1
|
Matsumoto K. Toward the production of block copolymers in microbial cells: achievements and perspectives. Appl Microbiol Biotechnol 2024; 108:164. [PMID: 38252290 PMCID: PMC10803391 DOI: 10.1007/s00253-023-12973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
The microbial production of polyhydroxyalkanoate (PHA) block copolymers has attracted research interests because they can be expected to exhibit excellent physical properties. Although post-polymerization conjugation and/or extension have been used for PHA block copolymer synthesis, the discovery of the first sequence-regulating PHA synthase, PhaCAR, enabled the direct synthesis of PHA-PHA type block copolymers in microbial cells. PhaCAR spontaneously synthesizes block copolymers from a mixture of substrates. To date, Escherichia coli and Ralstonia eutropha have been used as host strains, and therefore, sequence regulation is not a host-specific phenomenon. The monomer sequence greatly influences the physical properties of the polymer. For example, a random copolymer of 3-hydroxybutyrate and 2-hydroxybutyrate deforms plastically, while a block copolymer of approximately the same composition exhibits elastic deformation. The structure of the PHA block copolymer can be expanded by in vitro evolution of the sequence-regulating PHA synthase. An engineered variant of PhaCAR can synthesize poly(D-lactate) as a block copolymer component, which allows for greater flexibility in the molecular design of block copolymers. Therefore, creating sequence-regulating PHA synthases with a further broadened substrate range will expand the variety of properties of PHA materials. This review summarizes and discusses the sequence-regulating PHA synthase, analytical methods for verifying block sequence, properties of block copolymers, and mechanisms of sequence regulation. KEY POINTS: • Spontaneous monomer sequence regulation generates block copolymers • Poly(D-lactate) segment can be synthesized using a block copolymerization system • Block copolymers exhibit characteristic properties.
Collapse
Affiliation(s)
- Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kitaku, Sapporo, N13W8060-8628, Japan.
| |
Collapse
|
2
|
Ishihara S, Orita I, Matsumoto K, Fukui T. (R/S)-lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by Ralstonia eutropha. Appl Microbiol Biotechnol 2023; 107:7557-7569. [PMID: 37773219 PMCID: PMC10656315 DOI: 10.1007/s00253-023-12797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are promising bio-based biodegradable polyesters. It was recently reported that novel PHA block copolymers composed of (R)-3-hydroxybutyrate (3HB) and (R)-2-hydroxybutyrate (2HB) were synthesized by Escherichia coli expressing PhaCAR, a chimeric enzyme of PHA synthases derived from Aeromonas caviae and Ralstonia eutropha. In this study, the sequence-regulating PhaCAR was applied in the natural PHA-producing bacterium, R. eutropha. During the investigation, (R/S)-2HB was found to exhibit strong growth inhibitory effects on the cells of R. eutropha. This was probably due to formation of excess 2-ketobutyrate (2KB) from (R/S)-2HB and the consequent L-valine depletion caused by dominant L-isoleucine synthesis attributed to the excess 2KB. Deletion analyses for genes of lactate dehydrogenase homologs identified cytochrome-dependent D-lactate dehydrogenase (Dld) and [Fe-S] protein-dependent L-lactate dehydrogenase as the enzymes responsible for sensitivity to (R)-2HB and (S)-2HB, respectively. The engineered R. eutropha strain (phaCAR+, ldhACd-hadACd+ encoding clostridial (R)-2-hydroxyisocaproate dehydrogenase and (R)-2-hydoroxyisocaproate CoA transferase, ∆dld) synthesized PHA containing 10 mol% of 2HB when cultivated on glucose with addition of sodium (RS)-2HB, and the 2HB composition in PHA increased up to 35 mol% by overexpression phaCAR. The solvent fractionation and NMR analyses showed that the resulting PHAs were most likely to be block polymers consisting of P(3HB-co-3HV) and P(2HB) segments, suggesting that PhaCAR functions as the sequence-regulating PHA synthase independently from genetic and metabolic backgrounds of the host cell. KEY POINTS: (R/S)-2-hydroxubutyrates (2HB) caused l-valine deletion in Ralstonia eutropha (R)- and (S)-lactate/2HB dehydrogenases functional in R. eutropha were identified The engineered R. eutropha synthesized block copolymers of 2HB-containing polyhydroxyalkanoates on glucose and 2HB.
