1
|
Tcyrulnikov S, Hubbell AK, Pedro D, Reyes GP, Monfette S, Weix DJ, Hansen EC. Computationally Guided Ligand Discovery from Compound Libraries and Discovery of a New Class of Ligands for Ni-Catalyzed Cross-Electrophile Coupling of Challenging Quinoline Halides. J Am Chem Soc 2024; 146:6947-6954. [PMID: 38427582 DOI: 10.1021/jacs.3c14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Although screening technology has heavily impacted the fields of metal catalysis and drug discovery, its application to the discovery of new catalyst classes has been limited. The diversity of on- and off-cycle pathways, combined with incomplete mechanistic understanding, means that screens of potential new ligands have thus far been guided by intuitive analysis of the metal binding potential. This has resulted in the discovery of new classes of ligands, but the low hit rates have limited the use of this strategy because large screens require considerable cost and effort. Here, we demonstrate a method to identify promising screening directions via simple and scalable computational and linear regression tools that leads to a substantial improvement in hit rate, enabling the use of smaller screens to find new ligands. The application of this approach to a particular example of Ni-catalyzed cross-electrophile coupling of aryl halides with alkyl halides revealed a previously overlooked trend: reactions with more electron-poor amidine ligands result in a higher yield. Focused screens utilizing this trend were more successful than serendipity-based screening and led to the discovery of two new types of ligands, pyridyl oxadiazoles and pyridyl oximes. These ligands are especially effective for couplings of bromo- and chloroquinolines and isoquinolines, where they are now the state of the art. The simplicity of these models with parameters derived from metal-free ligand structures should make this approach scalable and widely accessible.
Collapse
Affiliation(s)
- Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dylan Pedro
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Wang D, Bai L, Wang W, Li S, Yan W. Functional groups effect on the toxicity of modified ZIF-90 to Photobacterium phosphoreum. CHEMOSPHERE 2024; 351:141188. [PMID: 38215832 DOI: 10.1016/j.chemosphere.2024.141188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Zeolitic imidazolate framework (ZIF) is of wide interest in biomedical applications due to its extraordinary properties such as high storage capacity, functionality and favorable biocompatibility. However, more comprehensive safety assessments are still essential before ZIF is broadly used in biomedicine. Using the characteristic that aldehyde groups on the surface of ZIF-90 can be modified with other functional groups, a series of ZIF-90s modified with different functional groups (oxime group, carboxyl group, amino group and sulfhydryl group) were synthesized to investigate the effect of functionalization on the toxicity of ZIF-90. ZIF-90 series showed concentration-dependent toxic effects on Photobacterium phosphoreum T3 and the functionalized ZIF-90s are more toxic than pristine ZIF-90, with the ZIF-90 modified with amino group (ZIF-90-NH2) showing the strongest toxicity (IC50 = 23.06 mg/L). Based on the results of the cellular assay and stability exploration, we concluded that corresponding imidazole-ligand release and the property of positively charged are responsible for the elevated toxicity of ZIF-90-NH2. Cell membrane damage, oxidative damage and luminescence damage are the main contributors to the toxic effects of ZIF-90 series. This study explored the effect of surface functionalization on the toxicity of ZIF and proposed mechanistic clues for the safety application of ZIF.
Collapse
Affiliation(s)
- Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenlong Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Li
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Karipcin F, Öztoprak UT, Dede B, Şahin S, Özmen İ. Synthesis and DFT calculations of metal(II) oxime complexes bearing cysteine as coligand and investigation of their biological evolutions in vitro and in silico. J Biomol Struct Dyn 2023:1-20. [PMID: 37968962 DOI: 10.1080/07391102.2023.2281638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
New complexes with the formula of [ML(Cys)(H2O)2] were obtained as a result of the reaction between the oxime ligand [HL: 4-(4-bromophenylaminoisonitrosoacetyl)biphenyl], cysteine (Cys), and the metal(II) salts (Mn, Ni, Co, Zn, Cu). The newly synthesized compounds were characterized using conventional techniques such as molar conductance, magnetic measurements, elemental analysis, infrared spectroscopy, and thermal analysis (TGA/DTA). Based on the conductivity measurements in DMF, it was determined that the complexes were non-electrolytes. The TGA/DTA analysis was performed to examine the thermal stability and degradation behavior of all samples, and results demonstrated that metal oxides or sulfides formed as a result of the decompositions. In conjunction with other data obtained, the elemental analysis confirmed the octahedral coordination of the complexes with deprotonated oxime (O, O-donor) and amino acid (N, S-donor) ligands and two coordinated waters. The compounds' optimized geometries, molecular electrostatic potential diagrams, and frontier molecular orbitals were computed at the DFT/B3LYP level using the 6-311 G(d,p) and LANL2DZ basis sets. The antibacterial and DNA cleavage activities of all synthesized compounds were also screened, and molecular docking simulations were performed. According to the results of molecular docking studies conducted with three different proteins, the best interaction was found to be between HL-1HNJ with a binding energy of -9.5 kcal/mol. The stability of the HL-1HNJ complex was also verified by a molecular dynamics simulation performed for 50 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatma Karipcin
- Department of Chemistry, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | | | - Bülent Dede
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - Selmihan Şahin
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - İsmail Özmen
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
4
|
Pyridine aldoxime ligation to iridium(III) centre: An innocent ancillary ligand in a series of organometallic complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Rentero C, Damián J, Medel A, Fernández-Millán M, Rusconi Y, Talarico G, Cuenca T, Sessini V, Mosquera MEG. Ring-Opening Polymerization of L-Lactide Catalyzed by Potassium-Based Complexes: Mechanistic Studies. Polymers (Basel) 2022; 14:polym14152982. [PMID: 35893946 PMCID: PMC9329769 DOI: 10.3390/polym14152982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Two non-toxic potassium compounds, 1 and 2, with a commercial oximate ligand have been prepared and fully spectroscopically characterized. Their activity as catalysts for the ring-opening polymerization (ROP) process of LLA has been studied, showing that they are extremely active and able to polymerize the monomer in a few minutes. For derivative 2, the presence of a crown ether in the potassium coordination sphere affects the nuclearity of the compound and consequently its solubility, with both aspects having an influence in the polymerization process. Detailed studies of the polymerization mechanism have been performed, and an unusual anionic mechanism was observed in absence of a co-initiator. Indeed, the monomer deprotonation generates a lactide enolate, which initiates the polymerization propagation. On the contrary, when a 1:1 ratio of cat:BnOH is used, a mixture of mechanisms is observed, the anionic mechanism and the activated monomer one, while from a cat:BnOH ratio of 1:2 and over, only the activated monomer mechanism is observed.
