, reduced spontaneous morphine withdrawal responses. In Experiment 3, OlAla attenuated spontaneous steady-state heroin withdrawal responses at both 5 and 20 mg/kg; OlGly only reduced withdrawal responses at the higher dose of 20 mg/kg. Experiment 4 demonstrated that naloxone-precipitated heroin withdrawal from steady-state exposure to heroin (7 mg/kg/day for 12 days) is accompanied by tissue-specific changes in brain or gut endocannabinoidome mediator, including OlGly and OlAla, levels and colonic microbiota composition, and that OlAla (5 mg/kg) attenuated behavioural withdrawal reactions, while also reversing some of the changes in brain and gut endocannabinoidome and gut microbiota induced by naloxone. Experiment 5 demonstrated that although OlAla (5 mg/kg) did not interfere with operant heroin self-administration on its own, it blocked naloxone-precipitated elevation of heroin self-administration behavior. Conclusion: These results suggest that OlAla and OlGly are two endogenous mediators whose brain concentrations respond to chronic opiate treatment and withdrawal concomitantly with changes in colon microbiota composition, and that OlAla may be more effective than OlGly in suppressing chronic opiate withdrawal responses.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group Consiglio Nazionale delle Richerche, Pozzuli, Italy
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Reem Smoum
- Institute of Drug Research, School of Pharmacy, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathew Farag
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Hannah de Almeida
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Sébastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Nayudu Nallabelli
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus Virginia Commonwealth University, Richmond, VA, United States
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, School of Pharmacy, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group Consiglio Nazionale delle Richerche, Pozzuli, Italy.,Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada.,Faculty of Agriculture and Food Science, INAF, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome/Endocannabinoidome Axis in Metabolic Health, Québec City, QC, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Misiak B, Samochowiec J, Marlicz W, Łoniewski I. Gut microbiota in psychiatric disorders: Better understanding or more complexity to be resolved? Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110302. [PMID: 33713733 DOI: 10.1016/j.pnpbp.2021.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24 Street, 71-460 Szczecin, Poland.
| |
Collapse
|
22
|
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L, Rodríguez de Fonseca F, Giné E, López-Moreno JA. The Immune System through the Lens of Alcohol Intake and Gut Microbiota. Int J Mol Sci 2021; 22:ijms22147485. [PMID: 34299105 PMCID: PMC8303153 DOI: 10.3390/ijms22147485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Victor Echeverry-Alzate
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
- Universidad Nebrija, Campus Madrid-Princesa, 28015 Madrid, Spain
| | - Kora-Mareen Bühler
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Pedro Durán-González
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Jose Ángel Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lucía Segovia-Rodríguez
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Jose Antonio López-Moreno
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Correspondence:
| |
Collapse
|
23
|
Lucerne KE, Osman A, Meckel KR, Kiraly DD. Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology 2021; 192:108598. [PMID: 33965398 PMCID: PMC8220934 DOI: 10.1016/j.neuropharm.2021.108598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Epidemiology and clinical research indicate that only a subset of people who are exposed to drugs of abuse will go on to develop a substance use disorder. Numerous factors impact individual susceptibility to developing a substance use disorder, including intrinsic biological factors, environmental factors, and interpersonal/social factors. Given the extensive morbidity and mortality that is wrought as a consequence of substance use disorders, a substantial body of research has focused on understanding the risk factors that mediate the shift from initial drug use to pathological drug use. Understanding these risk factors provides a clear path for the development of risk mitigation strategies to help reduce the burden of substance use disorders in the population. Here we will review the rapidly growing body of literature that examines the importance of interactions between the peripheral immune system, the gut microbiome, and the central nervous system (CNS) in mediating the transition to pathological drug use. While these systems had long been viewed as distinct, there is growing evidence that there is bidirectional communication between both the immune system and the gut microbiome that drive changes in neural and behavioral plasticity relevant to substance use disorders. Further, both of these systems are highly sensitive to environmental perturbations and are implicated in numerous neuropsychiatric conditions. While the field of study examining these interactions in substance use disorders is in its relative infancy, clarifying the relationship between gut-immune-brain signaling and substance use disorders has potential to improve our understanding of individual propensity to developing addiction and yield important insight into potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|