Collapse
Affiliation(s)
- Shizuru Ishihara
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
3
|
Huang S, Xue Y, Yu B, Wang L, Zhou C, Ma Y. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. Molecules 2021; 26:molecules26216446. [PMID: 34770854 PMCID: PMC8587312 DOI: 10.3390/molecules26216446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid (LA) is an important organic acid with broad industrial applications. Considered as an environmentally friendly alternative to petroleum-based plastic with a wide range of applications, polylactic acid has generated a great deal of interest and therefore the demand for optically pure l- or d-lactic acid has increased accordingly. Microbial fermentation is the industrial route for LA production. LA bacteria and certain genetic engineering bacteria are widely used for LA production. Although some fungi, such as Saccharomyces cerevisiae, are not natural LA producers, they have recently received increased attention for LA production because of their acid tolerance. The main challenge for LA bioproduction is the high cost of substrates. The development of LA production from cost-effective biomasses is a potential solution to reduce the cost of LA production. This review examined and discussed recent progress in optically pure l-lactic acid and optically pure d-lactic acid fermentation. The utilization of inexpensive substrates is also focused on. Additionally, for PLA production, a complete biological process by one-step fermentation from renewable resources is also currently being developed by metabolically engineered bacteria. We also summarize the strategies and procedures for metabolically engineering microorganisms producing PLA. In addition, there exists some challenges to efficiently produce PLA, therefore strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are also discussed.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (L.W.); (C.Z.)
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- Correspondence: (L.W.); (C.Z.)
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| |
Collapse
|
4
|
Guo P, Luo Y, Wu J, Wu H. Recent advances in the microbial synthesis of lactate-based copolymer. BIORESOUR BIOPROCESS 2021; 8:106. [PMID: 38650297 PMCID: PMC10992027 DOI: 10.1186/s40643-021-00458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.
Collapse
Affiliation(s)
- Pengye Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Nduko JM, Taguchi S. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources. Front Bioeng Biotechnol 2021; 8:618077. [PMID: 33614605 PMCID: PMC7889595 DOI: 10.3389/fbioe.2020.618077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are naturally occurring biopolymers produced by microorganisms. PHAs have become attractive research biomaterials in the past few decades owing to their extensive potential industrial applications, especially as sustainable alternatives to the fossil fuel feedstock-derived products such as plastics. Among the biopolymers are the bioplastics and oligomers produced from the fermentation of renewable plant biomass. Bioplastics are intracellularly accumulated by microorganisms as carbon and energy reserves. The bioplastics, however, can also be produced through a biochemistry process that combines fermentative secretory production of monomers and/or oligomers and chemical synthesis to generate a repertoire of biopolymers. PHAs are particularly biodegradable and biocompatible, making them a part of today's commercial polymer industry. Their physicochemical properties that are similar to those of petrochemical-based plastics render them potential renewable plastic replacements. The design of efficient tractable processes using renewable biomass holds key to enhance their usage and adoption. In 2008, a lactate-polymerizing enzyme was developed to create new category of polyester, lactic acid (LA)-based polymer and related polymers. This review aims to introduce different strategies including metabolic and enzyme engineering to produce LA-based biopolymers and related oligomers that can act as precursors for catalytic synthesis of polylactic acid. As the cost of PHA production is prohibitive, the review emphasizes attempts to use the inexpensive plant biomass as substrates for LA-based polymer and oligomer production. Future prospects and challenges in LA-based polymer and oligomer production are also highlighted.
