1
|
Zheng L, Xie Q, Hu G, Wang B, Song D, Zhang Y, Liu Y. Synthesis, Structure and Properties of Polyester Polyureas via a Non-Isocyanate Route with Good Combined Properties. Polymers (Basel) 2024; 16:993. [PMID: 38611251 PMCID: PMC11014397 DOI: 10.3390/polym16070993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Polyureas have been widely applied in many fields, such as coatings, fibers, foams and dielectric materials. Traditionally, polyureas are prepared from isocyanates, which are highly toxic and harmful to humans and the environment. Synthesis of polyureas via non-isocyanate routes is green, environmentally friendly and sustainable. However, the application of non-isocyanate polyureas is quite restrained due to their brittleness as the result of the lack of a soft segment in their molecular blocks. To address this issue, we have prepared polyester polyureas via an isocyanate-free route and introduced polyester-based soft segments to improve their toughness and endow high impact resistance to the polyureas. In this paper, the soft segments of polyureas were synthesized by the esterification and polycondensation of dodecanedioic acid and 1,4-butanediol. Hard segments of polyureas were synthesized by melt polycondensation of urea and 1,10-diaminodecane without a catalyst or high pressure. A series of polyester polyureas were synthesized by the polycondensation of the soft and hard segments. These synthesized polyester-type polyureas exhibit excellent mechanical and thermal properties. Therefore, they have high potential to substitute traditional polyureas.
Collapse
Affiliation(s)
- Liuchun Zheng
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
- School of Chemical Engineering and Technology, State Key Laboratory of Separation Membranes and Membrane Processes, Education Ministry Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
- Cangzhou Insititute of Tiangong University, Cangzhou 061000, China
| | - Qiqi Xie
- School of Chemical Engineering and Technology, State Key Laboratory of Separation Membranes and Membrane Processes, Education Ministry Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Guangjun Hu
- Shenghong Advanced Materials Research Institute, Shanghai 201403, China
| | - Bing Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Separation Membranes and Membrane Processes, Education Ministry Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Danqing Song
- School of Chemical Engineering and Technology, State Key Laboratory of Separation Membranes and Membrane Processes, Education Ministry Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yunchuan Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Separation Membranes and Membrane Processes, Education Ministry Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Separation Membranes and Membrane Processes, Education Ministry Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Wang Y, van Putten RJ, Tietema A, Parsons JR, Gruter GJM. Polyester biodegradability: importance and potential for optimisation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:3698-3716. [PMID: 38571729 PMCID: PMC10986773 DOI: 10.1039/d3gc04489k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
To reduce global CO2 emissions in line with EU targets, it is essential that we replace fossil-derived plastics with renewable alternatives. This provides an opportunity to develop novel plastics with improved design features, such as better reusability, recyclability, and environmental biodegradability. Although recycling and reuse of plastics is favoured, this relies heavily on the infrastructure of waste management, which is not consistently advanced on a worldwide scale. Furthermore, today's bulk polyolefin plastics are inherently unsuitable for closed-loop recycling, but the introduction of plastics with enhanced biodegradability could help to combat issues with plastic accumulation, especially for packaging applications. It is also important to recognise that plastics enter the environment through littering, even where the best waste-collection infrastructure is in place. This causes endless environmental accumulation when the plastics are non-(bio)degradable. Biodegradability depends heavily on circumstances; some biodegradable polymers degrade rapidly under tropical conditions in soil, but they may not also degrade at the bottom of the sea. Biodegradable polyesters are theoretically recyclable, and even if mechanical recycling is difficult, they can be broken down to their monomers by hydrolysis for subsequent purification and re-polymerisation. Additionally, both the physical properties and the biodegradability of polyesters are tuneable by varying their building blocks. The relationship between the (chemical) structures/compositions (aromatic, branched, linear, polar/apolar monomers; monomer chain length) and biodegradation/hydrolysis of polyesters is discussed here in the context of the design of biodegradable polyesters.