Collapse
Affiliation(s)
- Christian Rentero
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Jesús Damián
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Asier Medel
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - María Fernández-Millán
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Yolanda Rusconi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80124 Napoli, Italy; (Y.R.); (G.T.)
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80124 Napoli, Italy; (Y.R.); (G.T.)
| | - Tomás Cuenca
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Valentina Sessini
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
- Correspondence: (V.S.); (M.E.G.M.)
| | - Marta E. G. Mosquera
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
- Correspondence: (V.S.); (M.E.G.M.)
| |
Collapse
|
6
|
Dimakopoulou F, Efthymiou CG, O’Malley C, Kourtellaris A, Moushi E, Tasiopooulos A, Perlepes SP, McArdle P, Costa-Villén E, Mayans J, Papatriantafyllopoulou C. Novel Co 5 and Ni 4 Metal Complexes and Ferromagnets by the Combination of 2-Pyridyl Oximes with Polycarboxylic Ligands. Molecules 2022; 27:4701. [PMID: 35897877 PMCID: PMC9332737 DOI: 10.3390/molecules27154701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The use of 2-pyridyl oximes in metal complexes chemistry has been extensively investigated in the last few decades as a fruitful source of species with interesting magnetic properties. In this work, the initial combination of pyridine-2-amidoxime (pyaoxH2) and 2-methyl pyridyl ketoxime (mpkoH) with isonicotinic acid (HINA) and 3,5-pyrazole dicarboxylic acid (H3pdc) has provided access to three new compounds, [Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2] (1), [Co5(mpko)6(mpkoH)2(OMe)2(H2O)](ClO4)6 (2), and [Co5(OH)(Hpdc)5(H2pdc)] (3). 1 displays a square-planar metal topology, being the first example that bears simultaneously HINA and pyaoxH2 in their neutral or ionic form. The neighbouring Ni4 units in 1 are held together through strong intermolecular hydrogen bonding interactions, forming a three-dimensional supramolecular framework. 2 and 3 are mixed-valent Co4IIICoII and Co2IIICoII3 compounds with a bowtie and trigonal bipyramidal metal topology, accordingly. Direct current and alternate current magnetic susceptibility studies revealed that the exchange interactions between the NiII ions in 1 are ferromagnetic (J = 1.79(4) cm-1), while 2 exhibits weak AC signals in the presence of a magnetic field. The syntheses, crystal structures, and magnetic properties of 1-3 are discussed in detail.
Collapse
Affiliation(s)
- Foteini Dimakopoulou
- School of Biological and Chemical Sciences, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (F.D.); (C.G.E.); (C.O.); (P.M.)
| | - Costantinos G. Efthymiou
- School of Biological and Chemical Sciences, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (F.D.); (C.G.E.); (C.O.); (P.M.)
| | - Ciaran O’Malley
- School of Biological and Chemical Sciences, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (F.D.); (C.G.E.); (C.O.); (P.M.)
| | - Andreas Kourtellaris
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (A.K.); (A.T.)
| | - Eleni Moushi
- Department of Life Sciences, European University of Cyprus, Nicosia 2404, Cyprus;
| | | | | | - Patrick McArdle
- School of Biological and Chemical Sciences, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (F.D.); (C.G.E.); (C.O.); (P.M.)
| | - Ernesto Costa-Villén
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain; (E.C.-V.); (J.M.)
| | - Julia Mayans
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain; (E.C.-V.); (J.M.)
| | - Constantina Papatriantafyllopoulou
- School of Biological and Chemical Sciences, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (F.D.); (C.G.E.); (C.O.); (P.M.)
| |
Collapse
|
7
|
Mylonas-Margaritis I, Mayans J, Efthymiou CG, McArdle P, Papatriantafyllopoulou C. Mixed‐Ligand Metal‐Organic Frameworks: Synthesis and Characterisation of new MOFs Containing Pyridine‐2,6‐dimethanolate and Benzene‐1,4‐dicarboxylate Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Júlia Mayans
- University of Barcelona: Universitat de Barcelona Chemistry IRELAND
| | | | | | | |
Collapse
|
8
|
Synthesis, structural elucidation, in vitro antibacterial activity, DFT calculations, and molecular docking aspects of mixed-ligand complexes of a novel oxime and phenylalanine. Bioorg Chem 2022; 121:105685. [DOI: 10.1016/j.bioorg.2022.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
|
9
|
Routzomani A, Lada ZG, Angelidou V, P. Raptopoulou C, Psycharis V, Konidaris KF, Chasapis CT, Perlepes SP. Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants. Molecules 2022; 27:1619. [PMID: 35268720 PMCID: PMC8911866 DOI: 10.3390/molecules27051619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the very good liquid extraction ability of 2-pyridyl ketoximes with long aliphatic chains towards toxic Cd(II) and the inability of their 4-pyridyl isomers for this extraction. Our systematic investigation provided access to coordination complexes [CdI2(2paoH)2] (1), {[CdI2(3paoH)2]}n (2), {[CdI2(4paoH)2]}n (3) and [CdI2(dapdoH2)] (4). The reaction of CdI2 and LH4 in EtOH resulted in a Cd(II)-involving reaction of the bis(amidoxime) and isolation of [CdI2(L'H2)] (5), where L'H2 is the new ligand 2,6-bis(ethoxy)pyridine diimine. A mechanism of this transformation has been proposed. The structures of 1, 2, 3, 4·2EtOH and 5 were determined by single-crystal X-ray crystallography. The complexes have been characterized by FT-IR and FT-Raman spectra in the solid state and the data are discussed in terms of structural features. The stability of the complexes in DMSO was investigated by 1H NMR spectroscopy. Our studies confirm that the excellent extraction ability of 2-pyridyl ketoximes is due to the chelating nature of the extractants leading to thermodynamically stable Cd(II) complexes. The monodentate coordination of 4-pyridyl ketoximes (as confirmed in our model complexes with 4paoH and 3paoH) seems to be responsible for their poor performance as extractants.
