1
|
Vatankhah M, Mahboubi A, Varshochian R, Haeri A, Houri H, Abbasian Z, Dadashzadeh S. Thermosensitive multivesicular liposomal hydrogel: a potential platform for loco-regional drug delivery in the treatment of osteomyelitis caused by antibiotic-resistant biofilm-forming bacteria. Lett Appl Microbiol 2024; 77:ovae092. [PMID: 39363239 DOI: 10.1093/lambio/ovae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Biofilm-mediated osteomyelitis presents significant therapeutic challenges. Given the limitations of existing osteomyelitis treatment approaches, there is a distinct need to develop a localized drug delivery system that is biocompatible, biodegradable, and capable of controlled antibiotic release. Multivesicular liposomes (MVLs), characterized by their non-concentric vesicular structure, distinct composition, and enhanced stability, serve as the system for a robust sustained-release drug delivery platform. In this study, various hydrogel formulations composed of poloxamer 407 and other hydrogels, incorporating vancomycin hydrochloride (VAN HL)-loaded MVLs (VAN HL-MVLs), were prepared and evaluated. The optimized VAN HL-MVL sol-gel system, consisting of poloxamer 407 and hyaluronic acid, successfully maintained drug release for up to 3 weeks and exhibited shear-thinning behavior at 37°C. While complete drug release from MVLs alone took place in 312 h, the hydrogel formulation extended this release to 504 h. The released drug effectively inhibited the Staphylococcus aureus biofilms growth within 24 h and methicillin-resistant S. aureus biofilms within 72 h. It also eradicated preformed biofilms of S. aureus and methicillin-resistant S. aureus in 96 and 120 h, respectively. This injectable in situ gel system incorporating VAN HL-MVLs holds potential as an alternative to undergoing multiple surgeries for osteomyelitis treatment and warrants further studies.
Collapse
Affiliation(s)
- Melody Vatankhah
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Reyhaneh Varshochian
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Zahra Abbasian
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Simin Dadashzadeh
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
2
|
Ilochonwu BC, van der Lugt SA, Annala A, Di Marco G, Sampon T, Siepmann J, Siepmann F, Hennink WE, Vermonden T. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment. J Control Release 2023; 361:334-349. [PMID: 37532147 DOI: 10.1016/j.jconrel.2023.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
In the present study, a novel in situ forming thermosensitive hydrogel system was investigated as a versatile drug delivery system for ocular therapy. For this purpose, two thermosensitive ABA triblock copolymers bearing either furan or maleimide moieties were synthesized, named respectively poly(NIPAM-co-HEA/Furan)-PEG6K-P(NIPAM-co-HEA/Furan) (PNF) and poly(NIPAM-co-HEA/Maleimide)-PEG6K-P(NIPAM-co-HEA/-Maleimide) (PNM). Hydrogels were obtained upon mixing aqueous PNF and PNM solutions followed by incubation at 37 °C. The hydrogel undergoes an immediate (<1 min) sol-gel transition at 37 °C. In situ hydrogel formation at 37 °C was also observed after intravitreal injection of the formulation into an ex vivo rabbit eye. The hydrogel network formation was due to physical self-assembly of the PNIPAM blocks and a catalyst-free furan-maleimide Diels-Alder (DA) chemical crosslinking in the hydrophobic domains of the polymer network. Rheological studies demonstrated sol-gel transition at 23 °C, and DA crosslinks were formed in time within 60 min by increasing the temperature from 4 to 37 °C. When incubated at 37 °C, these hydrogels were stable for at least one year in phosphate buffer of pH 7.4. However, the gels degraded at basic pH 10 and 11 after 13 and 3 days, respectively, due to hydrolysis of ester bonds in the crosslinks of the hydrogel network. The hydrogel was loaded with an anti-VEGF antibody fragment (FAB; 48.4 kDa) or with corticosteroid dexamethasone (dex) by dissolving (FAB) or dispersing (DEX) in the hydrogel precursor solution. The FAB fragment in unmodified form was quantitatively released over 13 days after an initial burst release of 46, 45 and 28 % of the loading for the 5, 10 and 20 wt% hydrogel, respectively, due to gel dehydration during formation. The low molecular weight drug dexamethasone was almost quantitively released in 35 days. The slower release of dexamethasone compared to the FAB fragment can likely be explained by the solubilization of this hydrophobic drug in the hydrophobic domains of the gel. The thermosensitive gels showed good cytocompatibility when brought in contact with macrophage-like mural cells (RAW 264.7) and human retinal pigment epithelium-derived (ARPE-19) cells. This study demonstrates that PNF-PNM thermogel may be a suitable formulation for sustained release of bioactive agents into the eye for treating posterior segment eye diseases.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Simone A van der Lugt
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Ada Annala
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Greta Di Marco
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Thibault Sampon
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Juergen Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - Florence Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Roy A, Manna K, Dey S, Pal S. Chemical modification of β-cyclodextrin towards hydrogel formation. Carbohydr Polym 2023; 306:120576. [PMID: 36746567 DOI: 10.1016/j.carbpol.2023.120576] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
β-CD is a cyclic oligosaccharide, which has trunked cone like structure. The unique structure makes it efficient for numerous applications. Though, the native β-CD has many issues like low solubility, absence of sufficient functionalities and lower complexation ability with guest molecules. One of the most effective paths to increase the efficiency of cyclodextrins is the generation of polycyclodextrins. In this perspective article, we have summarized the recent reports on the synthetic methods towards the modification of β-CD. Besides, this article reviews the current improvements of two types of β-CD centered supramolecular hydrogels: one is supramolecular hydrogels prepared from CD-based poly(pseudo)rotaxanes and the other is supramolecular hydrogels developed through the host-guest interaction between small guest molecules and CDs. The Polycyclodextrins have established noteworthy applications in several areas ranging from adsorbents for organic pollutants removal to effective carriers of bioactive agents.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India.