Collapse
Affiliation(s)
- John Masani Nduko
- Department of Dairy and Food Science and Technology, Faculty of Agriculture, Egerton University, Egerton, Kenya
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
6
|
|
7
|
Biosynthesis and characterization of poly(3-hydroxybutyrate-co-2-hydroxyalkanoate) with different comonomer fractions. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
9
|
Biosynthesis of novel lactate-based polymers containing medium-chain-length 3-hydroxyalkanoates by recombinant Escherichia coli strains from glucose. J Biosci Bioeng 2019; 128:191-197. [DOI: 10.1016/j.jbiosc.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 11/22/2022]
|
10
|
Choi SY, Cho IJ, Lee Y, Park S, Lee SY. Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods Enzymol 2019; 627:125-162. [PMID: 31630738 DOI: 10.1016/bs.mie.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactate), also called poly(lactic acid) or poly(lactide) [PLA], has been one of the most attractive bio-based polymers since it possesses desirable material properties for its use in general performance plastics in addition to biodegradability and biocompatibility. PLA has been produced by biological and chemical hybrid process comprising microbial fermentation for lactate (LA) production followed by purification and chemical polymerization process of LA. Recently, the direct one-step fermentative processes for production of PLA and several LA-containing polyesters have been developed by employing metabolically engineered microorganisms. Since natural microorganisms cannot produce the LA-containing polymers, several engineering strategies have been employed together based on the polyhydroxyalkanoate (PHA) biosynthesis system. In this chapter, we summarize strategies and procedures on developing the engineered microorganisms producing PLA and its copolymers, cultivating the cells, and extracting the polymers from the cells. Focuses were given on construction of enzymatic polymerization process of LA: design of metabolic pathway for PLA by mimicking PHA biosynthetic pathway, examination of possible enzymes, and engineering of the enzymes for better performances. This synthetic pathway has been established in a microorganism producing LA that enabled one-step fermentative production of LA-containing polyesters from carbohydrates derived from renewable biomass. Polymer production has been further enhanced by implementing strain engineering to concentrate the metabolic fluxes toward PLA formation. In addition, various monomers such as glycolate, 2-hydroxybutyrate, and phenyllactate have been copolymerized with LA by the microbial system. These fermentative production systems developed by using the engineered microorganisms can be versatile and sustainable platforms for the production of LA-containing polyesters and other non-natural polymers.
Collapse
Affiliation(s)
- So Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Seongjin Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Zhang X, Mao Y, Wang B, Cui Z, Zhang Z, Wang Z, Chen T. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol 2019; 46:899-909. [PMID: 30963328 DOI: 10.1007/s10295-019-02174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Lactoyl-CoA is critical for the biosynthesis of biodegradable and biocompatible lactate-based copolymers, which have wide applications. However, reports on acetyl-CoA: lactate CoA-transferases (ALCTs) are rare. To exploit novel ALCTs, amino acid sequence similarity searches based on the CoA-transferases from Clostridium propionicum and Megasphaera elsdenii were conducted. Two known and three novel enzymes were expressed, purified and characterized. Three novel ALCTs were identified, one each from Megasphaera sp. DISK 18, Clostridium lactatifermentans An75 and Firmicutes bacterium CAG: 466. ME-PCT from Megasphaera elsdenii had the highest catalytic efficiency for both acetyl-CoA (264.22 s-1 mM-1) and D-lactate (84.18 s-1 mM-1) with a broad temperature range for activity and good stability. This study, therefore, offers novel and efficient enzymes for lactoyl-CoA generation. To our best knowledge, this is the first report on the systematic mining of ALCTs, which offers valuable new tools for the engineering of pathways that rely on these enzymes.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Baowei Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhidan Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
12
|
Abstract
Upon blending enantiomeric poly(l-lactide) [i.e., poly(l-lactic acid) (PLLA)] and poly(d-lactide) (PDLA) [i.e., poly(d-lactic acid) (PDLA)] or synthesis of stereo block poly(lactide) [i.e., poly(lactic acid) (PLA)], a stereocomplex (SC) is formed. PLA SC has a higher melting temperature (or heat resistance), mechanical performance, and hydrolysis-resistance compared to those of neat PLLA and PDLA. Because of such effects, PLA SC has been extensively studied in terms of biomedical and pharmaceutical applications as well as commodity, industrial, and environmental applications. Stereocomplexation stabilizes and strengthens PLA-based hydrogel or nanoparticles for biomedical applications. Stereocomplexation increases the barrier property of PLA-based materials and thereby prolongs drug release from PLA based materials. In addition, PLA SC is attracting significant attention because it can act as a nucleating agent for the widely used biobased polymer PLLA and thereby the heat resistance of PLLA-based materials can be enhanced. Interestingly, a wide variety of SCs other than PLA SC are found to have been formed in the enantiomeric substituted PLA blends and stereo block substituted PLA polymers. In the present review article, a decade of progress in investigation of PLA SCs is summarized.