Collapse
Affiliation(s)
- Anastasia Routzomani
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
| | - Zoi G. Lada
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
| | - Varvara Angelidou
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attikis, 153 10 Athens, Greece;
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attikis, 153 10 Athens, Greece;
| | - Konstantis F. Konidaris
- Department of Science and High Technology and INSTM, University of Insubria, 22 100 Como, Italy
| | - Christos T. Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
| |
Collapse
|
10
|
Pham L, Cao TS, Abboud KA, Christou G. New family of Ln9Mn4 (Ln = Gd, Tb, Dy) and Y9Mn4 clusters from the use of methyl-2-pyridyl-ketone oxime in heterometallic Mn chemistry. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Filipowiak K, Dudzińska P, Wieszczycka K, Buchwald T, Nowicki M, Lewandowska A, Marcinkowska A. Novel Polymer Sorbents with Imprinted Task-Specific Ionic Liquids for Metal Removal. MATERIALS 2021; 14:ma14175008. [PMID: 34501098 PMCID: PMC8434268 DOI: 10.3390/ma14175008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the potential of novel polymer sorbents with the imprinted IL-functional group for the removal of Cu(II), Cd(II), and Zn(II) from aqueous solutions was investigated by batch mode. The sorbents were fabricated by direct reaction of the prepared polymer matrix (poly(vinylbenzyl chloride-divinylbenzene), VBC, and poly(vinylbenzyl bromide-divinylbenzene), VBBr) with 1-(3- or 4-pyridyl)undecan-1-one and oxime of 1-(3- or 4-pyridyl)undecan-1-one. The Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (Raman), Thermogravimetric Analysis (TG), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques were used to show functionality and stability of the sorbents. The materials were also characterized by contact-angle goniometry, X-rayphotoelectron spectroscopy (XPS), and Zeta potential analysis. The removal of Cd(II), Cu(II), and Zn(II) was monitored and optimized under the influence of several operational controlling conditions and factors such as pH, shaking time, temperature, initial metal ions concentration, and counter-ions at the functional group. The results obtained confirmed the very high potential of the sorbents; however, the properties depend on the structure of the functional group. The tested sorbents showed fast kinetics, significant capacity at 25 °C (84 mg/g for the Zn(II) sorption with VBC-Ox4.10, 63 mg/g for the Cd(II) sorption with VBBr-Ox3.10, and 69 mg/g for the Cu(II) sorption with VBC-K3.10), and temperature dependence (even 100% increase in capacity values at 45 °C). The selected sorbent can be regenerated without a significant decrease in the metal removal efficiency.
Collapse
Affiliation(s)
- Kinga Filipowiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| | - Patrycja Dudzińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| | - Karolina Wieszczycka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
- Correspondence: ; Tel.: +48-61-665-36-88
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marek Nowicki
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Aneta Lewandowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| | - Agnieszka Marcinkowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| |
Collapse
|
12
|
Rare nuclearities in Mn/oxo cluster chemistry: Synthesis and characterization of a mixed-valence {MnII/III11} complex bearing acetate and salicylhydroximate(-3) bridging/chelating ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
|
14
|
Polyzou CD, Nikolaou H, Raptopoulou CP, Konidaris KF, Bekiari V, Psycharis V, Perlepes SP. Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules 2021; 26:1622. [PMID: 33804026 PMCID: PMC7999197 DOI: 10.3390/molecules26061622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
The first use of methyl 2-pyridyl ketoxime (mepaoH) in homometallic lanthanide(III) [Ln(III)] chemistry is described. The 1:2 reactions of Ln(NO3)3·nH2O (Ln = Nd, Eu, Gd, Tb, Dy; n = 5, 6) and mepaoH in MeCN have provided access to complexes [Ln2(O2CMe)4(NO3)2(mepaoH)2] (Ln = Nd, 1; Ln = Eu, 2; Ln = Gd, 3; Ln = Tb, 4; Ln = Dy, 5); the acetato ligands derive from the LnIII-mediated hydrolysis of MeCN. The 1:1 and 1:2 reactions between Dy(O2CMe)3·4H2O and mepaoH in MeOH/MeCN led to the all-acetato complex [Dy2(O2CMe)6(mepaoH)2] (6). Treatment of 6 with one equivalent of HNO3 gave 5. The structures of 1, 5, and 6 were solved by single-crystal X-ray crystallography. Elemental analyses and IR spectroscopy provide strong evidence that 2-4 display similar structural characteristics with 1 and 5. The structures of 1-5 consist of dinuclear molecules in which the two LnIII centers are bridged by two bidentate bridging (η1:η1:μ2) and two chelating-bridging (η1:η2:μ2) acetate groups. The LnIII atoms are each chelated by a N,N'-bidentate mepaoH ligand and a near-symmetrical bidentate nitrato group. The molecular structure of 6 is similar to that of 5, the main difference being the presence of two chelating acetato groups in the former instead of the two chelating nitrato groups in the latter. The geometry of the 9-coordinate LnIII centers in 1, 5 and 6 can be best described as a muffin-type (MFF-9). The 3D lattices of the isomorphous 1 and 5 are built through H-bonding, π⋯π stacking and C-H⋯π interactions, while the 3D architecture of 6 is stabilized by H bonds. The IR spectra of the complexes are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The Eu(III) complex 2 displays a red, metal-ion centered emission in the solid state; the TbIII atom in solid 4 emits light in the same region with the ligand. Magnetic susceptibility studies in the 2.0-300 K range reveal weak antiferromagnetic intramolecular GdIII…GdIII exchange interactions in 3; the J value is -0.09(1) cm-1 based on the spin Hamiltonian Ĥ = -J(ŜGd1·ŜGd2).
Collapse
Affiliation(s)
- Christina D. Polyzou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
| | - Helen Nikolaou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | | | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, B.O. Box 1414, 26504 Patras, Greece
| |
Collapse
|
15
|
Mylonas-Margaritis I, Mayans J, McArdle P, Papatriantafyllopoulou C. Zn II and Cu II-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules 2021; 26:491. [PMID: 33477697 PMCID: PMC7831896 DOI: 10.3390/molecules26020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
The simultaneous use of 2-pyridyl oximes (pyridine-2 amidoxime, H2pyaox; 2-methyl pyridyl ketoxime, Hmpko) and 1,3,5-benzenetricarboxylic acid (H3btc) provided access to five new compounds, namely [Zn(H2btc)2(H2pyaox)2]•2H2O (1•2H2O), [Zn(Hbtc)(H2pyaox)2]n (2), [Cu(Hbtc)(H2pyaox)]n (3), [Cu(Hbtc)(HmpKo)]n (4) and [Cu2(Hbtc)2(Hmpko)2(H2O)2]•4H2O (5•4H2O). Among them, 3 is the first example of a metal-organic framework (MOF) containing H2pyaox. Its framework can be described as a 3-c uninodal net of hcb topology with the layers being parallel to the (1,0,1) plane. Furthermore, 3 is the third reported MOF based on a 2-pyridyl oxime in general. 2 and 4 are new members of a small family of coordination polymers containing an oximic ligand. 1-5 form 3D networks through strong intermolecular interactions. Dc magnetic susceptibility studies were carried out in a crystalline sample of 3 and revealed the presence of weak exchange interactions between the metal centres; the experimental data were fitted to a theoretical model with the fitting parameters being J = -0.16(1) cm-1 and g = 2.085(1). The isotropic g value was also confirmed by electronic paramagnetic resonance (EPR) spectroscopy. Reactivity studies were performed for 3 in the presence of metal ions; the reaction progress was studied and discussed for Fe(NO3)3 by the use of several characterization techniques, including single crystal X-ray crystallography and IR spectroscopy.