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Shaon Dey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
4
|
Combining thermosensitive physical self-assembly and covalent cycloaddition chemistry as simultaneous dual cross-linking mechanisms for the preparation of injectable hydrogels with tuneable properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Injectable hydrogels for bone and cartilage tissue engineering: a review. Prog Biomater 2022; 11:113-135. [PMID: 35420394 PMCID: PMC9156638 DOI: 10.1007/s40204-022-00185-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
Abstract
Tissue engineering, using a combination of living cells, bioactive molecules, and three-dimensional porous scaffolds, is a promising alternative to traditional treatments such as the use of autografts and allografts for bone and cartilage tissue regeneration. Scaffolds, in this combination, can be applied either through surgery by implantation of cell-seeded pre-fabricated scaffolds, or through injection of a solidifying precursor and cell mixture, or as an injectable cell-seeded pre-fabricated scaffold. In situ forming and pre-fabricated injectable scaffolds can be injected directly into the defect site with complex shape and critical size in a minimally invasive manner. Proper and homogeneous distribution of cells, biological factors, and molecular signals in these injectable scaffolds is another advantage over pre-fabricated scaffolds. Due to the importance of injectable scaffolds in tissue engineering, here different types of injectable scaffolds, their design challenges, and applications in bone and cartilage tissue regeneration are reviewed.
Collapse
Affiliation(s)
- Nafiseh Olov
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| | - Hamid Mirzadeh
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| |
Collapse
|
6
|
Yan J, Gundsambuu B, Krasowska M, Platts K, Facal Marina P, Gerber C, Barry SC, Blencowe A. Injectable Diels-Alder cycloaddition hydrogels with tuneable gelation, stiffness and degradation for the sustained release of T-lymphocytes. J Mater Chem B 2022; 10:3329-3343. [PMID: 35380575 DOI: 10.1039/d2tb00274d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered T-cell therapies have proven highly efficacious for the treatment of haematological cancers, but translation of this success to solid tumours has been limited, in part, due to difficulties in maintaining high doses at specific target sites. Hydrogel delivery systems that provide a sustained release of T-cells at the target site are emerging as a promising strategy. Therefore, in this study we aimed to develop an injectable hydrogel that gels in situ via efficient Diels-Alder cycloaddition (DAC) chemistry and provides a sustained release of T-cells through gradual hydrolysis of the hydrogel matrix. Hydrogels were prepared via the DAC between fulvene and maleimide functionalised poly(ethylene glycol) (PEG) derivatives. By adjusting the concentration and molecular weight of the functionalised PEGs in the hydrogel formulation the in vitro gelation time (Tgel), initial Young's modulus (E) and degradation time (Td) could be tailored from 15-150 min, 5-179 kPa and 7-114 h, respectively. Prior to gelation, the formulations could be readily injected through narrow gauge (26 G) needles with the working time correlating closely with the Tgel. A 5 wt% hydrogel formation with conjugated cyclic RGD motif was found to be optimal for the encapsulation and release of CD3+ T-cells with a near linear release profile and >70% cell viability over the first 4 d and release continuing out to 7 d. With their tuneable Tgel, Td and stiffness, the DAC hydrogels provide the opportunity to control the release period and profile of encapsulated cells.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marta Krasowska
- Surface Interaction and Soft Matter (SISM) Group, Future Industries Institute (FII), UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Cobus Gerber
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA Health, Adelaide, South Australia 5006, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
7
|
Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022; 616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
Abstract
Injectable in situ forming hydrogels are amongst the efficient local drug delivery systems for cancer therapy. Providing a 3D hydrogel network within the target tissue capable of sustained release of the chemotherapeutics made them attractive candidates for increasing the therapeutic index. Remarkable swelling properties, mechanical strength, biocompatibility, wide composition variety and tunable polymeric moieties have led to preparation of injectable hydrogels which also could be used as cavity adaptive chemotherapeutic-loaded implants to prevent post -surgical cancer recurrence. Implementation of various polymers, nanoparticles, peptide and proteins and different crosslinking chemistry facilitated the fabrication of hybrid hydrogels with favorable characteristics such as stimuli sensitive platforms or multifunctional systems. In the current review, we focused on design and fabrication strategies of injectable in situ forming hydrogels and summarized recent hybrid hydrogels used for local cancer therapy.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Torkashvand
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Wei H, Li S, Liu Z, Chen H, Liu Y, Li W, Wang G. Preparation and characterization of starch-cellulose interpenetrating network hydrogels based on sequential Diels-Alder click reaction and photopolymerization. Int J Biol Macromol 2022; 194:962-973. [PMID: 34848242 DOI: 10.1016/j.ijbiomac.2021.11.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
Herein, starch-cellulose interpenetrating network (IPN) hydrogels were fabricated by sequential Diels-Alder click reaction and photopolymerization in water. Moreover, β-cyclodextrin, a commonly used host molecule in supramolecular chemistry, was also introduced to improve the performance of the IPN hydrogel. Firstly, the starch-based dienes were synthesized by modifying starch with N-maleoyl-β-alanine, and the cellulose-based dienophiles were obtained by the reaction of cellulose and furfurylamide succinate; Secondly, the as-synthesized starch-based dienes, cellulose-based dienophiles, polymerizable β-cyclodextrin, crosslinker, and acrylamide were dissolved in water and obtained a transparent solution. The solution was maintained in a water bath of 50 °C for 3 h, forming the first network via catalyst-free click Diels-Alder reaction, subsequently, the second network was formed by photopolymerization. Their preparation conditions were optimized via one-factor experiments and their properties and structures were characterized. Finally, 5- fluorouracil (5-Fu) was used as a model drug to study the sustained release behavior of the drug-loaded hydrogels. Release profile was found to fit in Ritger-Peppas kinetic model and polymer relaxation and drug diffusion made a valuable contribution to drug release. Taking into account the virtues of easily controllable photopolymerization and catalyst-free Diels-Alder reaction, the strategy described here has a potential application in the preparation of IPN hydrogels.