Collapse
Affiliation(s)
- Hideto Tsuji
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
13
|
Ren Y, Meng D, Wu L, Chen J, Wu Q, Chen GQ. Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates. Microb Biotechnol 2016; 10:371-380. [PMID: 27860284 PMCID: PMC5328817 DOI: 10.1111/1751-7915.12453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/17/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
Polylactide (PLA) is a bio-based plastic commonly synthesized by chemical catalytic reaction using lactic acid (LA) as a substrate. Here, novel LA-containing terpolyesters, namely, P[LA-co-3-hydroxybutyrate (3HB)-co-3-hydroxypropionate (3HP)], short as PLBP, were successfully synthesized for the first time by a recombinant Escherichia coli harbouring polyhydroxyalkanoate (PHA) synthase from Pseudomonas stutzeri (PhaC1Ps ) with 4-point mutations at E130D, S325T, S477G and Q481K, and 3-hydroxypropionyl-CoA (3HP-CoA) synthesis pathway from glycerol, 3-hydroxybutyryl-CoA (3HB-CoA) as well as lactyl-CoA (LA-CoA) pathways from glucose. Combining these pathways with the PHA synthase mutant phaC1Ps (E130D S325T S477G Q481K), the random terpolyester P(LA-co-3HB-co-3HP), or PLBP, was structurally confirmed by nuclear magnetic resonance to consist of 2 mol% LA, 90 mol% 3HB, and 8 mol% 3HP respectively. Remarkably, the PLBP terpolyester was produced from low-cost sustainable glycerol and glucose. Monomer ratios of PLBP could be regulated by ratios of glycerol to glucose. Other terpolyester thermal and mechanical properties can be manipulated by adjusting the monomer ratios. More PLBP applications are to be expected.
Collapse
Affiliation(s)
- Yilin Ren
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dechuan Meng
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Linping Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Jinchun Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Chen GQ, Jiang XR, Guo Y. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synth Syst Biotechnol 2016; 1:236-242. [PMID: 29062949 PMCID: PMC5625728 DOI: 10.1016/j.synbio.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 11/25/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) have been produced as bioplastics for various purposes. Under the support of China National Basic Research 973 Project, we developed synthetic biology methods to diversify the PHA structures into homo-, random, block polymers with improved properties to better meet various application requirements. At the same time, various pathways were assembled to produce various PHA from glucose as a simple carbon source. At the end, Halomonas bacteria were reconstructed to produce PHA in changing morphology for low cost production under unsterile and continuous conditions. The synthetic biology will advance the PHA into a bio- and material industry.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao-Ran Jiang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingying Guo
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Tsuji H. WITHDRAWN: PLA Stereocomplexes: A Decade of Progress. Adv Drug Deliv Rev 2016:S0169-409X(16)30009-6. [PMID: 26785171 DOI: 10.1016/j.addr.2015.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/31/2015] [Indexed: 12/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Hideto Tsuji
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
16
|
Sun J, Matsumoto K, Tabata Y, Kadoya R, Ooi T, Abe H, Taguchi S. Molecular weight-dependent degradation of d-lactate-containing polyesters by polyhydroxyalkanoate depolymerases from Variovorax sp. C34 and Alcaligenes faecalis T1. Appl Microbiol Biotechnol 2015; 99:9555-63. [DOI: 10.1007/s00253-015-6756-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
|
17
|
Matsumoto K, Tobitani K, Aoki S, Song Y, Ooi T, Taguchi S. Improved production of poly(lactic acid)-like polyester based on metabolite analysis to address the rate-limiting step. AMB Express 2014; 4:83. [PMID: 26267112 PMCID: PMC4884051 DOI: 10.1186/s13568-014-0083-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/06/2014] [Indexed: 01/19/2023] Open