Collapse
Affiliation(s)
- Ioannis Mylonas-Margaritis
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (I.M.-M.); (P.M.)
| | - Julia Mayans
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltran 2, 46980 Paterna Valencia, Spain;
| | - Patrick McArdle
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (I.M.-M.); (P.M.)
| | - Constantina Papatriantafyllopoulou
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (I.M.-M.); (P.M.)
| |
Collapse
|
16
|
Mylonas-Margaritis I, Mayans J, Tong W, Farràs P, Escuer A, McArdle P, Papatriantafyllopoulou C. Synthesis and characterization of new coordination compounds by the use of 2-pyridinemethanol and di- or tricarboxylic acids. CrystEngComm 2021. [DOI: 10.1039/d1ce00659b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of 2-pyridinemethanol (Hhmp) and trimesic or terephthalic acid has provided access to five new coordination compounds, including the first metal–organic frameworks bearing Hhmp.
Collapse
Affiliation(s)
- Ioannis Mylonas-Margaritis
- School of Chemistry, College of Sciecne and Engineering, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Júlia Mayans
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Wenming Tong
- School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland
| | - Pau Farràs
- School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain
| | - Patrick McArdle
- School of Chemistry, College of Sciecne and Engineering, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | | |
Collapse
|
17
|
A Pd(II) complex derived from pyridine-2-carbaldehyde oxime ligand: Synthesis, characterization, DNA and BSA interaction studies and in vitro anticancer activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Bangar PG, Nahide PD, Meroliya HK, Waghmode SA, Iyer S. Oxime ligands for Pd catalysis of the Mizoroki–Heck reaction, Suzuki–Miyaura coupling & annulation reactions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1826969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pronnoy G. Bangar
- Organic Chemistry Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Pradip D. Nahide
- Organic Chemistry Division, National Chemical Laboratory, Pune, India
| | | | | | - Suresh Iyer
- Organic Chemistry Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
19
|
Mylonas-Margaritis I, Gérard A, Skordi K, Mayans J, Tasiopoulos A, McArdle P, Papatriantafyllopoulou C. From 1D Coordination Polymers to Metal Organic Frameworks by the Use of 2-Pyridyl Oximes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4084. [PMID: 32937938 PMCID: PMC7560365 DOI: 10.3390/ma13184084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
The synthesis and characterization of coordination polymers and metal-organic frameworks (MOFs) has attracted a significant interest over the last decades due to their fascinating physical properties, as well as their use in a wide range of technological, environmental, and biomedical applications. The initial use of 2-pyridyl oximic ligands such as pyridine-2 amidoxime (H2pyaox) and 2-methyl pyridyl ketoxime (Hmpko) in combination with 1,2,4,5-benzene tetracarboxylic acid (pyromellitic acid), H4pma, provided access to nine new compounds whose structures and properties are discussed in detail. Among them, [Zn2(pma)(H2pyaox)2(H2O)2]n (3) and [Cu4(OH)2(pma)(mpko)2]n (9) are the first MOFs based on a 2-pyridyl oxime with 9 possessing a novel 3,4,5,8-c net topology. [Zn2(pma)(H2pyaox)2]n (2), [Cu2(pma)(H2pyaox)2(DMF)2]n (6), and [Cu2(pma)(Hmpko)2(DMF)2]n (8) join a small family of coordination polymers containing an oximic ligand. 9 exhibits selectivity for FeIII ions adsorption, as was demonstrated by a variety of techniques including UV-vis, EDX, and magnetism. DC magnetic susceptibility studies in 9 revealed the presence of strong antiferromagnetic interactions between the metal centers, which lead to a diamagnetic ground state; it was also found that the magnetic properties of 9 are affected by the amount of the encapsulated Fe3+ ions, which is a very desirable property for the development of magnetism-based sensors.
Collapse
Affiliation(s)
- Ioannis Mylonas-Margaritis
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, SSPC, Synthesis and Solid State Pharmaceutical Centre, University Road, Galway H91 TK33, Ireland; (I.M.-M.); (A.G.); (P.M.)
| | - Auban Gérard
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, SSPC, Synthesis and Solid State Pharmaceutical Centre, University Road, Galway H91 TK33, Ireland; (I.M.-M.); (A.G.); (P.M.)
| | - Katerina Skordi
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus; (K.S.); (A.T.)
| | - Julia Mayans
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltran 2, 46980 Paterna (Valencia), Spain;
| | | | - Patrick McArdle
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, SSPC, Synthesis and Solid State Pharmaceutical Centre, University Road, Galway H91 TK33, Ireland; (I.M.-M.); (A.G.); (P.M.)
| | - Constantina Papatriantafyllopoulou
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, SSPC, Synthesis and Solid State Pharmaceutical Centre, University Road, Galway H91 TK33, Ireland; (I.M.-M.); (A.G.); (P.M.)