Collapse
Affiliation(s)
- Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Zijun Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongli Chen
- The Third Hospital of Xinxiang Medical University, Xinxiang, PR China.
| | - Yuhua Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Weikun Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
9
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
11
|
Deng Y, Shavandi A, Okoro OV, Nie L. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym 2021; 270:118360. [PMID: 34364605 DOI: 10.1016/j.carbpol.2021.118360] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Alginate biopolymers are characterized by favorable properties, of biocompatibility, degradability, and non-toxicity. However, the poor stability properties of alginate have limited its suitability for diverse applications. Recently, click chemistry has generated significant research interest due to its high reaction efficiency, high selectivity for a single product, harmless byproducts, and processing simplicity. Alginate modified using click chemistry enables the production of alginate derivatives with enhanced physical and chemical properties. Herein, we review the employment of click chemistry in the development of alginate-based materials or systems. Various click chemistries were highlighted, including azide and alkyne cycloaddition (e.g. Copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), Strain-promoted alkyne-azide cycloaddition (SPAAC)), Diels-Alder reaction (Inverse electron demand Diels-Alder (IEDDA) cycloaddition, Tetrazine-norbornene Diels-Alder reactions), Thiol-ene/yne addition (Free-radical thiol-ene addition click reactions, Thiol-Michael addition click reactions, Thiol-yne addition click reaction), Oxime based click reactions, and other click reactions. Alginate functionalized with click chemistry and its properties were also discussed. The present study shows that click chemistry may be employed in modifying the mechanical strength, biochemical/biological properties of alginate-based materials. Finally, the applications of alginate-based materials in wound dressing, drug delivery, protein delivery, tissue regeneration, and 3D bioprinting were described and the future perspectives of alginates modified with click chemistry, are subsequently presented. This review provides new insights for readers to design structures and expand applications of alginate using click chemistry reactions in a detailed and more rational manner.
Collapse
Affiliation(s)
- Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Amin Shavandi
- BioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Oseweuba Valentine Okoro
- BioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
12
|
Zeng Y, Yang W, Liu S, Shi X, Xi A, Zhang F. Dynamic Semi IPNs with Duple Dynamic Linkers: Self-Healing, Reprocessing, Welding, and Shape Memory Behaviors. Polymers (Basel) 2021; 13:1679. [PMID: 34064041 PMCID: PMC8196720 DOI: 10.3390/polym13111679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Thermoset polymers show favorable material properties, while bringing about environmental pollution due to non-reprocessing and unrecyclable. Diels-Alder (DA) chemistry or reversible exchange boronic ester bonds have been employed to fabricate recycled polymers with covalent adaptable networks (CANs). Herein, a novel type of CANs with multiple dynamic linkers (DA chemistry and boronic ester bonds) was firstly constructed based on a linear copolymer of styrene and furfuryl methacrylate and boronic ester crosslinker. Thermoplastic polyurethane is introduced into the CANs to give a semi Interpenetrating Polymer Networks (semi IPNs) to enhance the properties of the CANs. We describe the synthesis and dynamic properties of semi IPNs. Because of the DA reaction and transesterification of boronic ester bonds, the topologies of semi IPNs can be altered, contributing to the reprocessing, self-healing, welding, and shape memory behaviors of the produced polymer. Through a microinjection technique, the cut samples of the semi IPNs can be reshaped and mechanical properties of the recycled samples can be well-restored after being remolded at 190 °C for 5 min.
Collapse
Affiliation(s)
- Yanning Zeng
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Y.); (S.L.); (X.S.); (A.X.); (F.Z.)
| | | | | | | | | | | |
Collapse
|
13
|
Shen Y, Wang H, Liu Z, Li W, Liu Y, Li J, Wei H, Han H. Fabrication of a water-retaining, slow-release fertilizer based on nanocomposite double-network hydrogels via ion-crosslinking and free radical polymerization. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
T. Somasekharan L, Kasoju N, Raju R, Bhatt A. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel) 2020; 7:bioengineering7030108. [PMID: 32916945 PMCID: PMC7552778 DOI: 10.3390/bioengineering7030108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Layer-by-layer additive manufacturing process has evolved into three-dimensional (3D) "bio-printing" as a means of constructing cell-laden functional tissue equivalents. The process typically involves the mixing of cells of interest with an appropriate hydrogel, termed as "bioink", followed by printing and tissue maturation. An ideal bioink should have adequate mechanical, rheological, and biological features of the target tissues. However, native extracellular matrix (ECM) is made of an intricate milieu of soluble and non-soluble extracellular factors, and mimicking such a composition is challenging. To this end, here we report the formulation of a multi-component bioink composed of gelatin and alginate -based scaffolding material, as well as a platelet-rich plasma (PRP) suspension, which mimics the insoluble and soluble factors of native ECM respectively. Briefly, sodium alginate was subjected to controlled oxidation to yield alginate dialdehyde (ADA), and was mixed with gelatin and PRP in various volume ratios in the presence of borax. The formulation was systematically characterized for its gelation time, swelling, and water uptake, as well as its morphological, chemical, and rheological properties; furthermore, blood- and cytocompatibility were assessed as per ISO 10993 (International Organization for Standardization). Printability, shape fidelity, and cell-laden printing was evaluated using the RegenHU 3D Discovery bioprinter. The results indicated the successful development of ADA-gelatin-PRP based bioink for 3D bioprinting and biofabrication applications.