Collapse
Affiliation(s)
- Yue Wang
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Albert Tietema
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Gert-Jan M Gruter
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Avantium Support BV Zekeringstraat 29 1014 BV Amsterdam The Netherlands
| |
Collapse
|
3
|
Wang Y, van der Maas K, Weinland DH, Trijnes D, van Putten RJ, Tietema A, Parsons JR, de Rijke E, Gruter GJM. Relationship between Composition and Environmental Degradation of Poly(isosorbide- co-diol oxalate) (PISOX) Copolyesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2293-2302. [PMID: 38277479 PMCID: PMC10851428 DOI: 10.1021/acs.est.2c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high Tg polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
Collapse
Affiliation(s)
- Yue Wang
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kevin van der Maas
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Daniel H. Weinland
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Dio Trijnes
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albert Tietema
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - John R. Parsons
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Eva de Rijke
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Gert-Jan M. Gruter
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Avantium
Support BV, Zekeringstraat
29, Amsterdam 1014 BV, The Netherlands
| |
Collapse
|
4
|
Jang H, Kwon S, Kim SJ, Kim YT, Park SI. Synthesis and Characterization of Poly(Butylene Sebacate- Co-Terephthalate) Copolyesters with Pentaerythritol as Branching Agent. Int J Mol Sci 2023; 25:55. [PMID: 38203226 PMCID: PMC10779196 DOI: 10.3390/ijms25010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) copolyesters are prepared by melt polymerization via two-step transesterification and polycondensation using pentaerythritol (PE) as a branching agent. The effects of the incorporated PE on its chemical, thermal, mechanical, and degradation properties, along with the rheological properties of its melt, are investigated. The highest molecular weight and intrinsic viscosity along with the lowest melt flow index were achieved at a PE content of 0.2 mol%, with minimal reduction in the tensile strength and the highest tear strength. The addition of PE did not significantly influence the thermal behavior and stability of the PBSeT copolyesters; however, the elongation at break decreased with increasing PE content. The sample with 0.2 mol% PE exhibited a higher storage modulus and loss modulus as well as a lower loss angle tangent than the other samples, indicating improved melt elasticity. The incorporation of more than 0.2 mol% PE enhanced the enzymatic degradation of copolyesters. In summary, including within 0.2 mol%, PE effectively improved both the processability-related characteristics and degradation properties of PBSeT copolyesters, suggesting their potential suitability for use in agricultural and packaging materials.
Collapse
Affiliation(s)
- Hyunho Jang
- Department of Packaging, Yonsei University, Wonju 26493, Republic of Korea; (H.J.); (S.K.)
| | - Sangwoo Kwon
- Department of Packaging, Yonsei University, Wonju 26493, Republic of Korea; (H.J.); (S.K.)
| | - Sun Jong Kim
- CJ Cheil Jedang WhiteBio—CJ Research Center, Woburn, MA 01801, USA;
| | - Young-Teck Kim
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Su-il Park
- Department of Packaging, Yonsei University, Wonju 26493, Republic of Korea; (H.J.); (S.K.)
| |
Collapse
|
5
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Zaborowska M, Bernat K, Pszczółkowski B, Kulikowska D, Wojnowska-Baryła I. Assessment of biodegradability of cellulose and poly(butylene succinate)-based bioplastics under mesophilic and thermophilic anaerobic digestion with a view towards biorecycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:413-422. [PMID: 37354633 DOI: 10.1016/j.wasman.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Despite the increasing interest in bioplastics, there are still contradictory results on their actual biodegradability, which cause difficulties in choosing and developing appropriate sustainable treatment methods. Two biofoils (based on poly(butylene succinate) (PBS37) and cellulose (Cel37)) were anaerobically degraded during 100-day mesophilic (37 °C) and thermophilic (55 °C) tests (PBS55, Cel55). To overcome low degradation rates in mesophilic conditions, alkaline pre-treatment was also used (Pre-PBS37, Pre-Cel37). For comprehensive understanding of biodegradability, not only methane production (MP), but also the structure (topography, microscopic analysis), tensile properties, and FTIR spectra of the materials undergoing anaerobic degradation (AD) analysed. PBS37 and Pre-PBS37 were visible in 100-day degradation, and the cumulative MP reached 25.5 and 29.3 L/kg VS, respectively (4.3-4.9% of theoretical MP (TMP)). The biofoils started to show damage, losing their mechanical properties over 35 days. In contrast, PBS55 was visible for 14 days (cracks and fissures appeared), cumulative MP was 180.2 L/kg VS (30.2% of the TMP). Pieces of Cel were visible only during 2 days of degradation, and the MP was 311.4-315.0 L/kg VS (77.3-78.2% of the TMP) at 37 °C and 319.5 L/kg VS (79.3% of the TMP) at 55 °C. The FTIR spectra of Cel and PBS did not show shifts and formation of peaks. These findings showed differences in terms of the actual biodegradability of the bioplastics and provided a deeper understanding of their behaviour in AD, thus indicating limitations of AD as the final treatment of some materials, and also may support the establishment of guidelines for bioplastic management.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Bartosz Pszczółkowski
- Department of Materials and Machines Technology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dorota Kulikowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
7
|
Li J, Wang S, Lu H, Tu Y, Wan X, Li X, Tu Y, Li CY. Helical Crystals in Aliphatic Copolyesters: From Chiral Amplification to Mechanical Property Enhancement. ACS Macro Lett 2023; 12:369-375. [PMID: 36847524 DOI: 10.1021/acsmacrolett.2c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We demonstrate herein a bottom-up strategy for achieving helical crystals via chiral amplification in copolyesters by incorporating a small amount of (d)-isosorbide into semicrystalline polyester, poly(ethylene brassylate) (PEB). During bulk crystallization of poly(ethylene-co-isosorbide brassylate)s, the molecular chirality of isosorbide in the amorphous region is transferred to PEB crystal chirality and amplified by the formation of right-handed helical crystals. Increasing isosorbide content or reducing crystallization temperature leads to thinner PEB lamellae crystals, strengthening chiral amplification by forming superhelices with a smaller helical pitch. Moreover, the superhelices with smaller helical pitch (larger chiral amplification) endow aliphatic copolyesters with enhanced modulus, strength, and toughness without sacrificing elongation-at-break. The principle outlined here could apply to the design of strong and tough materials.