Abstract
The biosynthesis of poly(lactic acid) (PLA)-like polymers, composed of >99 mol% lactate and a trace amount of 3-hydroxybutyrate, in engineered Corynebacterium glutamicum consists of two steps; the generation of the monomer substrate lactyl-coenzyme A (CoA) and the polyhydroxyalkanoate (PHA) synthase-catalyzed polymerization of lactyl-CoA. In order to increase polymer productivity, we explored the rate-limiting step in PLA-like polymer synthesis based on quantitative metabolite analysis using liquid chromatography mass spectroscopy (LC-MS). A significant pool of lactyl-CoA was found during polymer synthesis. This result suggested that the rate-limitation occurred at the polymerization step. Accordingly, the expression level of PHA synthase was increased by means of codon-optimization of the corresponding gene that consequently led to an increase in polymer content by 4.4-fold compared to the control. Notably, the codon-optimization did not significantly affect the concentration of lactyl-CoA, suggesting that the polymerization reaction was still the rate-limiting step upon the overexpression of PHA synthase. Another important finding was that the generation of lactyl-CoA was concomitant with a decrease in the acetyl-CoA level, indicating that acetyl-CoA served as a CoA donor for lactyl-CoA synthesis. These results show that obtaining information on the metabolite concentrations is highly useful for improving PLA-like polymer production. This strategy should be applicable to a wide range of PHA-producing systems.
Collapse
|
18
|
Mizuno S, Katsumata S, Hiroe A, Tsuge T. Biosynthesis and thermal characterization of polyhydroxyalkanoates bearing phenyl and phenylalkyl side groups. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Tabata Y, Abe H. Synthesis and Properties of Alternating Copolymers of 3-Hydroxybutyrate and Lactate Units with Different Stereocompositions. Macromolecules 2014. [DOI: 10.1021/ma501783f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yuta Tabata
- Department
of Innovative and Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Bioplastic
Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideki Abe
- Department
of Innovative and Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Bioplastic
Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
KABE T, IWATA T. The Correlation Between Mechanical Properties, Molecular Chain Structure and Highly Order Structure in Microbial Polyesters. KOBUNSHI RONBUNSHU 2014. [DOI: 10.1295/koron.71.527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Nduko JM, Matsumoto K, Ooi T, Taguchi S. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Appl Microbiol Biotechnol 2013; 98:2453-60. [PMID: 24337250 DOI: 10.1007/s00253-013-5401-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 10/25/2022]
Abstract
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA + Δdld) and their parent strain, BW25113, were grown on 20 g l(-1) xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58-66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA + Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA + gatC strain achieved a productivity of 8.3 g l(-1), which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l(-1) xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l(-1). On the other hand, the ΔpflA + Δdld strain grown on 30 g l(-1) xylose synthesized 6.4 g l(-1) P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000-114,000.
Collapse
Affiliation(s)
- John Masani Nduko
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | | | | | | |
Collapse
|
22
|
|
23
|
Yang JE, Choi SY, Shin JH, Park SJ, Lee SY. Microbial production of lactate-containing polyesters. Microb Biotechnol 2013; 6:621-36. [PMID: 23718266 PMCID: PMC3815930 DOI: 10.1111/1751-7915.12066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022] Open
Abstract
Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed.