Collapse
Affiliation(s)
- Lakshmi T. Somasekharan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India;
| | - Riya Raju
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
- Correspondence: ; Tel.: +91-471-252-0219
| |
Collapse
|
15
|
|
16
|
Wei H, Liu Z, Zhu H, He J, Li J. Preparation and Characterization of Thermal and pH Dual Sensitive Hydrogel Based on 1,3‐Dipole Cycloaddition Reaction. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongliang Wei
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Zijun Liu
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Hongzheng Zhu
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Juan He
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Jingjing Li
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| |
Collapse
|
17
|
Arslan M, Sanyal R, Sanyal A. Cyclodextrin embedded covalently crosslinked networks: synthesis and applications of hydrogels with nano-containers. Polym Chem 2020. [DOI: 10.1039/c9py01679a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advancements in the synthesis of hydrogels containing cyclodextrin (CD) units within the gel network have been reviewed.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- Yalova
- Turkey
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
18
|
Liu Y, Liu M, Zhang Y, Cao Y, Pei R. Fabrication of injectable hydrogels via bio-orthogonal chemistry for tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/d0nj02629h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injectable hydrogels via bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
19
|
Thermally reversible nanocellulose hydrogels synthesized via the furan/maleimide Diels-Alder click reaction in water. Int J Biol Macromol 2019; 141:493-498. [DOI: 10.1016/j.ijbiomac.2019.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
20
|
Kolymshin OA, Danilov VA, Ignatev VA, Kuzmin MV. Synthesis of 4,4′-Bis[4-(2,5-dioxo-2,5-dihydro-1H-pyrroll-1-yl)-phenylcarbonylamino]-3,3′-dichlorodiphenylmethane and 1,4-Bis{2-[4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-phenylcarbonyloxy]ethoxy}benzene. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Janus multi-responsive superparamagnetic nanoparticles functionalized with two on-demand and independently cleavable ligands for Actinide separation. J Colloid Interface Sci 2019; 538:546-558. [DOI: 10.1016/j.jcis.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023]
|
22
|
Wang Z, Craig SL. Stereochemical effects on the mechanochemical scission of furan–maleimide Diels–Alder adducts. Chem Commun (Camb) 2019; 55:12263-12266. [DOI: 10.1039/c9cc06361g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An internal competition between mechanochemical reactions unveils the relative mechanical reactivity of furan–maleimide Diels–Alder (DA) stereoisomers.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry
- Duke University
- Durham
- USA
| | | |
Collapse
|
23
|
Lu H, Yuan L, Yu X, Wu C, He D, Deng J. Recent advances of on-demand dissolution of hydrogel dressings. BURNS & TRAUMA 2018; 6:35. [PMID: 30619904 PMCID: PMC6310937 DOI: 10.1186/s41038-018-0138-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Wound management is a major global challenge and a big financial burden to the healthcare system due to the rapid growth of chronic diseases including the diabetes, obesity, and aging population. Modern solutions to wound management include hydrogels that dissolve on demand, and the development of such hydrogels is of keen research interest. The formation and subsequent on-demand dissolution of hydrogels is of keen interest to scientists and clinicians. These hydrogels have excellent properties such as tissue adhesion, swelling, and water absorption. In addition, these hydrogels have a distinctive capacity to form in situ and dissolve on-demand via physical or chemical reactions. Some of these hydrogels have been successfully used as a dressing to reduce bleeding in hepatic and aortal models, and the hydrogels remove easily afterwards. However, there is an extremely wide array of different ways to synthesize these hydrogels. Therefore, we summarize here the recent advances of hydrogels that dissolve on demand, covering both chemical cross-linking cases and physical cross-linking cases. We believe that continuous exploration of dissolution strategies will uncover new mechanisms of dissolution and extend the range of applications for hydrogel dressings.