Collapse
Affiliation(s)
- Jing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sheng Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanyan Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingfeng Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Weinland DH, van der Maas K, Wang Y, Bottega Pergher B, van Putten RJ, Wang B, Gruter GJM. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nat Commun 2022; 13:7370. [PMID: 36450717 PMCID: PMC9712608 DOI: 10.1038/s41467-022-34840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Shifting away from fossil- to biobased feedstocks is an important step towards a more sustainable materials sector. Isosorbide is a rigid, glucose-derived secondary diol, which has been shown to impart favourable material properties, but its low reactivity has hampered its use in polyester synthesis. Here we report a simple, yet innovative, synthesis strategy to overcome the inherently low reactivity of secondary diols in polyester synthesis. It enables the synthesis of fully biobased polyesters from secondary diols, such as poly(isosorbide succinate), with very high molecular weights (Mn up to 42.8 kg/mol). The addition of an aryl alcohol to diol and diacid monomers was found to lead to the in-situ formation of reactive aryl esters during esterification, which facilitated chain growth during polycondensation to obtain high molecular weight polyesters. This synthesis method is broadly applicable for aliphatic polyesters based on isosorbide and isomannide and could be an important step towards the more general commercial adaption of fully biobased, rigid polyesters.
Collapse
Affiliation(s)
- Daniel H. Weinland
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Kevin van der Maas
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Yue Wang
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Bruno Bottega Pergher
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Robert-Jan van Putten
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Bing Wang
- grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Gert-Jan M. Gruter
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Dong L, Zhou Y, Liu Y, Lu B, Ji J, Ding Y. High performance and water‐degradable poly(neopentyl terephthalate‐co‐neopentyl succinate) copolymers: Synthesis, properties, and hydrolysis in different aquatic bodies. J Appl Polym Sci 2022. [DOI: 10.1002/app.53316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liming Dong
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou China
| | - Yingmei Zhou
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou China
| | - Yuanyuan Liu
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou China
| | - Bo Lu
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| | - Junhui Ji
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| | - Yue Ding
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou China
| |
Collapse
|
10
|
Weinland DH, van Putten RJ, Gruter GJM. Evaluating the commercial application potential of polyesters with 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
12
|
Jin C, Liu L, Tu Z, Wang B, Wang P, Wei Z. Melt polycondensation of 2,5-tetrahydrofurandimethanol with various dicarboxylic acids towards a variety of biobased polyesters. Polym Chem 2022. [DOI: 10.1039/d2py00975g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of THFDM's structure on its reactivity, polymer molecular chain energy and properties were systematically studied.
Collapse
Affiliation(s)
- Chenhao Jin
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lipeng Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pei Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Kasmi N, Terzopoulou Z, Chebbi Y, Dieden R, Habibi Y, Bikiaris DN. Tuning thermal properties and biodegradability of poly(isosorbide azelate) by compositional control through copolymerization with 2,5-furandicarboxylic acid. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lin Y, Ye M, Zhang X, Chen Y, Chen Y, Wu J, Wang H. Biodegradable copolyesters based on a “soft” isohexide building block with tunable viscoelasticity and self-adhesiveness. Polym Chem 2022. [DOI: 10.1039/d2py00586g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PBIA copolyesters synthesised using a novel glycosylated monomer (IIDMC) have faster degradation and tunable self-adhesiveness.
