1
|
Wei XY, Li W, Li J, Niu XT. Mussel-inspired polydopamine modified mica with enhanced mechanical strength and thermal performance of poly(lactic acid) coating. Int J Biol Macromol 2024; 273:133148. [PMID: 38897517 DOI: 10.1016/j.ijbiomac.2024.133148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Polylactic acid (PLA), as a green functional polymer, has been useful in various coating applications. However, due to the low mechanical strength and thermal stability of PLA, it needs to be improved in order to expand its application areas. In this work, a series of polylactic acid (PLA) nanocomposite films were prepared through introducing polydopamine-modified mica (PDA@MICA) as a self-assemble nanofiller to enhance its mechanical and thermal properties. The results demonstrated that PLA/PDA@MICA shows excellent mechanical properties. Tensile tests showed that PLA/PDA@MICA exhibits a 58.3 % increase in tensile strength and a 16.8 % increase in Young's modulus compared to pure PLA. Meanwhile, thermal performance testing shown the introduction of PDA@MICA led to an increase in crystallinities (Xc = 24.78 %). And the thermal decomposition temperature of PLA/PDA@MICA film (374 °C) was slightly higher than that of PLA film (367 °C). The simultaneous improvement of the mechanical and thermal properties was attributed to the formation of hydrogen bonds between PLA and PDA@MICA. In addition, the parallel arrangement of PDA@MICA and PLA macromolecular chains forms a unique "brick and mortar" structure in the coating, which enhances the mechanical properties of PLA/PDA@MICA composite coatings. This study reports a successful approach to simultaneously address the drawbacks of PLA, specifically its low thermal stability and mechanical strength, thereby promoting its widespread application in the coatings industry.
Collapse
Affiliation(s)
- Xin-Yue Wei
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiao-Ting Niu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Keith M, Koller M, Lackner M. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers (Basel) 2024; 16:1621. [PMID: 38931972 PMCID: PMC11207349 DOI: 10.3390/polym16121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Today, 98% of all plastics are fossil-based and non-biodegradable, and globally, only 9% are recycled. Microplastic and nanoplastic pollution is just beginning to be understood. As the global demand for sustainable alternatives to conventional plastics continues to rise, biobased and biodegradable plastics have emerged as a promising solution. This review article delves into the pivotal concept of carbon recycling as a pathway towards achieving a zero-waste future through the production and utilization of high-value bioplastics. The review comprehensively explores the current state of bioplastics (biobased and/or biodegradable materials), emphasizing the importance of carbon-neutral and circular approaches in their lifecycle. Today, bioplastics are chiefly used in low-value applications, such as packaging and single-use items. This article sheds light on value-added applications, like longer-lasting components and products, and demanding properties, for which bioplastics are increasingly being deployed. Based on the waste hierarchy paradigm-reduce, reuse, recycle-different use cases and end-of-life scenarios for materials will be described, including technological options for recycling, from mechanical to chemical methods. A special emphasis on common bioplastics-TPS, PLA, PHAs-as well as a discussion of composites, is provided. While it is acknowledged that the current plastics (waste) crisis stems largely from mismanagement, it needs to be stated that a radical solution must come from the core material side, including the intrinsic properties of the polymers and their formulations. The manner in which the cascaded use of bioplastics, labeling, legislation, recycling technologies, and consumer awareness can contribute to a zero-waste future for plastics is the core topics of this article.
Collapse
Affiliation(s)
- Matthew Keith
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria;
| | - Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands
- University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
3
|
Mayekar PC, Auras R. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants. Macromol Rapid Commun 2024; 45:e2300641. [PMID: 38206571 DOI: 10.1002/marc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Poly(lactic acid) (PLA) has garnered interest due to its low environmental footprint and ability to replace conventional polymers and be disposed of in industrial composting environments. Although PLA is compostable when subjected to a suitable set of conditions, its broader acceptance in industrial composting facilities has been affected adversely due to longer degradation timeframes than the readily biodegradable organic waste fraction. PLA must be fully exposed to thermophilic conditions for prolonged periods to biodegrade, which has restricted its adoption and hindered its acceptance in industrial composting facilities, negating its home composting potential. Thus, enhancing PLA biodegradation is crucial to expand its acceptance. PLA's biodegradability is investigated in a compost matrix under mesophilic conditions at 37 °C for 180 days by biostimulating the compost environment with skim milk, gelatin, and ethyl lactate to enhance the different stages of PLA biodegradation. The evolved CO2, number average molecular weight (Mn), and crystallinity evolution are tracked. To achieve a Mn ≲ 10 kDa for PLA, the biodegradation rate is accelerated by 15% by adding skim milk, 25% by adding gelatin, and 22% by adding ethyl lactate. This work shows potential techniques to help biodegrade PLA in home composting setting by adding biostimulants.