Collapse
Affiliation(s)
- Hao Lu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021 China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medial University), Chongqing, 400038 China
| | - Xunzhou Yu
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| | - Chengzhou Wu
- Department of Respiratory, Wuxi Country People’s Hospital, Chongqing, 405800 China
| | - Danfeng He
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| | - Jun Deng
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
24
|
Elschner T, Obst F, Heinze T. Furfuryl‐ and Maleimido Polysaccharides: Synthetic Strategies Toward Functional Biomaterials. Macromol Biosci 2018; 18:e1800258. [DOI: 10.1002/mabi.201800258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Elschner
- Dr. T. Elschner, Prof. T. HeinzeCenter of Excellence for Polysaccharide ResearchInstitute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of Jena Humboldtstraße 10, 07743 Jena Germany
| | - Franziska Obst
- F. ObstLeibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden Germany
| | - Thomas Heinze
- Dr. T. Elschner, Prof. T. HeinzeCenter of Excellence for Polysaccharide ResearchInstitute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of Jena Humboldtstraße 10, 07743 Jena Germany
| |
Collapse
|
25
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
26
|
Xu Z, Bratlie KM. Click Chemistry and Material Selection for in Situ Fabrication of Hydrogels in Tissue Engineering Applications. ACS Biomater Sci Eng 2018; 4:2276-2291. [DOI: 10.1021/acsbiomaterials.8b00230] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zihao Xu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Self-healing 8-armed star-shaped ɛ-caprolactone oligomers dually crosslinked by the Diels-Alder and urethanization reactions. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials 2018; 170:12-25. [PMID: 29635108 DOI: 10.1016/j.biomaterials.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
Abstract
Injectable hydrogels, which are used as scaffolds in cell therapy, provide a minimally invasive strategy to enhance cell retention and survival at injection site. However, till now, slow in situ gelation, undesired mechanical properties, and weak cell adhesion characteristics of reported hydrogels, have led to improper results. Here, we developed an injectable fully-interpenetrated polymer network (f-IPN) by integration of Diels-Alder (DA) crosslinked network and thermosensitive injectable hydrogel. The proposed DA hydrogels were formed in a slow manner showing robust mechanical properties. Interpenetration of thermosensitive network into DA hydrogel accelerated in situ gel-formation and masked the slow reaction rate of DA crosslinking while keeping its unique features. Two networks were formed by simple syringe injection without the need of any initiator, catalyst, or double barrel syringe. The DA and f-IPN hydrogels showed comparable viscoelastic properties along with outstanding load-bearing and shape-recovery even under high levels of compression. The subcutaneous administration of cardiomyocytes-laden f-IPN hydrogel into nude mice revealed high cell retention and survival after two weeks. Additionally, the cardiomyocyte's identity of retained cells was confirmed by detection of human and cardiac-related markers. Our results indicate that the thermosensitive-covalent networks can open a new horizon within the injection-based cell therapy applications.
Collapse
|
29
|
Madl CM, Heilshorn SC. Bioorthogonal Strategies for Engineering Extracellular Matrices. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706046. [PMID: 31558890 PMCID: PMC6761700 DOI: 10.1002/adfm.201706046] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogels are commonly used as engineered extracellular matrix (ECM) mimics in applications ranging from tissue engineering to in vitro disease models. Ideal mechanisms used to crosslink ECM-mimicking hydrogels do not interfere with the biology of the system. However, most common hydrogel crosslinking chemistries exhibit some form of cross-reactivity. The field of bio-orthogonal chemistry has arisen to address the need for highly specific and robust reactions in biological contexts. Accordingly, bio-orthogonal crosslinking strategies have been incorporated into hydrogel design, allowing for gentle and efficient encapsulation of cells in various hydrogel materials. Furthermore, the selective nature of bio-orthogonal chemistries can permit dynamic modification of hydrogel materials in the presence of live cells and other biomolecules to alter matrix mechanical properties and biochemistry on demand. In this review, we provide an overview of bio-orthogonal strategies used to prepare cell-encapsulating hydrogels and highlight the potential applications of bio-orthogonal chemistries in the design of dynamic engineered ECMs.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA,
| |
Collapse
|
30
|
Abstract
Self-healing in a fluorous copolymer material enhances its safety index and extends its working lifetime.
Collapse
Affiliation(s)
- Anil K. Padhan
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| | - Debaprasad Mandal
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| |
Collapse
|
31
|
Banerjee SL, Singha NK. A new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder "click" chemistry. SOFT MATTER 2017; 13:9024-9035. [PMID: 29177283 DOI: 10.1039/c7sm01906h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphiphilic diblock copolymers of poly(furfuryl methacrylate) (PFMA) with cationic poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PFMA-b-PMTAC) and anionic poly(sodium 4-vinylbenzenesulfonate) (PFMA-b-PSS) were prepared via reversible addition fragmentation chain-transfer (RAFT) polymerization by using PFMA as a macro-RAFT agent. The formation of the block copolymer was confirmed by FTIR and 1H NMR analyses. In water, the amphiphilic diblock copolymers, (PFMA-b-PMTAC) and (PFMA-b-PSS), formed micelles with PFMA in the core and the rest of the hydrophilic polymers like PMTAC and PSS in the corona. The PFMA core was crosslinked by using Diels-Alder (DA) "Click" chemistry in water at 60 °C where bismaleimide acted as a crosslinker. Afterwards, both the core crosslinked micelles were mixed at an almost equal charge ratio which was determined by zeta potential analysis to prepare the self-assembled hydrogel. The de-crosslinking of the hydrophobic PFMA core in the self-assembled hydrogel via rDA reaction took place at 165 °C as determined from DSC analysis. This hydrogel showed self-healing behavior using ionic interaction (in the presence of water) and DA chemistry (in the presence of heat).
Collapse
Affiliation(s)
- Sovan Lal Banerjee
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, India.