Collapse
Affiliation(s)
- Yiming Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengting Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yong Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ye Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Wu
- Co-Innovation Center for Textile Industry, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Wang H, Liu K, Chen X, Wang M. Thermal properties and enzymatic degradation of PBS copolyesters containing dl-malic acid units. CHEMOSPHERE 2021; 272:129543. [PMID: 33485038 DOI: 10.1016/j.chemosphere.2021.129543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
A series of biodegradable copolyester of poly (butylene succinate-co-butylene malate) (P (BS-co-BM)) bearing hydroxyl groups were prepared by one-pot synthetic strategy without hydroxy-protection. The structure and properties of the P (BS-co-BM) were characterized by nuclear magnetic resonance (1H NMR), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), polarized optical microscope (POM), contact angle tester and enzymatic degradation. The results showed that the P (BS-co-BM) manifested excellent thermal properties. The glass transition temperature (Tg) of the P (BS-co-BM) increased with malic acid units added, the crystallizability temperature (Tc) decreased from 72.6 °C to 21.7 °C, and the melting point temperature (Tm) decreased from 117.9 °C to 82.4 °C. The crystallization rate of poly(butylene succinate) (PBS) segment within P (BS-co-BM) was improved by the introduction of malic acid. The enzymatic degradation rate increased with hydrophilicity of the copolyester improving.
Collapse
Affiliation(s)
- Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China
| | - Kaiyue Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China
| | - Xing Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China
| | - Meiyi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China.
| |
Collapse
|
17
|
Kasmi N, Papadopoulos L, Chebbi Y, Papageorgiou GZ, Bikiaris DN. Effective and facile solvent-free synthesis route to novel biobased monomers from vanillic acid: Structure–thermal property relationships of sustainable polyesters. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Chen J, Lin Y, Chen Y, Koning CE, Wu J, Wang H. Low‐crystallinity to highly amorphous copolyesters with high glass transition temperatures based on rigid carbohydrate‐derived building blocks. POLYM INT 2020. [DOI: 10.1002/pi.6123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingying Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
- Department of Chemical Engineering, Product Technology University of Groningen Groningen The Netherlands
| | - Yiming Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Yong Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
- Co‐Innovation Center for Textile Industry Donghua University Shanghai China
| | - Cor E Koning
- Department of Chemical Engineering, Product Technology University of Groningen Groningen The Netherlands
- DSM Coating Resins Zwolle The Netherlands
| | - Jing Wu
- Co‐Innovation Center for Textile Industry Donghua University Shanghai China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
- Co‐Innovation Center for Textile Industry Donghua University Shanghai China
| |
Collapse
|
19
|
O’Dea RM, Willie JA, Epps TH. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Lett 2020; 9:476-493. [PMID: 35648496 DOI: 10.1021/acsmacrolett.0c00024] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sustainable polymers from lignocellulosic biomass have the potential to reduce the environmental impact of commercial plastics while also offering significant performance and cost benefits relative to petrochemical-derived macromolecules. However, most currently available biobased polymers are hampered by insufficient thermomechanical properties, low economic feasibility (e.g., high relative cost), and reduced scalability in comparison to petroleum-based incumbents. Future biobased materials must overcome these limitations to be competitive in the marketplace. Additionally, sustainability challenges at the beginning and end of the polymer lifecycle need to be addressed using green chemistry practices and improved end-of-life waste management strategies. This viewpoint provides an overview of recent developments that can mitigate many concerns with present materials and discusses key aspects of next-generation, biobased polymers derived from lignocellulosic biomass.
Collapse
Affiliation(s)
- Robert M. O’Dea
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jordan A. Willie
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Kluge M, Rennhofer H, Lichtenegger HC, Liebner FW, Robert T. Poly(ester amide)s from poly(alkylene succinate)s and rapid crystallizing amido diols: Synthesis, thermal properties and crystallization behavior. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Stubbs CJ, Dove AP. Understanding structure–property relationships of main chain cyclopropane in linear polyesters. Polym Chem 2020. [DOI: 10.1039/d0py01004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rigid ring structures have gained increasing interest in the polymer materials community as an effective means to manipulate bulk properties. Here, we investigate structure–property relationships of the smallest ring: cyclopropane.
Collapse
|
22
|
Kasmi N, Ainali NM, Agapiou E, Papadopoulos L, Papageorgiou GZ, Bikiaris DN. Novel high Tg fully biobased poly(hexamethylene-co-isosorbide-2,5-furan dicarboxylate) copolyesters: Synergistic effect of isosorbide insertion on thermal performance enhancement. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108983] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|