Collapse
Affiliation(s)
- Pooja C Mayekar
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| | - Rafael Auras
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Wang L, Lu J, Zhang P, Su J, Han J. Toward exclusive stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) blends with outstanding heat resistance via incorporating selective nucleating agents. Int J Biol Macromol 2024; 262:129976. [PMID: 38331074 DOI: 10.1016/j.ijbiomac.2024.129976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
In high molecular weight poly(L-lactic acid)/poly(D-lactic acid) (HMW PLLA/PDLA) blends, the construction of exclusive stereocomplex crystals (SC) with high crystallinity and strong melt memory remains a great challenge. In the present study, various norbornene dicarboxylate complexes (TMXNa, Mg, Al, or Ca) were employed as the stereo-selective nucleating agents (NAs), and their effect on the crystallization characteristics, rheological behavior, and heat resistance of PLLA/PDLA blends were thoroughly studied. Strikingly, TMX-Al facilitated the construction of exclusive SC with over 50 % crystallinity and excellent melt memory. The dense SC crystals network structure boosted the heat resistance of L/D-xAl blends with a VST as high as 145 °C. The strengthened intermolecular interaction fostered the generation of pre-ordered structure in the melt and enhanced chain interdiffusion, which contributed to intermolecular nucleation and SC crystallization in L/D-xAl blend. This study opens up a new avenue for melt processing and application development of SC-PLA materials.
Collapse
Affiliation(s)
- Lunhe Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jun Lu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Pengcheng Zhang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Juanjuan Su
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Jian Han
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
5
|
Harb SV, Kolanthai E, Pugazhendhi AS, Beatrice CA, Pinto LA, Neal CJ, Backes EH, Nunes AC, Selistre-de-Araújo HS, Costa LC, Coathup MJ, Seal S, Pessan LA. 3D printed bioabsorbable composite scaffolds of poly (lactic acid)-tricalcium phosphate-ceria with osteogenic property for bone regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100086. [PMID: 38213985 PMCID: PMC10776431 DOI: 10.1016/j.bbiosy.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024] Open
Abstract
The fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- β-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO2 nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds. The nanocomposite scaffolds possessed precise structure with fine print resolution, a homogenous distribution of TCP and CeNP components, and mechanical properties appropriate for bone tissue engineering applications. Cell proliferation assays using osteoblast cultures confirmed the cytocompatibility of the composites. In addition, the presence of CeNPs enhanced the proliferation and differentiation of mesenchymal stem cells; thereby, increasing alkaline phosphatase (ALP) activity, calcium deposition and bone-related gene expression. Results from this study have shown that the 3D printed PLA-TCP-10%CeO2 composite scaffold could be used as an alternative polymeric implant for bone tissue engineering applications: avoiding additional/revision surgeries and accelerating the regenerative process.
Collapse
Affiliation(s)
- Samarah V. Harb
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | - Cesar A.G. Beatrice
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Leonardo A. Pinto
- Graduate Program in Materials Science and Engineering, Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H. Backes
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ana C.C. Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | - Lidiane C. Costa
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Melanie J. Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz A. Pessan
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
6
|
Rathore A, Shah D, Kaur H. Recent advances in metal oxide/polylactic acid nanocomposites and their applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anuradha Rathore
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dipen Shah
- Department of Chemistry, Shri T. S. Patel P.G. Science College, Ambaliyara, Bayad, India
| | - Harjinder Kaur
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
7
|
Feng L, Cui C, Li Z, Zhang M, Zhang Q, Wu Y, Ge Z, Cheng Y, Zhang Y. Kinetics of catalyzed thermal degradation of polylactide and its application as sacrificial templates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Feng
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Chenhui Cui
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Zhen Li
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Mengyuan Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Qiang Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Youshen Wu
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
8
|
Kost B, Basko M, Bednarek M, Socka M, Kopka B, Łapienis G, Biela T, Kubisa P, Brzeziński M. The influence of the functional end groups on the properties of polylactide-based materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Loyo C, Moreno-Serna V, Fuentes J, Amigo N, Sepúlveda FA, Ortiz JA, Rivas LM, Ulloa MT, Benavente R, Zapata PA. PLA/CaO nanocomposites with antimicrobial and photodegradation properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Yang R, Xu G, Dong B, Hou H, Wang Q. A “Polymer to Polymer” Chemical Recycling of PLA Plastics by the “DE–RE Polymerization” Strategy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rulin Yang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingzhe Dong
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Hou
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Meng X, Yu L, Cao Y, Zhang X, Zhang Y. Progresses in synthetic technology development for the production of L-lactide. Org Biomol Chem 2021; 19:10288-10295. [PMID: 34788779 DOI: 10.1039/d1ob01918j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-Lactide is an intermediate for the industrial production of polylactic acid (PLA). The chemical and optical purities of lactide determine the quality of the prepared PLA. It is of great challenge to synthesize L-lactide efficiently with high chemical and optical purities under the conditions applicable for industrial production. With the national plastic reduction order issued, developing biodegradable materials such as PLA has gradually become a hot topic, and the production of upstream lactide is the key technique for the whole industrial chain. This mini-review aims to summarize typical works on the related synthetic technology development in recent years.