Collapse
Affiliation(s)
- Jung Eun Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy (Undergraduate program), Myongji UniversitySan 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido, 449-728, Korea
- Department of Energy Science and Technology (Graduate program), Myongji UniversitySan 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido, 449-728, Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Department of Bio and Brain Engineering, Department of Biological Sciences, BioProcess Engineering Research Center, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Bioinformatics Research Center, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| |
Collapse
|
24
|
Volodina E, Schürmann M, Lindenkamp N, Steinbüchel A. Characterization of propionate CoA-transferase from Ralstonia eutropha H16. Appl Microbiol Biotechnol 2013; 98:3579-89. [PMID: 24057402 DOI: 10.1007/s00253-013-5222-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/24/2013] [Accepted: 08/29/2013] [Indexed: 11/30/2022]
Abstract
In this study, a propionate CoA-transferase (H16_A2718; EC 2.8.3.1) from Ralstonia eutropha H16 (Pct(Re)) was characterized in detail. Glu342 was identified as catalytically active amino acid residue via site-directed mutagenesis. Activity of Pct(Re) was irreversibly lost after the treatment with NaBH₄ in the presence of acetyl-CoA as it is shown for all CoA-transferases from class I, thereby confirming the formation of the covalent enzyme-CoA intermediate by Pct(Re). In addition to already known CoA acceptors for Pct Re such as 3-hydroxypropionate, 3-hydroxybutyrate, acrylate, succinate, lactate, butyrate, crotonate and 4-hydroxybutyrate, it was found that glycolate, chloropropionate, acetoacetate, valerate, trans-2,3-pentenoate, isovalerate, hexanoate, octanoate and trans-2,3-octenoate formed also corresponding CoA-thioesters after incubation with acetyl-CoA and Pct(Re). Isobutyrate was found to be preferentially used as CoA acceptor amongst other carboxylates tested in this study. In contrast, no products were detected with acetyl-CoA and formiate, bromopropionate, glycine, pyruvate, 2-hydroxybutyrate, malonate, fumarate, itaconate, β-alanine, γ-aminobutyrate, levulate, glutarate or adipate as potential CoA acceptor. Amongst CoA donors, butyryl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA, isobutyryl-CoA, succinyl-CoA and valeryl-CoA apart from already known propionyl-CoA and acetyl-CoA could also donate CoA to acetate. The highest rate of the reaction was observed with 3-hydroxybutyryl-CoA (2.5 μmol mg⁻¹ min⁻¹). K(m) values for propionyl-CoA, acetyl-CoA, acetate and 3-hydroxybutyrate were 0.3, 0.6, 4.5 and 4.3 mM, respectively. The rather broad substrate range might be a good starting point for enzyme engineering approaches and for the application of Pct(Re) in biotechnological polyester production.
Collapse
Affiliation(s)
- Elena Volodina
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149, Münster, Germany
| | | | | | | |
Collapse
|
25
|
Matsumoto K, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions. Appl Microbiol Biotechnol 2013; 97:8011-21. [DOI: 10.1007/s00253-013-5120-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
|
26
|
Matsumoto K, Taguchi S. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes. Curr Opin Biotechnol 2013; 24:1054-60. [PMID: 23545442 DOI: 10.1016/j.copbio.2013.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 01/28/2023]
Abstract
The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.
Collapse
Affiliation(s)
- Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628, Japan
| | | |
Collapse
|
27
|
The Biotechnological Potential of Corynebacterium glutamicum, from Umami to Chemurgy. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Nduko JM, Matsumoto K, Ooi T, Taguchi S. Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng 2013. [DOI: 10.1016/j.ymben.2012.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 2012; 30:1196-206. [DOI: 10.1016/j.biotechadv.2011.11.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/01/2011] [Accepted: 11/15/2011] [Indexed: 11/22/2022]
|
30
|
Ochi A, Matsumoto K, Ooba T, Sakai K, Tsuge T, Taguchi S. Engineering of class I lactate-polymerizing polyhydroxyalkanoate synthases from Ralstonia eutropha that synthesize lactate-based polyester with a block nature. Appl Microbiol Biotechnol 2012; 97:3441-7. [PMID: 22801709 DOI: 10.1007/s00253-012-4231-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Class I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (PhaCRe) was engineered so as to acquire an unusual lactate (LA)-polymerizing activity. To achieve this, the site-directed saturation mutagenesis of PhaCRe was conducted at position 510, which corresponds to position 481 in the initially discovered class II LA-polymerizing PHA synthase (PhaC1PsSTQK), a mutation in which (Gln481Lys) was shown to be essential to its LA-polymerizing activity (Taguchi et al., Proc Natl Acad Sci USA 105(45):17323-17327, 2008). The LA-polymerizing activity of the PhaCReA510X mutants was evaluated based on the incorporation of LA units into the P[3-hydroxybutyrate(3HB)] backbone in vivo using recombinant Escherichia coli LS5218. Among 19 PhaCRe(A510X) mutants, 15 synthesized P (LA-co-3HB), indicating that the 510 residue plays a critical role in LA polymerization. The polymer synthesized by PhaCReA510S was fractionated using gel permeation chromatography in order to remove the low molecular weight fractions. The (13)C and (1)H NMR analyses of the high molecular weight fraction revealed that the polymer was a P(7 mol% LA-co-3HB) copolymer with a weight-averaged molecular weight of 3.2 × 10(5) Da. Interestingly, the polymer contained an unexpectedly high ratio of an LA-LA -LA triad sequence, suggesting that the polymer synthesized by PhaCRe mutant may not be a random copolymer, but presumably had a block sequence.