| | | |
Collapse
|
32
|
Arslan M, Aydin D, Degirmenci A, Sanyal A, Sanyal R. Embedding Well-Defined Responsive Hydrogels with Nanocontainers: Tunable Materials from Telechelic Polymers and Cyclodextrins. ACS OMEGA 2017; 2:6658-6667. [PMID: 31457261 PMCID: PMC6645099 DOI: 10.1021/acsomega.7b00787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/27/2017] [Indexed: 06/10/2023]
Abstract
Design, synthesis, and application of cyclodextrin (CD) containing thermoresponsive hydrogels fabricated from thiol-reactive telechelic polymers are reported. Hydrophilic polymers containing 2-hydroxyethyl methacrylate and/or di(ethylene glycol)methylether methacrylate monomers as side chains and thiol-reactive groups at chain ends were synthesized. A series of hydrogels was fabricated using thiol-ene conjugation of these thiol-reactive polymers with multivalent thiol-containing CDs as crosslinkers. Clear and transparent hydrogels were obtained with good conversion (79-89%) by utilizing the "nucleophilic" and "radical" thiol-ene "click" reactions. Analysis of the amount of residual thiol groups in these hydrogels using Ellman's reagent suggested that gels with a moderately well-defined network structure were obtained. Hydrogels fabricated using different telechelic polymers were examined for their properties such as morphology, equilibrium water uptake, and rheological characteristics. Cytocompatibility of these hydrogels was ascertained by a cell viability assay that demonstrated low toxicity toward fibroblast cells. Thereafter, the CD-containing hydrogels were evaluated for the loading and controlled release of puerarin, an antiglaucoma drug. Utilization of thermoresponsive polymers as the matrix for these hydrogels allows use of temperature as a stimulus to modulate the drug release. A slower and more sustained drug release was observed at physiological temperatures compared to ambient conditions. The effect of temperature on the elasticity of the hydrogel was investigated rheologically to demonstrate that the collapse of the network structure occurs near physiological temperatures. The increased hydrophobicity and compactness of the gel matrix at higher temperatures results in a slower drug release. The strategy employed here demonstrates that tuning the matrix composition of hydrogels with well-defined network structures through appropriate choice of responsive copolymers allows design of materials with control of their physical properties and drug-release behavior.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Duygu Aydin
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Turkey
| |
Collapse
|
33
|
Kalaoglu-Altan OI, Kirac-Aydin A, Sumer Bolu B, Sanyal R, Sanyal A. Diels–Alder “Clickable” Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth. Bioconjug Chem 2017; 28:2420-2428. [DOI: 10.1021/acs.bioconjchem.7b00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ozlem Ipek Kalaoglu-Altan
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Azize Kirac-Aydin
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Burcu Sumer Bolu
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| |
Collapse
|
34
|
Aydin D, Arslan M, Sanyal A, Sanyal R. Hooked on Cryogels: A Carbamate Linker Based Depot for Slow Drug Release. Bioconjug Chem 2017; 28:1443-1451. [PMID: 28441501 DOI: 10.1021/acs.bioconjchem.7b00140] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Poly(ethylene glycol) (PEG) based bulk hydrogels and cryogels containing activated carbonate groups as amine reactive handles to facilitate drug conjugations through carbamate linkages were fabricated and evaluated as slow releasing drug reservoirs. As an initial approach, photopolymerization of N-hydroxysuccinimide (NHS)-activated carbonate functional group containing monomer and PEG-methacrylate in the presence of a cross-linker was utilized to obtain bulk hydrogels with high gel conversions. The resultant hydrogels possessed moderate water uptake (170-340%) which was dependent on the monomer ratios. These hydrogels were functionalized with an anticancer drug, namely, doxorubicin. Surprisingly, while negligible drug release was observed from the bulk hydrogels under normal pH, only about 6% drug release was observed under acidic condition. Limited swelling of these hydrogels as well as lack of porous structure as deduced from scanning electron microscopy analysis might explain the poor drug release. To enhance the drug releasing capacity of these hydrogels that might stem from the increased porosity, reactive carbonate group bearing cryogels were synthesized. Compared to the bulk hydrogels, cryogels were highly porous in structure and also possessed much higher swelling capacity (1150-1500%). As a result of these distinctions, a 7-fold enhancement in drug release was observed for the cryogel system compared to the relating hydrogel. In vitro studies demonstrated that the anticancer drug doxorubicin conjugated through carbamate linkers to the cryogels was released and proved effective against MDA-MB-231 human breast cancer cells. Overall, a novel class of slow releasing nontoxic hydrogel and cryogel scaffolds with potential applications as anticancer drug reservoirs was realized.
Collapse
Affiliation(s)
- Duygu Aydin
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| | - Mehmet Arslan
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| |
Collapse
|
35
|
Bai X, Lü S, Cao Z, Ni B, Wang X, Ning P, Ma D, Wei H, Liu M. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr Polym 2017; 166:123-130. [PMID: 28385214 DOI: 10.1016/j.carbpol.2017.02.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 11/15/2022]
Abstract
In the present work, a thermosensetive copolymer with a low gelation concentration under 37°C, F127@ChS (F127 crosslinked chondroitin sulfate) was synthesized via DA click chemistry between F127-AMI (maleimido terminated F127) and ChS-furan (furfurylamine grafted chondroitin sulfate). Then, dual crosslinked hydrogels were prepared based on F127@ChS and PEG-AMI (maleimido terminated polyethylene glycol). The physical crosslinking of F127@ChS affords the hydrogel fast gelation behavior, while in situ DA click reaction occurred between F127@ChS and PEG-AMI affords the hydrogel system covalent crosslinking. The dual crosslinked injectable hydrogel was applied as scaffold to load BMP-4 for rat cranial defect repair. As indicated by X-ray imaging, cranial digital images and histological (HE and Masson) staining analysis, new bone tissues were formed in the defected area after 12 weeks repair. The results demonstrate that the novel dual crosslinked injectable hydrogel offer an interesting option for cranial bone tissue engineering.