Collapse
Affiliation(s)
- Xiangkun Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yitao Cao
- Royal Holloway, University of London, Egham, Surrey, TW20 0QR, UK
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yiyang Zhang
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
12
|
Payne J, Jones MD. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. CHEMSUSCHEM 2021; 14:4041-4070. [PMID: 33826253 PMCID: PMC8518041 DOI: 10.1002/cssc.202100400] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Whilst plastics have played an instrumental role in human development, growing environmental concerns have led to increasing public scrutiny and demands for outright bans. This has stimulated considerable research into renewable alternatives, and more recently, the development of alternative waste management strategies. Herein, the aim was to highlight recent developments in the catalytic chemical recycling of two commercial polyesters, namely poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET). The concept of chemical recycling is first introduced, and associated opportunities/challenges are discussed within the context of the governing depolymerisation thermodynamics. Chemical recycling methods for PLA and PET are then discussed, with a particular focus on upcycling and the use of metal-based catalysts. Finally, the attention shifts to the emergence of new materials with the potential to modernise the plastics economy. Emerging opportunities and challenges are discussed within the context of industrial feasibility.
Collapse
Affiliation(s)
- Jack Payne
- Centre for Sustainable and Circular TechnologiesUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| |
Collapse
|
13
|
Gioia C, Giacobazzi G, Vannini M, Totaro G, Sisti L, Colonna M, Marchese P, Celli A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. CHEMSUSCHEM 2021; 14:4167-4175. [PMID: 34363734 PMCID: PMC8518687 DOI: 10.1002/cssc.202101226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Indexed: 05/16/2023]
Abstract
Nowadays the issues related to the end of life of traditional plastics are very urgent due to the important pollution problems that plastics have caused. Biodegradable plastics can help to try to mitigate these problems, but even bioplastics need much attention to carefully evaluate the different options for plastic waste disposal. In this Minireview, three different end-of-life scenarios (composting, recycling, and upcycling) were evaluated in terms of literature review. As a result, the ability of bioplastics to be biodegraded by composting has been related to physical variables and materials characteristics. Hence, it is possible to deduce that the process is mature enough to be a good way to minimize bioplastic waste and valorize it for the production of a fertilizer. Recycling and upcycling options, which could open up many interesting new scenarios for the production of high-value materials, are less studied. Research in this area can be strongly encouraged.
Collapse
Affiliation(s)
- Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Greta Giacobazzi
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
14
|
Glaskova-Kuzmina T, Starkova O, Gaidukovs S, Platnieks O, Gaidukova G. Durability of Biodegradable Polymer Nanocomposites. Polymers (Basel) 2021; 13:3375. [PMID: 34641189 PMCID: PMC8512741 DOI: 10.3390/polym13193375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Biodegradable polymers (BP) are often regarded as the materials of the future, which address the rising environmental concerns. The advancement of biorefineries and sustainable technologies has yielded various BP with excellent properties comparable to commodity plastics. Water resistance, high dimensional stability, processability and excellent physicochemical properties limit the reviewed materials to biodegradable polyesters and modified compositions of starch and cellulose, both known for their abundance and relatively low price. The addition of different nanofillers and preparation of polymer nanocomposites can effectively improve BP with controlled functional properties and change the rate of degradation. The lack of data on the durability of biodegradable polymer nanocomposites (BPN) has been the motivation for the current review that summarizes recent literature data on environmental ageing of BPN and the role of nanofillers, their basic engineering properties and potential applications. Various durability tests discussed thermal ageing, photo-oxidative ageing, water absorption, hygrothermal ageing and creep testing. It was discussed that incorporating nanofillers into BP could attenuate the loss of mechanical properties and improve durability. Although, in the case of poor dispersion, the addition of the nanofillers can lead to even faster degradation, depending on the structural integrity and the state of interfacial adhesion. Selected models that describe the durability performance of BPN were considered in the review. These can be applied as a practical tool to design BPN with tailored property degradationand durability.