Collapse
Affiliation(s)
- Anna Ochi
- Division of Biotechnology and Molecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Zheng L, Li C, Wang Z, Wang J, Xiao Y, Zhang D, Guan G. Novel Biodegradable and Double Crystalline Multiblock Copolymers Comprising of Poly(butylene succinate) and Poly(ε-caprolactone): Synthesis, Characterization, and Properties. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300576z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liuchun Zheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Chuncheng Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Zhaodong Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jin Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Yaonan Xiao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Dong Zhang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Guohu Guan
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute
of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| |
Collapse
|
32
|
In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity. Appl Microbiol Biotechnol 2012; 94:365-76. [DOI: 10.1007/s00253-011-3840-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
33
|
Nduko JM, Matsumoto K, Taguchi S. Biological Lactate-Polymers Synthesized by One-Pot Microbial Factory: Enzyme and Metabolic Engineering. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1105.ch014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- John Masani Nduko
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Ken’ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
34
|
Biosynthesis of glycolate-based polyesters containing medium-chain-length 3-hydroxyalkanoates in recombinant Escherichia coli expressing engineered polyhydroxyalkanoate synthase. J Biotechnol 2011; 156:214-7. [DOI: 10.1016/j.jbiotec.2011.07.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/08/2011] [Accepted: 07/23/2011] [Indexed: 11/22/2022]
|
35
|
Song Y, Matsumoto K, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, Taguchi S. Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol 2011; 93:1917-25. [PMID: 22127753 DOI: 10.1007/s00253-011-3718-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 11/24/2022]
Abstract
The first biosynthetic system for lactate (LA)-based polyesters was previously created in recombinant Escherichia coli (Taguchi et al. 2008). Here, we have begun efforts to upgrade the prototype polymer production system to a practical stage by using metabolically engineered Gram-positive bacterium Corynebacterium glutamicum as an endotoxin-free platform. We designed metabolic pathways in C. glutamicum to generate monomer substrates, lactyl-CoA (LA-CoA), and 3-hydroxybutyryl-CoA (3HB-CoA), for the copolymerization catalyzed by the LA-polymerizing enzyme (LPE). LA-CoA was synthesized by D: -lactate dehydrogenase and propionyl-CoA transferase, while 3HB-CoA was supplied by β-ketothiolase (PhaA) and NADPH-dependent acetoacetyl-CoA reductase (PhaB). The functional expression of these enzymes led to a production of P(LA-co-3HB) with high LA fractions (96.8 mol%). The omission of PhaA and PhaB from this pathway led to a further increase in LA fraction up to 99.3 mol%. The newly engineered C. glutamicum potentially serves as a food-grade and biomedically applicable platform for the production of poly(lactic acid)-like polyester.