| |
Collapse
|
20
|
Perontsis S, Geromichalos GD, Pekou A, Hatzidimitriou AG, Pantazaki A, Fylaktakidou KC, Psomas G. Structure and biological evaluation of pyridine-2-carboxamidine copper(II) complex resulting from N′-(4-nitrophenylsulfonyloxy)2-pyridine-carboxamidoxime. J Inorg Biochem 2020; 208:111085. [DOI: 10.1016/j.jinorgbio.2020.111085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
21
|
Fernández-Millán M, Ortega P, Cuenca T, Cano J, Mosquera MEG. Alkali-Metal Compounds with Bio-Based Ligands as Catalysts for Isoselective Lactide Polymerization: Influence of the Catalyst Aggregation on the Polymerization Control. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Fernández-Millán
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Campus Universitario, 28871 Alcala de Henares, Madrid, Spain
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Tomás Cuenca
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Campus Universitario, 28871 Alcala de Henares, Madrid, Spain
| | - Jesus Cano
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Campus Universitario, 28871 Alcala de Henares, Madrid, Spain
| | - Marta E. G. Mosquera
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Campus Universitario, 28871 Alcala de Henares, Madrid, Spain
| |
Collapse
|
22
|
Smart Ligands for Efficient 3d-, 4d- and 5d-Metal Single-Molecule Magnets and Single-Ion Magnets. INORGANICS 2020. [DOI: 10.3390/inorganics8060039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There has been a renaissance in the interdisciplinary field of Molecular Magnetism since ~2000, due to the discovery of the impressive properties and potential applications of d- and f-metal Single-Molecule Magnets (SMMs) and Single-Ion Magnets (SIMs) or Monometallic Single-Molecule Magnets. One of the consequences of this discovery has been an explosive growth in synthetic molecular inorganic and organometallic chemistry. In SMM and SIM chemistry, inorganic and organic ligands play a decisive role, sometimes equally important to that of the magnetic metal ion(s). In SMM chemistry, bridging ligands that propagate strong ferromagnetic exchange interactions between the metal ions resulting in large spin ground states, well isolated from excited states, are preferable; however, antiferromagnetic coupling can also lead to SMM behavior. In SIM chemistry, ligands that create a strong axial crystal field are highly desirable for metal ions with oblate electron density, e.g., TbIII and DyIII, whereas equatorial crystal fields lead to SMM behavior in complexes based on metal ions with prolate electron density, e.g., ErIII. In this review, we have attempted to highlight the use of few, efficient ligands in the chemistry of transition-metal SMMs and SIMs, through selected examples. The content of the review is purely chemical and it is assumed that the reader has a good knowledge of synthetic, structural and physical inorganic chemistry, as well as of the properties of SIMs and SMMs and the techniques of their study. The ligands that will be discussed are the azide ion, the cyanido group, the tris(trimethylsilyl)methanide, the cyclopentanienido group, soft (based on the Hard-Soft Acid-Base model) ligands, metallacrowns combined with click chemistry, deprotonated aliphatic diols, and the family of 2-pyridyl ketoximes, including some of its elaborate derivatives. The rationale behind the selection of the ligands will be emphasized.
Collapse
|
23
|
Srivastava AK, Ghosh S, Pal S. Coordination mode variation of oximate in complexes of VO(OMe)2+ and VO2+ with biacetylmonoxime salicyloylhydrazone: Structural confirmation, properties and photocatalytic applications. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
New MnIIMnIII8 and MnII2MnIII10MnIV2 clusters from the reaction of methyl 2-pyridyl ketone oxime with [Mn12O12(O2CR)16(H2O)4]. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Anastasiadis NC, Lada ZG, Polyzou CD, Raptopoulou CP, Psycharis V, Konidaris KF, Perlepes SP. Synthetic strategies to {CoIII2LnIII} complexes based on 2-pyridyl oximes (Ln = lanthanide). INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Modeling the Solvent Extraction of Cadmium(II) from Aqueous Chloride Solutions by 2-pyridyl Ketoximes: A Coordination Chemistry Approach. Molecules 2019; 24:molecules24122219. [PMID: 31200586 PMCID: PMC6631265 DOI: 10.3390/molecules24122219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The goal of this work is to model the nature of the chemical species [CdCl2(extractant)2] that are formed during the solvent (or liquid-liquid) extraction of the toxic cadmium(II) from chloride-containing aqueous media using hydrophobic 2-pyridyl ketoximes as extractants. Our coordination chemistry approach involves the study of the reactions between cadmium(II) chloride dihydrate and phenyl 2-pyridyl ketoxime (phpaoH) in water-containing acetone. The reactions have provided access to complexes [CdCl2(phpaoH)2]∙H2O (1∙H2O) and {[CdCl2(phpaoH)]}n (2); the solid-state structures of which have been determined by single-crystal X-ray crystallography. In both complexes, phpaoH behaves as an N,N'-bidentate chelating ligand. The complexes have been characterized by solid-state IR and Raman spectra, and by solution 1H NMR spectra. The preparation and characterization of 1∙H2O provide strong evidence for the existence of the species [CdCl2(extractant)2] that have been proposed to be formed during the liquid-liquid extraction process of Cd(II), allowing the efficient transfer of the toxic metal ion from the aqueous phase into the organic phase.
Collapse
|
27
|
Beniwal S, Kumar A, Chhimpa S, John P, Singh Y, Sharma J. Syntheses, characterization, powder X-ray diffraction analysis and antibacterial and antioxidant activities of triphenylantimony(V) heteroleptic derivatives containing substituted oximes and morpholine dithiocarbamate. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Savita Beniwal
- Department of Chemistry; University of Rajasthan; Jaipur 302004 India
| | - Ashok Kumar
- Department of Chemistry; University of Rajasthan; Jaipur 302004 India
| | - Sunil Chhimpa
- Department of Zoology; Centre for Advanced Studies, University of Rajasthan; Jaipur 302004 India
| | - P.J. John
- Department of Zoology; Centre for Advanced Studies, University of Rajasthan; Jaipur 302004 India
| | - Yashpal Singh
- Department of Chemistry; University of Rajasthan; Jaipur 302004 India
| | - Jyoti Sharma
- Department of Chemistry; University of Rajasthan; Jaipur 302004 India
| |
Collapse
|
28
|
Gerasimchuk N. Chemistry and applications of cyanoximes and their metal complexes. Dalton Trans 2019; 48:7985-8013. [PMID: 31090771 DOI: 10.1039/c9dt01057b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During the past three decades, considerable research effort has been dedicated to a new class of organic ligands - cyanoximes - which have the general formula NC-C([double bond, length as m-dash]NOH)-R, where R is an electron-withdrawing group. The presence of the CN group makes cyanoximes ∼10 000 times more acidic and better ligands than other known conventional monoximes and dioximes. Also, in numerous cases, this group provides extra nitrogen donor atoms to support the formation of bridges between metal centres in the obtained coordination polymers. With 36 different R groups, the most abundant is the family of mono-cyanoximes, followed by 7 bis-cyanoximes which include aromatic and aliphatic spacers and, lately, tris-cyanoxime representing a 'tripod'. The total number of obtained and characterized compounds is 44. These simple, low molecular weight molecules represent a series of new excellent ampolydentate ligands - 'molecular Lego', or building blocks - for coordination and organometallic chemistry. Uncomplexed ligands, their alkali metal salts, and metal complexes show a large spectrum of biological activity, ranging from growth regulation in plants and antimicrobial activity, to significant in vitro and in vivo cytotoxicity against human cancers. Currently, there are more than three hundred cyanoxime-based complexes, synthesized and studied using a variety of different spectroscopic methods and X-ray analysis. In this review, the preparation and stereochemistry of cyanoxime ligands, their structures and properties, and the most interesting coordination compounds with a broad spectrum of practical applications are summarized.