Collapse
Affiliation(s)
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, LV-1004 Riga, Latvia;
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P.Valdena 3/7, LV-1048 Riga, Latvia; (S.G.); (O.P.)
| | - Oskars Platnieks
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P.Valdena 3/7, LV-1048 Riga, Latvia; (S.G.); (O.P.)
| | | |
Collapse
|
15
|
Boonyeun N, Rujiravanit R, Saito N. Plasma-Assisted Synthesis of Multicomponent Nanoparticles Containing Carbon, Tungsten Carbide and Silver as Multifunctional Filler for Polylactic Acid Composite Films. Polymers (Basel) 2021; 13:polym13070991. [PMID: 33804863 PMCID: PMC8037156 DOI: 10.3390/polym13070991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/29/2023] Open
Abstract
Multicomponent nanoparticles containing carbon, tungsten carbide and silver (carbon-WC-Ag nanoparticles) were simply synthesized via in-liquid electrical discharge plasma, the so-called solution plasma process, by using tungsten electrodes immersed in palm oil containing droplets of AgNO3 solution as carbon and silver precursors, respectively. The atomic ratio of carbon:W:Ag in carbon-WC-Ag nanoparticles was 20:1:3. FE-SEM images revealed that the synthesized carbon-WC-Ag nanoparticles with particle sizes in the range of 20–400 nm had a spherical shape with a bumpy surface. TEM images of carbon-WC-Ag nanoparticles showed that tungsten carbide nanoparticles (WCNPs) and silver nanoparticles (AgNPs) with average particle sizes of 3.46 nm and 72.74 nm, respectively, were dispersed in amorphous carbon. The carbon-WC-Ag nanoparticles were used as multifunctional fillers for the preparation of polylactic acid (PLA) composite films, i.e., PLA/carbon-WC-Ag, by solution casting. Interestingly, the coexistence of WCNPs and AgNPs in carbon-WC-Ag nanoparticles provided a benefit for the co-nucleation ability of WCNPs and AgNPs, resulting in enhanced crystallization of PLA, as evidenced by the reduction in the cold crystallization temperature of PLA. At the low content of 1.23 wt% carbon-WC-Ag nanoparticles, the Young’s modulus and tensile strength of PLA/carbon-WC-Ag composite films were increased to 25.12% and 46.08%, respectively. Moreover, the PLA/carbon-WC-Ag composite films possessed antibacterial activities.
Collapse
Affiliation(s)
- Nichapat Boonyeun
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratana Rujiravanit
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4132
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan;
| |
Collapse
|
16
|
Liguori F, Moreno-Marrodán C, Barbaro P. Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein J Org Chem 2021; 17:589-621. [PMID: 33747233 PMCID: PMC7940818 DOI: 10.3762/bjoc.17.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Metal-catalysed depolymerisation of plastics to reusable building blocks, including monomers, oligomers or added-value chemicals, is an attractive tool for the recycling and valorisation of these materials. The present manuscript shortly reviews the most significant contributions that appeared in the field within the period January 2010–January 2020 describing selective depolymerisation methods of plastics. Achievements are broken down according to the plastic material, namely polyolefins, polyesters, polycarbonates and polyamides. The focus is on recent advancements targeting sustainable and environmentally friendly processes. Biocatalytic or unselective processes, acid–base treatments as well as the production of fuels are not discussed, nor are the methods for the further upgrade of the depolymerisation products.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Carmen Moreno-Marrodán
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
17
|
Botvin V, Karaseva S, Salikova D, Dusselier M. Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Román-Ramírez LA, McKeown P, Shah C, Abraham J, Jones MD, Wood J. Chemical Degradation of End-of-Life Poly(lactic acid) into Methyl Lactate by a Zn(II) Complex. Ind Eng Chem Res 2020; 59:11149-11156. [PMID: 32581423 PMCID: PMC7304880 DOI: 10.1021/acs.iecr.0c01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
The catalyzed methanolysis of end-of-life poly(lactic acid) (PLA) products by an ethylenediamine Zn(II) complex to form biodegradable methyl lactate was studied experimentally at 70, 90, and 110 °C. The PLA samples consisted of typical consumer waste materials, including a cup, a toy, and a three-dimensional (3D) printing material. High selectivities and yields (>94%) were possible depending on temperature and reaction time. Additionally, and to develop a predictive kinetic model, kinetic parameters (pre-exponential factor and activation energies) of the PLA transesterification reaction were first obtained from virgin PLA. These parameters were subsequently used to estimate the conversion of PLA, selectivity, and yield of methyl lactate after 1 and 4 h of the reaction, and the results were compared with the experimental values of the end-of-life PLA. Despite the presence of unknown additives in the PLA waste material and uncontrolled particle size, the model was able to predict the overall conversion, selectivity, and yield to an average deviation of 5, 7, and 12%, respectively. A greater agreement between the model and experimental values is observed for the higher temperatures and the longer reaction time. Larger deviations were observed for the PLA toy, which we attribute to the presence of additives, since despite its lower molecular weight, it possessed a higher structural strength.
Collapse
Affiliation(s)
- Luis A Román-Ramírez
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paul McKeown
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Chanak Shah
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Joshua Abraham
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Matthew D Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Joseph Wood
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
19
|
Gabirondo E, Sangroniz A, Etxeberria A, Torres-Giner S, Sardon H. Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options. Polym Chem 2020. [DOI: 10.1039/d0py00088d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly(hydroxy acids) derived from the self-condensation of hydroxy acid are biodegradable and can be fully recycled in a Circular Economy approach.