Collapse
Affiliation(s)
- Xiao Bai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Zhen Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Boli Ni
- Gansu Tobacco Industrial Co., Ltd., Lanzhou 730050, People's Republic of China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Piao Ning
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
36
|
Zhu HZ, Wang G, Wei HL, Chu HJ, Zhu J. Click synthesis of hydrogels by metal-free 1,3-dipolar cycloaddition reaction between maleimide and azide functionalized polymers. Macromol Res 2016. [DOI: 10.1007/s13233-016-4120-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Wu H, Liu S, Xiao L, Dong X, Lu Q, Kaplan DL. Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17118-26. [PMID: 27315327 DOI: 10.1021/acsami.6b04424] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silk is useful as a drug carrier due to its biocompatibility, tunable degradation, and outstanding capacity in maintaining the function of drugs. Injectable silk hydrogels could deliver doxorubicin (DOX) for localized chemotherapy for breast cancer. To improve hydrogel properties, thixotropic silk nanofiber hydrogels in an all-aqueous solution were prepared and used to locally deliver DOX. The silk hydrogels displayed thixotropic capacity, allowing for easy injectability followed by solidification in situ. The hydrogels were loaded with DOX and released the drug over eight weeks with pH- and concentration-dependent release kinetics. In vitro and in vivo studies demonstrated that DOX-loaded silk hydrogels had good antitumor response, outperforming the equivalent dose of free DOX administered intravenously. Thixotropic silk hydrogels provide improved injectability to support sustained release, suggesting promising applications for localized chemotherapy.
Collapse
Affiliation(s)
- Hongchun Wu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
| | - Shanshan Liu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
| | - Liying Xiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - Xiaodan Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - Qiang Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - David L Kaplan
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
38
|
Morozowich NL, Nichol JL, Allcock HR. Hydrogels based on schiff base formation between an amino-containing polyphosphazene and aldehyde functionalized-dextrans. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole L. Morozowich
- Department of Chemistry; the Pennsylvania State University, University Park; Pennsylvania 16802
| | - Jessica L. Nichol
- Department of Chemistry; the Pennsylvania State University, University Park; Pennsylvania 16802
| | - Harry R. Allcock
- Department of Chemistry; the Pennsylvania State University, University Park; Pennsylvania 16802
| |
Collapse
|
39
|
Hodgson SM, Bakaic E, Stewart SA, Hoare T, Adronov A. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC). Biomacromolecules 2016; 17:1093-100. [PMID: 26842783 DOI: 10.1021/acs.biomac.5b01711] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic.
Collapse
Affiliation(s)
- Sabrina M Hodgson
- Department of Chemistry and Chemical Biology McMaster University 1280 Main St. W. Hamilton, ON L8S 4M1, Canada
| | - Emilia Bakaic
- Department of Chemical Engineering McMaster University 1280 Main St. W. Hamilton, ON L8S 4L7, Canada
| | - S Alison Stewart
- Department of Chemistry and Chemical Biology McMaster University 1280 Main St. W. Hamilton, ON L8S 4M1, Canada
| | - Todd Hoare
- Department of Chemical Engineering McMaster University 1280 Main St. W. Hamilton, ON L8S 4L7, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology McMaster University 1280 Main St. W. Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
40
|
Altinbasak I, Sanyal R, Sanyal A. Best of both worlds: Diels–Alder chemistry towards fabrication of redox-responsive degradable hydrogels for protein release. RSC Adv 2016. [DOI: 10.1039/c6ra16126j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(ethylene glycol)-based redox-responsive hydrogels have been preparedviathe Diels–Alder reaction between a furan-containing hydrophilic copolymer and a disulfide-containing bis-maleimide based crosslinker.
Collapse
Affiliation(s)
| | - Rana Sanyal
- Bogazici University
- Department of Chemistry
- Istanbul
- Turkey
- Bogazici University
| | - Amitav Sanyal
- Bogazici University
- Department of Chemistry
- Istanbul
- Turkey
- Bogazici University
| |
Collapse
|
41
|
Hacker MC, Nawaz HA. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine. Int J Mol Sci 2015; 16:27677-706. [PMID: 26610468 PMCID: PMC4661914 DOI: 10.3390/ijms161126056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.
Collapse
Affiliation(s)
- Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| | - Hafiz Awais Nawaz
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| |
Collapse
|
42
|
Yu F, Cao X, Du J, Wang G, Chen X. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24023-31. [PMID: 26466997 DOI: 10.1021/acsami.5b06896] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogel, as a good cartilage tissue-engineered scaffold, not only has to possess robust mechanical property but also has to have an intrinsic self-healing property to integrate itself or the surrounding host cartilage. In this work a double cross-linked network (DN) was designed and prepared by combining Diels-Alder click reaction and acylhydrazone bond. The DA reaction maintained the hydrogel's structural integrity and mechanical strength in physiological environment, while the dynamic covalent acylhydrazone bond resulted in hydrogel's self-healing property and controlled the on-off switch of network cross-link density. At the same time, the aldehyde groups contained in hydrogel further promote good integration of the hydrogel to surrounding tissue based on aldehyde-amine Schiff-base reaction. This kind of hydrogel has good structural integrity, autonomous self-healing, and tissue-adhesive property and simultaneously will have a good application in tissue engineering and tissue repair field.