Collapse
Affiliation(s)
- Nikolay Gerasimchuk
- Missouri State University, Department of Chemistry, Temple Hall 456, Springfield, MO 65897, USA.
| |
Collapse
|
29
|
Gorincioi E, Coropceanu E. NMR Studies of Some Zn and Cd Coordination Compounds Bearing 1,2-ciclohexanedionedioxime. CHEMISTRY JOURNAL OF MOLDOVA 2018. [DOI: 10.19261/cjm.2018.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Maniaki D, Pilichos E, Perlepes SP. Coordination Clusters of 3d-Metals That Behave as Single-Molecule Magnets (SMMs): Synthetic Routes and Strategies. Front Chem 2018; 6:461. [PMID: 30356793 PMCID: PMC6190736 DOI: 10.3389/fchem.2018.00461] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/14/2018] [Indexed: 11/18/2022] Open
Abstract
The area of 3d-metal coordination clusters that behave as Single-Molecule Magnets (SMMs) is now quite mature within the interdisciplinary field of Molecular Magnetism. This area has created a renaissance in Inorganic Chemistry. From the synthetic Inorganic Chemistry viewpoint, the early years of "try and see" exercises (1993-2000) have been followed by the development of strategies and strict approaches. Our review will first summarize the early synthetic efforts and routes for the preparation of polynuclear 3d-metal SMMs, and it will be then concentrated on the description of the existing strategies. The former involve the combination of appropriate 3d-metal-containing starting materials (simple salts with inorganic anions, metal cardoxylates, and pre-formed carboxylate clusters, metal phosphonates) and one or two primary organic ligands; the importance of the end-on azido group as a ferromagnetic coupler in 3d-metal SMM chemistry will be discussed. The utility of comproportionation reactions and the reductive aggregation route for the construction of manganese SMMs will also be described. Most of the existing strategies for the synthesis of SMMs concern manganese. These involve substitution of carboxylate ligands in pre-formed SMMs by other carboxylate or non-carboxylate groups, reduction procedures for the {Mn 8 III Mn 4 IV } SMMs, spin "tweaking," "switching on" SMM properties upon conversion of low-spin clusters into high-spin ones, ground-state spin switching and enhancing SMM properties via targeted structural distortions, the use of radical bridging ligands and supramolecular approaches. A very useful strategy is also the "switching on" of SMM behavior through replacement of bridging hydroxide groups by end-on azido or isocyanato ligands in clusters. Selected examples will be mentioned and critically discussed. Particular emphasis will be given on the criteria for the choice of ligands.
Collapse
|
31
|
New insights into oximic ligands: Synthesis and characterization of 1D chains by the use of pyridine 2-amidoxime and polycarboxylates. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Francos J, Borge J, Conejero S, Cadierno V. Platinum Complexes with a Phosphino-Oxime/Oximate Ligand. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Javier Francos
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8, E -33006 Oviedo Spain
| | - Javier Borge
- Departamento de Química Física y Analítica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Química; Universidad de Oviedo; Julián Clavería 8, E -33006 Oviedo Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ); Departamento de Química Inorgánica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); CSIC and Universidad de Sevilla; Avda. Américo Vespucio 49, E -41092 Sevilla Spain
| | - Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8, E -33006 Oviedo Spain
| |
Collapse
|
33
|
Alaimo AA, Alexandropoulos DI, Lampropoulos C, Stamatatos TC. New insights in Mn–Ca chemistry from the use of oximate-based ligands: {MnII/III22Ca2} and {MnIV2Ca2} complexes with relevance to both low- and high-valent states of the oxygen-evolving complex. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Martínez L, Arizaga L, Armentano D, Lloret F, González R, Kremer C, Chiozzone R. Synthesis, characterization and magnetic properties of mixed-valence iron complexes with 2-pyridyl oximes. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1441405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lorena Martínez
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Livia Arizaga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cosenza, Italy
| | - Francesc Lloret
- Departament de Química Inorgánica/Instituto de Ciencia Molecular, Facultat de Química de la Universitat de València, València, Spain
| | - Ricardo González
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carlos Kremer
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Raúl Chiozzone
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
35
|
Alaimo AA, Worrell A, Gupta SD, Abboud KA, Lampropoulos C, Christou G, Stamatatos TC. Structural and Magnetic Variations in a Family of Isoskeletal, Oximate‐Bridged {Mn
IV
2
M
III
} Complexes (M
III
=Mn, Gd, Dy). Chemistry 2018; 24:2588-2592. [DOI: 10.1002/chem.201706098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Alysha A. Alaimo
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| | - Anne Worrell
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| | - Sayak Das Gupta
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
| | - Khalil A. Abboud
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
| | - Christos Lampropoulos
- Department of Chemistry University of North Florida 1 UNF Dr. Jacksonville Florida 32224 USA
| | - George Christou
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
| | - Theocharis C. Stamatatos
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way L2S 3A1 St. Catharines Ontario Canada
| |
Collapse
|
36
|
Efthymiou CG, Cunha-Silva L, Perlepes SP, Brechin EK, Inglis R, Evangelisti M, Papatriantafyllopoulou C. In search of molecules displaying ferromagnetic exchange: multiple-decker Ni 12 and Ni 16 complexes from the use of pyridine-2-amidoxime. Dalton Trans 2018; 45:17409-17419. [PMID: 27731458 DOI: 10.1039/c6dt03511f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of pyridine-2-amidoxime (pyaoxH2) in Ni chemistry has provided access to a dodecanuclear complex and a hexadecanuclear Ni cluster, namely [Ni12(pyaox)6(pyaoxH)6(MeOH)2Cl2]Cl4·5MeOH (1·5MeOH) and [Ni16(pyaox)8(pyaoxH)8(MeOH)4](SO4)4·10H2O·26MeOH (2·10H2O·26MeOH). Complex 1·5MeOH was isolated by the reaction of NiCl2·6H2O, pyaoxH2 and NaOMe in a 1 : 1 : 2 molar ratio in MeOH in 60% yield. Treatment of NiSO4·6H2O with pyaoxH2 and NEt3 in a 1 : 1 : 2 molar ratio in MeOH afforded 2·10H2O·26MeOH in good yield (65%). The two compounds display a multi-decker configuration based on stacked Ni4 layers, {Ni4(pyaox)2(pyaoxH)2}2+x (x = 3, 1·5MeOH; x = 4, 2·10H2O·26MeOH); each deck consists of two square planar and two octahedral NiII centres. The number of decks observed in 1·5MeOH and 2·10H2O·26MeOH depends on the nature of the inorganic anion that is present in the reaction system, which provides elements of synthetic control towards new high nuclearity NiII species. 2·10H2O·26MeOH is the first structurally characterized complex of any metal displaying a quadruple-decker configuration, being also the highest nuclearity metal cluster bearing pyaoxH2 and the highest nuclearity NiII cluster with any type of 2-pyridyl oxime. Each cluster cation displays ferromagnetic exchange between the octahedral NiII ions resulting in a spin ground state of S = 6 for 1 and S = 8 for 2. Magnetothermal studies have been performed and discussed for both clusters.