Collapse
Affiliation(s)
- Elena Gabirondo
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Ainara Sangroniz
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Agustin Etxeberria
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- 46980 Paterna
- Spain
| | - Haritz Sardon
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| |
Collapse
|
20
|
Garg M, White SR, Sottos NR. Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46226-46232. [PMID: 31774644 DOI: 10.1021/acsami.9b17599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(lactic acid) (PLA) is an effective sacrificial material for the creation of vascular networks in thermoset polymers and composites. The high thermal stability of PLA limits its applications as an embedded sacrificial template in high-temperature-resistant thermoset matrices. Here, we demonstrate faster and more efficient PLA degradation at temperatures lower than previously reported using two organometallic catalysts: tin(II) oxalate (Sn(Oxa)) and tin(II) acetate (Sn(Ac)2). We process Sn(Oxa) by two separate methods to obtain a significant difference in the specific surface area (SSA) of the catalyst particles and compare PLA degradation performance in a thermogravimetric analysis (TGA) instrument. Changing the SSA of Sn(Oxa) by a factor of ∼20 reduces the PLA degradation onset temperature by 37 °C. The total degradation time of PLA films also decreases after blending with Sn(Oxa) having a higher SSA. We also find Sn(Ac)2 lowers the degradation onset of PLA by 53 °C compared to Sn(Oxa) with a similar SSA. In addition, Sn(Ac)2 decreases the time for complete degradation of PLA films by an order of magnitude compared to Sn(Oxa) at 200 °C. Films with a significantly lower Sn(Ac)2 concentration compared to Sn(Oxa) degrade much faster at lower temperatures up to 160 °C. Finally, PLA films with different loadings of Sn(Ac)2 are embedded in an epoxy thermoset matrix and subsequently vascularized at elevated temperatures in a vacuum oven. Microchannel formation is observed at 170 °C using Sn(Ac)2, reducing the temperature required for vaporization of embedded sacrificial polymer compared to Sn(Oxa) catalyst. Sn(Ac)2 can potentially reduce the energy, time, and amount of catalyst required for degrading PLA into volatile products for sacrificial applications.
Collapse
|
21
|
Liu F, Guo J, Zhao P, Gu Y, Gao J, Liu M. Facile synthesis of DBU-based protic ionic liquid for efficient alcoholysis of waste poly(lactic acid) to lactate esters. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
|
23
|
Shi CX, Guo YT, Wu YH, Li ZY, Wang YZ, Du FS, Li ZC. Synthesis and Controlled Organobase-Catalyzed Ring-Opening Polymerization of Morpholine-2,5-Dione Derivatives and Monomer Recovery by Acid-Catalyzed Degradation of the Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02498] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chang-Xia Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu-Ting Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu-Huan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhao-Yue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Yao-Zong Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Xu Y, Yang J, Nie S, Li Z, Liu Y, Zhu J. Investigation on the environmental‐friendly poly(lactic acid) composites based on precipitated barium sulfate: Mechanical, thermal properties, and kinetic study of thermal degradation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu‐xuan Xu
- School of Materials Science and EngineeringAnhui University of Science and Technology Huainan 232001 People's Republic of China
- School of Energy Resources and SafetyAnhui University of Science and Technology Huainan 232001 China
| | - Ji‐nian Yang
- School of Materials Science and EngineeringAnhui University of Science and Technology Huainan 232001 People's Republic of China
| | - Shi‐bin Nie
- School of Energy Resources and SafetyAnhui University of Science and Technology Huainan 232001 China
| | - Zhen‐yu Li
- School of Materials Science and EngineeringAnhui University of Science and Technology Huainan 232001 People's Republic of China
| | - Yue Liu
- School of Materials Science and EngineeringAnhui University of Science and Technology Huainan 232001 People's Republic of China
| | - Jin‐bo Zhu
- School of Materials Science and EngineeringAnhui University of Science and Technology Huainan 232001 People's Republic of China
| |
Collapse
|
25
|
Chen Q, Shan P, Tong C, Yan D, Zhang Y, Liu H, Hao C. Influence of reactive blending temperature on impact toughness and phase morphologies of PLA ternary blend system containing magnesium ionomer. J Appl Polym Sci 2019. [DOI: 10.1002/app.47682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qiu Chen
- Key Laboratory of Organosilicon Chemistry and Material TechnologyHangzhou Normal University Hangzhou 311121 Zhejiang Province People's Republic China
| | - Pengjia Shan
- College of EngineeringZhejiang A & F University, Lin'an District Hangzhou 311300 Zhejiang Province People's Republic of China