Collapse
Affiliation(s)
- Yuyang Song
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, 060-8628, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Park SJ, Lee SY, Kim TW, Jung YK, Yang TH. Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnol J 2011; 7:199-212. [PMID: 22057878 DOI: 10.1002/biot.201100070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Due to increasing concerns about environmental problems, climate change and limited fossil resources, bio-based production of chemicals and polymers is gaining attention as one of the solutions to these problems. Polyhydroxyalkanoates (PHAs) are polyesters that can be produced by microbial fermentation. PHAs are synthesized using monomer precursors provided from diverse metabolic pathways and are accumulated as distinct granules inside the cells. On the other hand, most so-called bio-based polymers including polybutylene succinate, polytrimethylene terephthalate, and polylactic acid (PLA) are synthesized by a chemical process using monomers produced by fermentation. PLA, an attractive biomass-derived plastic, is currently synthesized by heavy metal-catalyzed ring opening polymerization of L-lactide that is made from fermentation-derived L-lactic acid. Recently, a complete biological process for the production of PLA and PLA copolymers from renewable resources has been developed by direct fermentation of recombinant bacteria employing PHA biosynthetic pathways coupled with a novel metabolic pathway. This could be accomplished by establishing a pathway for generating lactyl-CoA and engineering PHA synthase to accept lactyl-CoA as a substrate combined with systems metabolic engineering. In this article, we review recent advances in the production of lactate-containing homo- and co-polyesters. Challenges remaining to efficiently produce PLA and its copolymers and strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are discussed.
Collapse
Affiliation(s)
- Si Jae Park
- Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | | | | | | | | |
Collapse
|
37
|
Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha. Appl Microbiol Biotechnol 2011; 92:509-17. [PMID: 21667085 DOI: 10.1007/s00253-011-3362-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
A previously established improved two-phase reaction system has been applied to analyze the substrate specificities and polymerization activities of polyhydroxyalkanoate (PHA) synthases. We first analyzed the substrate specificity of propionate coenzyme A (CoA) transferase and found that 2-hydroxybutyrate (2HB) was converted into its CoA derivative. Then, the synthesis of PHA incorporating 2HB was achieved by a wild-type class I PHA synthase from Ralstonia eutropha. The PHA synthase stereoselectively polymerized (R)-2HB, and the maximal molar ratio of 2HB in the polymer was 9 mol%. The yields and the molecular weights of the products were decreased with the increase of the (R)-2HB concentration in the reaction mixture. The weight-average molecular weight of the polymer incorporating 9 mol% 2HB was 1.00 × 10(5), and a unimodal peak with polydispersity of 3.1 was observed in the GPC chart. Thermal properties of the polymer incorporating 9 mol% 2HB were analyzed by DSC and TG-DTA. T (g), T (m), and T (d) (10%) were observed at -1.1°C, 158.8°C, and 252.7°C, respectively. In general, major components of PHAs are 3-hydroxyalkanoates, and only engineered class II PHA synthases have been reported as enzymes having the ability to polymerize HA with the hydroxyl group at C2 position. Thus, this is the first report to demonstrate that wild-type class I PHA synthase was able to polymerize 2HB.
Collapse
|
38
|
Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol 2011; 154:255-60. [PMID: 21640144 DOI: 10.1016/j.jbiotec.2011.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 11/22/2022]
Abstract
In order to evaluate the mechanical properties of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] and its correlation with the LA fraction, P(LA-co-3HB)s with a variety of LA fractions were prepared using recombinant Escherichia coli expressing the LA-polymerizing enzyme and monomer supplying enzymes. The LA-overproducing mutant E. coli JW0885 with a pflA gene disruption was used for the LA-enriched polymer production. The LA fraction was also varied by jar-fermentor based fine-regulation of the anaerobic status of the culture conditions, resulting in LA fractions ranging from 4 to 47 mol%. In contrary to the opaque P(3HB) film, the copolymer films attained semitransparency depending on the LA fraction. Young's modulus values of the P(LA-co-3HB)s (from 148 to 905 MPa) were lower than those of poly(lactic acid) (PLA) (1020 MPa) and P(3HB) (1079 MPa). In addition, the value of elongation at break of the copolymer with 29 mol% LA reached 150%. In conclusion, P(LA-co-3HB)s were found to be a comparatively pliable and flexible material, differing from both of the rigid homopolymers.
Collapse
|