Collapse
Affiliation(s)
- Constantinos G Efthymiou
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland. and Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Luís Cunha-Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | | | - Euan K Brechin
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Ross Inglis
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Marco Evangelisti
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada, 50009 Zaragoza, Spain.
| | | |
Collapse
|
37
|
Tsantis ST, Zagoraiou E, Savvidou A, Raptopoulou CP, Psycharis V, Szyrwiel L, Hołyńska M, Perlepes SP. Binding of oxime group to uranyl ion. Dalton Trans 2018; 45:9307-19. [PMID: 27184620 DOI: 10.1039/c6dt01293k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, the leading approach for extraction of uranium from seawater is selective sorption of UO2(2+) ions onto a poly(acrylamidoxime) fiber. Amidoxime functional groups are the most studied extractant moieties for this application, but are not perfectly selective, and understanding how these groups (and more generally the oxime groups) interact with UO2(2+) and competing ions in seawater is an important step in designing better extractants. We have started a new research programme aiming at in-depth studies of the uranyl-oxime/amidoxime interactions and we report here our first results which cover aspects of the coordination chemistry of 2-pyridyl ketoximes towards UO2(2+). Detailed synthetic investigations of various UO2(2+)/mepaoH and UO2(2+)/phpaoH reaction systems (mepaoH is methyl 2-pyridyl ketoxime and phpaoH is phenyl 2-pyridyl ketoxime) have provided access to the complexes [UO2(mepao)2(MeOH)2]{[UO2(NO3)(mepao)(MeOH)2]}2 (), [UO2(mepao)2(MeOH)2] (), [(UO2)2(O2)(O2CMe)2(mepaoH)2] () and [UO2(phpao)2(MeOH)2] (). The peroxido group in , which was isolated without the addition of external peroxide sources, probably arises from a bis(aquo)- and/or bis(hydroxido)-bridged diuranyl precursor in solution followed by photochemical oxidation of the bridging groups. The U(VI) atom in the [UO2(NO3)(mepao)(MeOH)2] molecules of () is surrounded by one nitrogen and seven oxygen atoms in a very distorted hexagonal bipyramidal geometry; two oxygen atoms from the terminal MeOH ligands, two oxygen atoms from the bidentate chelating nitrato group, and the oxygen and nitrogen atoms from the η(2) oximate group of the 1.110 (Harris notation) mepao(-) ligand define the equatorial plane. This plane consists of two terminal MeOH ligands and two η(2) oximate groups in the [UO2(mepao)2(MeOH)2] molecule () of . The structure of the [UO2(mepao)2(MeOH)2] molecule that is present in is very similar to the structure of the corresponding molecule in . The structure of the dinuclear molecule that is present in consists of two {UO2(O2CMe)(mepaoH)}(+) units bridged by a η(2):η(2):μ O2(2-) group. The equatorial plane of each uranyl site is composed of the pyridyl and oxime nitrogen atoms of a 1.011 mepaoH ligand, the oxygen atoms of an almost symmetrically coordinated bidentate chelating MeCO2(-) group and the two oxygen atoms of the peroxido groups. The core molecular structure of is similar to that of , the only difference being the presence of 1.110 phpao(-) ligands in the former instead of mepao(-) groups in the latter. The free pyridyl nitrogen atoms of mepao(-) and phpao(-) ligands of , and are acceptors of intramolecular H bonds from the ligated MeOH oxygen atoms. H-bonding and π-π stacking interactions build interesting supramolecular networks in the crystal structures of the four complexes. Compounds are the first structurally characterized uranyl complexes with 2-pyridyl aldoximes or ketoximes as ligands. IR data are discussed in terms of the coordination modes of the ligands in the complexes. (1)H NMR data in DMSO-d6 suggest that the complexes decompose in solution. The ESI(-) MS spectrum of dissolved in the NH4(O2CMe) buffer is indicative of the presence of [UO2(O2CMe)3](-), [UO2(O2CMe)2(phpao)](-), [UO2(O2CMe)(phpao)2](-) and [UO2(phpao)3](-) species. A common structural motif of the complexes containing the anionic mepao(-) (, ) and phpao(-) () ligands is that the deprotonated oximate group prefers to bind in the η(2) fashion forming a 3-membered chelating ring in spite of the presence of a pyridyl nitrogen atom, whose coordination would be expected to lead to 5- or 6-membered chelating rings.