| | - Congcong Tong
- College of EngineeringZhejiang A & F University, Lin'an District Hangzhou 311300 Zhejiang Province People's Republic of China
| | - Dongguang Yan
- School of Materials Science and EngineeringJiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province People's Republic of China
| | - Yan Zhang
- College of EngineeringZhejiang A & F University, Lin'an District Hangzhou 311300 Zhejiang Province People's Republic of China
| | - Hongzhi Liu
- College of EngineeringZhejiang A & F University, Lin'an District Hangzhou 311300 Zhejiang Province People's Republic of China
| | - Chaowei Hao
- Key Laboratory of Organosilicon Chemistry and Material TechnologyHangzhou Normal University Hangzhou 311121 Zhejiang Province People's Republic China
| |
Collapse
|
26
|
|
27
|
Román-Ramírez LA, Mckeown P, Jones MD, Wood J. Poly(lactic acid) Degradation into Methyl Lactate Catalyzed by a Well-Defined Zn(II) Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04863] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luis A. Román-Ramírez
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paul Mckeown
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Matthew D. Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Joseph Wood
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
28
|
Feng L, Feng S, Bian X, Li G, Chen X. Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Kathuria A, Brouwers N, Buntinx M, Harding T, Auras R. Effect of MIL-53 (Al) MOF particles on the chain mobility and crystallization of poly(L-lactic acid). J Appl Polym Sci 2018. [DOI: 10.1002/app.45690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ajay Kathuria
- Industrial Technology and Packaging, California Polytechnic State University; San Luis Obispo California 93407
| | - Niels Brouwers
- Industrial Technology and Packaging, California Polytechnic State University; San Luis Obispo California 93407
- Packaging Technology Center, IMO-IMOMEC, Hasselt University; 3590 Diepenbeek Belgium
| | - Mieke Buntinx
- Packaging Technology Center, IMO-IMOMEC, Hasselt University; 3590 Diepenbeek Belgium
| | - Trevor Harding
- Materials Engineering, California Polytechnic State University; San Luis Obispo California 93407
| | - Rafael Auras
- School of Packaging; Michigan State University; East Lansing Michigan 48824-1223
| |
Collapse
|
30
|
Lins LC, Bugatti V, Livi S, Gorrasi G. Ionic Liquid as Surfactant Agent of Hydrotalcite: Influence on the Final Properties of Polycaprolactone Matrix. Polymers (Basel) 2018; 10:polym10010044. [PMID: 30966082 PMCID: PMC6414983 DOI: 10.3390/polym10010044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 11/25/2022] Open
Abstract
This paper reports the surface treatment of layered double hydroxide (LDH) by using ionic liquid (IL) composed of phosphonium cation combined with 2-ethylhexanoate (EHT) counter anion as surfactant agent. Then, different amounts (1, 3, 5 and 7 wt %) of thermally stable organically modified LDH (up to 350 °C) denoted LDH-EHT were incorporated into polycaprolactone (PCL) matrix by mechanical milling. The influence of LDH-EHT loading has been investigated on the physical properties, such as the thermal and barrier properties, as well as the morphologies of the resulting nanocomposites. Thus, intercalated or microcomposite morphologies were obtained depending on the LDH-EHT loading, leading to significant reduction of the diffusion coefficient respect to water vapor. The modulation of barrier properties, using low functionalized filler amount, is a very important aspect for materials in packaging applications.
Collapse
Affiliation(s)
- Luanda Chaves Lins
- University of Lyon, F-69003 Lyon, France.
- UMR 5223, Department of Engineering of Polymeric Materials, INSA Lyon, CNRS, F-69621 Villeurbanne, France.
| | - Valeria Bugatti
- Department of Industrial Engineering, University of Salerno-via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Sébastien Livi
- University of Lyon, F-69003 Lyon, France.
- UMR 5223, Department of Engineering of Polymeric Materials, INSA Lyon, CNRS, F-69621 Villeurbanne, France.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno-via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| |
Collapse
|
31
|
Marszałek-Harych A, Jędrzkiewicz D, Ejfler J. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cell Mol Biol Lett 2017; 22:28. [PMID: 29225630 PMCID: PMC5715637 DOI: 10.1186/s11658-017-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023] Open
Abstract
The development and integration of bio- and chemocatalytic processes to convert renewable or biomass feedstocks into polymers is a vibrant field of research with enormous potential for environmental protection and the mitigation of global warming. Here, we review the biotechnological and chemical synthetic strategies for producing platform monomers from bio-based sources and transforming them into eco-polymers. We also discuss their advanced bio-application using the example of polylactide (PLA), the most valuable green polymer on the market.