Collapse
Affiliation(s)
- Feng Yu
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, P. R. China
- College of Materials and Chemical Engineering, Hainan University , Haikou 570228, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction , Guangzhou 510006, P. R. China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction , Guangzhou 510006, P. R. China
| | - Jie Du
- College of Materials and Chemical Engineering, Hainan University , Haikou 570228, P. R. China
| | - Gang Wang
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction , Guangzhou 510006, P. R. China
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction , Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Park SY, Chung JW, Kwak SY. Regenerable anti-fouling active PTFE membrane with thermo-reversible “peel-and-stick” hydrophilic layer. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
M. Jonker A, A. Bode S, H. Kusters A, van Hest JCM, Löwik DWPM. Soft PEG-Hydrogels with Independently Tunable Stiffness and RGDS-Content for Cell Adhesion Studies. Macromol Biosci 2015; 15:1338-47. [DOI: 10.1002/mabi.201500110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/20/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Anika M. Jonker
- Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen the Netherlands
| | - Saskia A. Bode
- Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen the Netherlands
| | - Addie H. Kusters
- Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen the Netherlands
| | | | | |
Collapse
|
45
|
Kolyamshin OA, Kuz’min MV, Ignat’ev VA, Rogozhina LG, Kol’tsov NI. Synthesis of benzene-1,4-diylbis(oxyethane-2,1-diyl) bis[(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoates]. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015060159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Higginson CJ, Kim S, Peláez-Fernández M, Fernández-Nieves A, Finn M. Modular degradable hydrogels based on thiol-reactive oxanorbornadiene linkers. J Am Chem Soc 2015; 137:4984-7. [PMID: 25871459 PMCID: PMC4415036 DOI: 10.1021/jacs.5b02708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 11/29/2022]
Abstract
Oxanorbornadiene dicarboxylate (OND) reagents are potent Michael acceptors, the adducts of which undergo fragmentation by retro-Diels-Alder reaction at rates that vary with the substitution pattern on the OND moiety. Rapid conjugate addition between thiol-terminated tetravalent PEG and multivalent ONDs yielded self-supporting hydrogels within 1 min at physiological temperature and pH. Erosion of representative hydrogel formulations occurred with predictable and pH-independent rates on the order of minutes to weeks. These materials could be made non-degradable by epoxidation of the OND linkers without slowing gelation. Hydrogels prepared with OND linkers of equal valence had comparable physical properties, as determined by equilibrium swelling behavior, indicating similar internal network structure. Diffusion and release of entrained cargo varied with both the rate of degradation of PEG-OND hydrogels and the hydrodynamic radius of the entrained species. These results highlight the utility of OND linkers in the preparation of degradable network materials with potential applications in sustained release.
Collapse
Affiliation(s)
- Cody J. Higginson
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Seung
Yeon Kim
- School of Chemistry and Biochemistry, and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Miguel Peláez-Fernández
- School of Chemistry and Biochemistry, and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Alberto Fernández-Nieves
- School of Chemistry and Biochemistry, and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - M.G. Finn
- School of Chemistry and Biochemistry, and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Li L, Gu J, Zhang J, Xie Z, Lu Y, Shen L, Dong Q, Wang Y. Injectable and Biodegradable pH-Responsive Hydrogels for Localized and Sustained Treatment of Human Fibrosarcoma. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8033-8040. [PMID: 25838258 DOI: 10.1021/acsami.5b00389] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Injectable hydrogels are an important class of biomaterials, and they have been widely used for controlled drug release. This study evaluated an injectable hydrogel formed in situ system by the reaction of a polyethylene glycol derivative with α,β-polyaspartylhydrazide for local cancer chemotherapy. This pH-responsive hydrogel was used to realize a sol-gel phase transition, where the gel remained a free-flowing fluid before injection but spontaneously changed into a semisolid hydrogel just after administration. As indicated by scanning electron microscopy images, the hydrogel exhibited a porous three-dimensional microstructure. The prepared hydrogel was biocompatible and biodegradable and could be utilized as a pH-responsive vector for drug delivery. The therapeutic effect of the hydrogel loaded with doxorubicin (DOX) after intratumoral administration in mice with human fibrosarcoma was evaluated. The inhibition of tumor growth was more obvious in the group treated by the DOX-loaded hydrogel, compared to that treated with the free DOX solution. Hence, this hydrogel with good syringeability and high biodegradability, which focuses on local chemotherapy, may enhance the therapeutic effect on human fibrosarcoma.
Collapse
Affiliation(s)
- Liubing Li
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Gu
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jie Zhang
- §Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Zonggang Xie
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yufeng Lu
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Liqin Shen
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Qirong Dong
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yangyun Wang
- §Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
48
|
Kalaoglu-Altan OI, Sanyal R, Sanyal A. “Clickable” Polymeric Nanofibers through Hydrophilic–Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms. Biomacromolecules 2015; 16:1590-7. [DOI: 10.1021/acs.biomac.5b00159] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Rana Sanyal
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
- Bogazici University, Center for Life Sciences and
Technologies, Istanbul, Turkey
| | - Amitav Sanyal
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
- Bogazici University, Center for Life Sciences and
Technologies, Istanbul, Turkey
| |
Collapse
|
49
|
Wang HC, Zhang Y, Possanza CM, Zimmerman SC, Cheng J, Moore JS, Harris K, Katz JS. Trigger chemistries for better industrial formulations. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6369-6382. [PMID: 25768973 DOI: 10.1021/acsami.5b00485] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.
Collapse
Affiliation(s)
- Hsuan-Chin Wang
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yanfeng Zhang
- ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine M Possanza
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- §Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Keith Harris
- ∥Formulation Science, Corporate Research and Development, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Joshua S Katz
- ⊥Formulation Science, Corporate Research and Development, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
50
|
Jonker AM, Borrmann A, van Eck ERH, van Delft FL, Löwik DWPM, van Hest JCM. A fast and activatable cross-linking strategy for hydrogel formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1235-1240. [PMID: 25535032 DOI: 10.1002/adma.201404448] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Strain-promoted oxidation-controlled cyclo-octyne-1,2-quinone cycloaddition (SPOCQ) is a fast and activatable cross-linking strategy for hydrogel formation. Gelation is induced by oxidation, which is performed both chemically using sodium periodate and enzymatically using mushroom tyrosinase. Due to the fast reaction kinetics, SPOCQ-formed hydrogels can be functionalized in one-pot with an azido-containing moiety using SPAAC cross-linking.
Collapse
|