Collapse
Affiliation(s)
| | - Eirini Zagoraiou
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
| | - Aikaterini Savvidou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Greece
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Greece
| | - Lukasz Szyrwiel
- Department of Chemistry of Drugs, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philips-Universität Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany.
| | - Spyros P Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece. and Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece
| |
Collapse
|
38
|
Martínez L, Bazzicalupi C, Bianchi A, Lloret F, González R, Kremer C, Chiozzone R. Structural and magnetic properties of polynuclear oximate copper complexes with different topologies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Gonçalves AC, Carneiro ZA, Oliveira CG, Danuello A, Guerra W, Oliveira RJ, Ferreira FB, Veloso-Silva LL, Batista FA, Borges JC, de Albuquerque S, Deflon VM, Maia PI. Pt II , Pd II and Au III complexes with a thiosemicarbazone derived from diacethylmonooxime: Structural analysis, trypanocidal activity, cytotoxicity and first insight into the antiparasitic mechanism of action. Eur J Med Chem 2017; 141:615-631. [DOI: 10.1016/j.ejmech.2017.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/19/2017] [Accepted: 10/07/2017] [Indexed: 11/28/2022]
|
40
|
Opalade AA, Karmakar A, Rúbio GMDM, Pombeiro AJL, Gerasimchuk N. Zinc Complexes with Cyanoxime: Structural, Spectroscopic, and Catalysis Studies in the Pivaloylcyanoxime–Zn System. Inorg Chem 2017; 56:13962-13974. [DOI: 10.1021/acs.inorgchem.7b01891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adedamola A. Opalade
- Department of Chemistry, Temple Hall 431, Missouri State University, Springfield, Missouri 65897, United States
| | - Anirban Karmakar
- Centro de Química Estrutural (CQE), Instituto SuperiorTécnico (IST) University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - G. M. D. M. Rúbio
- Centro de Química Estrutural (CQE), Instituto SuperiorTécnico (IST) University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural (CQE), Instituto SuperiorTécnico (IST) University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nikolay Gerasimchuk
- Department of Chemistry, Temple Hall 431, Missouri State University, Springfield, Missouri 65897, United States
| |
Collapse
|
41
|
Soliman SM, Albering J, Abu-Youssef MA. On the isomers of pyridine-4-carboxaldoxime and its nitrate salt, X-ray crystal structure and quantum chemical calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
The new O,O and N,O type ligands and their Cu(II) and Ni(II) complexes: Crystal structure, absorption-emission properties and superoxide dismutase mimetic studies. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Coropceanu EB, Croitor L, Ciloci AA, Tyurina ZP, Dvornina EG, Codreanu CZ, Fonari MS. Synthesis and structure of mononuclear zinc complexes with pyridine-2-aldoxime. RUSS J COORD CHEM+ 2017. [DOI: 10.1134/s1070328417050025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
|
45
|
Synthesis, spectral and computational analysis of 2-(N-bromoalkoxy)-5-(phenylazo)benzaldehydes and their oximes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Alexandropoulos DI, Mazarakioti EC, Corrales SA, Bryant JT, Gasparov LV, Lampropoulos C, Stamatatos TC. New ligands for uranium complexation: A stable uranyl dimer bearing 2,6-diacetylpyridine dioxime. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Anwar MU, Rawson JM, Gavey EL, Pilkington M, Al-Harrasi A, Thompson LK. Synthesis, characterization and magnetic studies on mono-, di-, and tri-nuclear Cu(ii) complexes of a new versatile diazine ligand. Dalton Trans 2017; 46:2105-2113. [PMID: 28154875 DOI: 10.1039/c6dt04794g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and coordination chemistry of a new open-chain diazine ligand (L4H2) containing bipyridine, oxime and hydrazone functionalities is reported. Reaction of L4H2 with CuCl2·2H2O affords the mononuclear complex [Cu(L4H2)Cl2] (1) in which the ligand acts as a neutral tridentate N,N',N'' donor, whereas treatment with a large excess of CuCl2·2H2O affords the dinuclear complex [Cu2(L4H)Cl3(CH3OH)(H2O)] (2) in which the ligand is singly-deprotonated at the diazine, offering N,N',N'' and N,N' donor sets to two Cu(ii) ions. Reaction with Cu(NO3)2·3H2O yields the trinuclear complex, [Cu3(L4H)2(CH3OH)4(NO3)4] (3) in which the ligand is again singly deprotonated, but now presents a tetradentate N,N',N'',N'''-donor set to the first Cu(ii) and behaves as an N,O-chelate to a second Cu(ii), with a conformational change from cis to trans at the diazine moiety. When the latter reaction is repeated in the presence of a mild base, a second trinuclear complex is isolated, [Cu3(L4)2(CH3CH2OH)](NO3)2 (4) in which both the diazine and oxime functionalities of the ligand are deprotonated which subsequently bridges all three Cu(ii) ions, acting as an N,N',N'' donor to the first Cu(ii), a N,N' donor to a second Cu(ii) (similar to 2) and as a terminal O-donor to a third Cu(ii) ion. The Cu(ii) ions are linked mutually cis via the two-atom diazine bridge in the case of 2 and 4 and trans in the case of 3. Magnetic studies reveal the presence of weak ferromagnetic interactions in 2 (g = 2.2, J/k = +12.8 K) and strong antiferromagnetic interactions in both 3 and 4 (g = 2.093 J/k = -140 K and g = 2.24 J/k = -300 K respectively).
Collapse
Affiliation(s)
- Muhammad U Anwar
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P O Box 33, PC 616, Birkat Almouz, Nizwa, Oman. and Department of Chemistry and Biochemsitry, University of Windsor, 401 Sunset ave, Windsor, ON N9B3P4, Canada.
| | - Jeremy M Rawson
- Department of Chemistry and Biochemsitry, University of Windsor, 401 Sunset ave, Windsor, ON N9B3P4, Canada.
| | - Emma L Gavey
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Cathaerines, ON L2S3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Cathaerines, ON L2S3A1, Canada
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P O Box 33, PC 616, Birkat Almouz, Nizwa, Oman.
| | - Laurence K Thompson
- Deptartment of Chemistry, Memorial University, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
48
|
Yang X, Liu S, Liu G, Zhong H. A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Adebayo OA, Abboud KA, Christou G. New mixed-valence MnII4MnIV clusters from an unusual ligand transformation. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Coletta M, Sanz S, McCormick LJ, Teat SJ, Brechin EK, Dalgarno SJ. The remarkable influence of N,O-ligands in the assembly of a bis-calix[4]arene-supported [MnIV2MnIII10MnII8] cluster. Dalton Trans 2017; 46:16807-16811. [DOI: 10.1039/c7dt04233g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis-calix[4]arene is a highly versatile ligand that is capable of forming a range of polymetallic clusters. Use of an N,O-chelating co-ligand affords a very high nuclearity mixed-valence Mn cluster (shown here) that displays coordination modes relative to each ligand type.
Collapse
Affiliation(s)
- Marco Coletta
- Institute of Chemical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Sergio Sanz
- EastCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - Laura J. McCormick
- Station 11.3.1
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Simon J. Teat
- Station 11.3.1
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Euan K. Brechin
- EastCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|