Collapse
Affiliation(s)
| | - Dawid Jędrzkiewicz
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jolanta Ejfler
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
32
|
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 2017; 118:839-885. [DOI: 10.1021/acs.chemrev.7b00329] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyi Zhang
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Mareva Fevre
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Gavin O. Jones
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
33
|
Yang JN, Nie SB. Effects of calcium sulfate whisker on the mechanical property, morphological structure and thermal degradation of poly (lactic acid) composites. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Liu H, Zhao R, Song X, Liu F, Yu S, Liu S, Ge X. Lewis Acidic Ionic Liquid [Bmim]FeCl4 as a High Efficient Catalyst for Methanolysis of Poly (lactic acid). Catal Letters 2017. [DOI: 10.1007/s10562-017-2138-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Badia J, Gil-Castell O, Ribes-Greus A. Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Catalytic Systems for the Production of Poly(lactic acid). SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Murariu M, Dubois P. PLA composites: From production to properties. Adv Drug Deliv Rev 2016; 107:17-46. [PMID: 27085468 DOI: 10.1016/j.addr.2016.04.003] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 01/15/2023]
Abstract
Poly(lactic acid) or polylactide (PLA), a biodegradable polyester produced from renewable resources, is used for various applications (biomedical, packaging, textile fibers and technical items). Due to its inherent properties, PLA has a key-position in the market of biopolymers, being one of the most promising candidates for further developments. Unfortunately, PLA suffers from some shortcomings, whereas for the different applications specific end-use properties are required. Therefore, the addition of reinforcing fibers, micro- and/or nanofillers, and selected additives within PLA matrix is considered as a powerful method for obtaining specific end-use characteristics and major improvements of properties. This review highlights recent developments, current results and trends in the field of composites based on PLA. It presents the main advances in PLA properties and reports selected results in relation to the preparation and characterization of the most representative PLA composites. To illustrate the possibility to design the properties of composites, a section is devoted to the production and characterization of innovative PLA-based products filled with thermally-treated calcium sulfate, a by-product from the lactic acid production process. Moreover, are emphasized the last tendencies strongly evidenced in the case of PLA, i.e., the high interest to diversify its uses by moving from biomedical and packaging (biodegradation properties, "disposables") to technical applications ("durables").
Collapse
Affiliation(s)
- Marius Murariu
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), University of Mons & Materia Nova Research Centre, Place du Parc 20, 7000 Mons, Belgium.
| | - Philippe Dubois
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), University of Mons & Materia Nova Research Centre, Place du Parc 20, 7000 Mons, Belgium.
| |
Collapse
|
38
|
Cifuentes SC, Lieblich M, López FA, Benavente R, González-Carrasco JL. Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:18-25. [PMID: 28024575 DOI: 10.1016/j.msec.2016.11.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
In the field of bioabsorbable composites for biomedical applications, extrusion has been employed as a method to prepare homogeneous blends of polymeric matrices with bioactive ceramic fillers. In this work, the suitability of processing poly-l-lactic acid/Magnesium (PLLA/Mg) composites by hot extrusion has been assessed by a systematic characterization of PLLA/Mg composites containing different amounts of Mg particles up to 7wt%. The results show that extrusion causes a reduction of almost 20% in the viscosity average molecular weight of PLLA, which further decreases with increasing Mg content. Extrusion gave always rise to a homogeneous distribution of Mg particles within the PLLA matrix. This composite processing was not compromised by the degradation of the polymeric matrix because the processing temperature was always below the onset degradation temperature. In the processing conditions employed in the present work, degradation of the composite slightly increases as more Mg is added up to 5wt%, but is very high at 7wt%. This was also evident from the mechanical behaviour, so that Mg particles improved the stiffness and compression strength of neat PLLA until 5wt% of Mg content, which dropped drastically when the material had 7wt% of Mg. The filler strengthening factor decreases with the increment in Mg content. In order to obtain an optimised contribution of Mg particles, a balance between thermal degradation and mechanical resistance of PLLA must be achieved.
Collapse
Affiliation(s)
- S C Cifuentes
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain; Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911, Leganés, Madrid, Spain.
| | - M Lieblich
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain.
| | - F A López
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain.
| | - R Benavente
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - J L González-Carrasco
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina CIBER-BBN, Spain.
| |
Collapse
|
39
|
Badia J, Ribes-Greus A. Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Petrus R, Bykowski D, Sobota P. Solvothermal Alcoholysis Routes for Recycling Polylactide Waste as Lactic Acid Esters. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rafał Petrus
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Dominik Bykowski
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Piotr Sobota
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
41
|
KAWASAKI M, YOSHIDA S, HE H, KASHIMURA K, KARIKOMI M, KIMURA T, MARUO S. The Effect of Added Calcium Fine Powders Derived from Scallop Shells on the Deterioration of Biodegradable Aliphatic Polyester Films. KOBUNSHI RONBUNSHU 2016. [DOI: 10.1295/koron.2015-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Haiyan HE
- Graduate School of Engineering, Utsunomiya University
| | | | | | - Takao KIMURA
- Graduate School of Engineering, Utsunomiya University
| | | |
Collapse
|
42
|
Lizundia E, Ruiz-Rubio L, Vilas JL, León LM. Towards the development of eco-friendly disposable polymers: ZnO-initiated thermal and hydrolytic degradation in poly(l-lactide)/ZnO nanocomposites. RSC Adv 2016. [DOI: 10.1039/c5ra24604k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Schematic representation showing catalytic reaction in poly(l-lactide)/ZnO nanocomposites.
Collapse
Affiliation(s)
- E. Lizundia
- Macromolecular Chemistry Research Group (LABQUIMAC)
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Spain
| | - L. Ruiz-Rubio
- Macromolecular Chemistry Research Group (LABQUIMAC)
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Spain
| | - J. L. Vilas
- Macromolecular Chemistry Research Group (LABQUIMAC)
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Spain
| | - L. M. León
- Macromolecular Chemistry Research Group (LABQUIMAC)
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Spain
| |
Collapse
|
43
|
Liu L, Zachariah MR, Stoliarov SI, Li J. Enhanced thermal decomposition kinetics of poly(lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra19303f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly Lactic Acid (PLA) and 1 wt% PLA/Fe2O3, PLA/CuO, PLA/Bi2O3 composites are prepared by solvent evaporation casting and their enhanced thermal decomposition kinetics catalyzed by low loading metal oxide nanoparticles are studied.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Michael R. Zachariah
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
- Department of Chemical and Biomolecule Engineering
| | | | - Jing Li
- Department of Fire Science & Professional Studies
- Henry C. Lee College of Criminal Justice and Forensic Sciences
- University of New Haven
- West Haven
- USA
| |
Collapse
|
44
|
Plichta A, Lisowska P, Kundys A, Zychewicz A, Dębowski M, Florjańczyk Z. Chemical recycling of poly(lactic acid) via controlled degradation with protic (macro)molecules. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Song X, Wang H, Zheng X, Liu F, Yu S. Methanolysis of poly(lactic acid) using acidic functionalized ionic liquids as catalysts. J Appl Polym Sci 2014. [DOI: 10.1002/app.40817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiuyan Song
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Hui Wang
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
- College of Chemistry and Pharmaceutical Sciences; Qingdao Agricultural University; Qingdao 266109 China
| | - Xiaodi Zheng
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Fusheng Liu
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Shitao Yu
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| |
Collapse
|
46
|
Lin H, Han L, Dong L. Thermal degradation behavior and gas phase flame-retardant mechanism of polylactide/PCPP blends. J Appl Polym Sci 2014. [DOI: 10.1002/app.40480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haijuan Lin
- Key Laboratory of Polymer Ecomaterials (KLPE); Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Lijing Han
- Key Laboratory of Polymer Ecomaterials (KLPE); Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Lisong Dong
- Key Laboratory of Polymer Ecomaterials (KLPE); Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| |
Collapse
|
47
|
|
48
|
A cross-linked polystyrene supported hindered lithium amide as a deprotonation reagent for α-methylation of lactic acid. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Abstract
Environmental concerns have led to the development of biorenewable polymers with the ambition to utilize them at an industrial scale. Poly(lactic acid) and poly(hydroxyalkanoates) are semicrystalline, biorenewable polymers that have been identified as the most promising alternatives to conventional plastics. However, both are inherently susceptible to brittleness and degradation during thermal processing; we discuss several approaches to overcome these problems to create a balance between durability and biodegradability. For example, copolymers and blends can increase ductility and the thermal-processing window. Furthermore, chain modifications (e.g., branching/crosslinking), processing techniques (fiber drawing/annealing), or additives (plasticizers/nucleating agents) can improve mechanical properties and prevent thermal degradation during processing. Finally, we examine the impacts of morphology on end-of-life degradation to complete the picture for the most common renewable polymers.
Collapse
Affiliation(s)
- Amy Tsui
- Department of Chemical Engineering, Stanford University, Stanford, California 94305;, ,
| | - Zachary C. Wright
- Department of Chemical Engineering, Stanford University, Stanford, California 94305;, ,
| | - Curtis W. Frank
- Department of Chemical Engineering, Stanford University, Stanford, California 94305;, ,
| |
Collapse
|
50
|
Liu H, Guo X, Song W, Zhang J. Effects of Metal Ion Type on Ionomer-Assisted Reactive Toughening of Poly(lactic acid). Ind Eng Chem Res 2013. [DOI: 10.1021/ie303317k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongzhi Liu
- Composite Materials and Engineering
Center, Washington State University, Pullman,
Washington 99164,
United States
| | - Xiaojie Guo
- Composite Materials and Engineering
Center, Washington State University, Pullman,
Washington 99164,
United States
| | - Wenjia Song
- Composite Materials and Engineering
Center, Washington State University, Pullman,
Washington 99164,
United States
| | - Jinwen Zhang
- Composite Materials and Engineering
Center, Washington State University, Pullman,
Washington 99164,
United States
| |
Collapse
|