1
|
Liu C, Jiang S, Luo C, Lu Y. State Transitions and Crystalline Structures of Single Polyethylene Rings: MD Simulations. J Phys Chem B 2024; 128:6598-6609. [PMID: 38941574 DOI: 10.1021/acs.jpcb.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
This study investigates the structural changes of cyclic polyethylene (PE) single chains during cooling through molecular dynamics simulations. The influence of topological constraint on a ring is examined by comparing it with the results of its linear counterpart. A pseudo phase diagram of state transition for PE rings based on length and temperature is constructed, revealing a consistent chain-folding transition during cooling. The shape anisotropy of short crystallized cyclic chains exhibits oscillations with chain length, leading to a more pronounced odd-even effect in single cyclic chains compared with the linear ones. A honeycomb model is proposed to elucidate the odd-even effect of chain folding in crystalline structures of single linear and cyclic chains, and we discuss its potential to predict surface tension. Analyses of the tight folding model and the re-entry modes demonstrate that a cyclic chain possesses a shorter average crystalline stem length and a more compact folded structure than its linear counterpart. The findings highlight the impact of topological change on crystallization and the odd-even effect of chain length, providing valuable insights for understanding polymer crystallization with different topologies.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shengming Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Zhu L, Li J, Li H, Liu B, Chen J, Jiang S. Crystallization and melting of unentangled poly(ε-caprolactone) cycles containing pendants. SOFT MATTER 2023. [PMID: 37470097 DOI: 10.1039/d3sm00591g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The Rouse model provides a basic framework to understand the chain dynamics of polymers, which is confirmed to be more suitable for exploring the linear dynamics of unentangled polymers. The crystalline morphology governed by chain dynamics and crystallization kinetics is expected to differ in linear and cyclic polymers. Cyclic poly(ε-caprolactone)s (c-PCLs) containing two bi-anthracenyl group pendants with molecular weights close to the critical molecular weight (Mc) were synthesized to investigate the chain dynamics based crystallization and melting behavior by DSC, POM, and in situ simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) investigations during heating of the isothermally crystallized samples. Double endothermic peaks were observed in the DSC curves with a low heating rate of c-PCLs without entanglement after isothermal crystallization, especially for c-PCLs with Mc. The structure evolution of the crystalline structures observed from the in situ investigations during the heating and double endothermic peaks in DSC heating curves of the c-PCLs indicate the role of pendants in the chain dynamics, which leads to the reorganization of the metastable structures. Banded spherulites of c-PCL without entanglement were observed for the first time, and the uneven growth of spherulites along the radial direction may be caused by the mismatch between chain dynamics and crystallization kinetics.
Collapse
Affiliation(s)
- Liuyong Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingqing Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer Materials, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300130, China.
| | - Jizhong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shichun Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Zhu L, Li J, Li H, Liu B, Chen J, Jiang S. Effects of end groups and entanglements on crystallization and melting behaviors of poly(ε-caprolactone). SOFT MATTER 2023; 19:2275-2286. [PMID: 36919364 DOI: 10.1039/d3sm00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The topology including end groups, entanglement loops, and tie molecules has a significant impact on the rheological and crystallization behavior and consequently on the functionality of a polymer. Unentangled, weakly entangled, and strongly entangled poly(ε-caprolactone)s (PCLs) with end groups and various molecular weights were synthesized. POM and DSC were used to observe spherulite growth and characterize thermal properties during crystallization and melting. The viscosity and structure of the samples were probed by rheology and X-ray analysis, respectively. The crossover of the scaling relationship of viscosity vs molecular weight demonstrates that the samples cover a wide range of entanglement density, and the bulky end groups cause deviations from the classical scaling laws. In situ simultaneous SAXS/WAXS investigations showed that the crystal structure of PCLs did not change with end groups and heating. The results of POM and DSC imply that the end groups and entanglements affect the crystallization rate and the spherulite morphology. The melting of PCLs containing end groups was found to be a multi-step process involving various nanoscale crystalline structures. The evolution of nanoscale crystalline structures of isothermally crystallized PCLs during heating was analyzed by fitting 1D SAXS profiles, and the continuous structural evolution was found to be a process influenced by end groups and entanglements. The results show that end groups and entanglements affect the chain dynamics and lead to constrained crystallization behavior and the formation of metastable structures, ultimately affecting the structure evolution during melting.
Collapse
Affiliation(s)
- Liuyong Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jingqing Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer Materials, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300130, China.
| | - Jizhong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shichun Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Zhu Q, Zhou ZP, Hao TF, Nie YJ. Significantly Improved Stereocomplexation Ability in Cyclic Block Copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zou L, Zhang W. Molecular Dynamics Simulations of the Effects of Entanglement on Polymer Crystal Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingyi Zou
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Wenlin Zhang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Wei Y, Zhou Z, Hao T, Nie Y. Molecular dynamics simulation on the crystallization behavior of cyclic polyethylene affected by functionalized carbon nanotubes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yangyang Wei
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Zhiping Zhou
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Tongfan Hao
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
7
|
Kobayashi K, Yamazaki S, Kimura K. Formation of shish-like fibril crystals from the melt of blends of cyclic and linear polyethylene under shear flow. Polym J 2022. [DOI: 10.1038/s41428-022-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Li K, Battegazzore D, Pérez-Camargo RA, Liu G, Monticelli O, Müller AJ, Fina A. Polycaprolactone Adsorption and Nucleation onto Graphite Nanoplates for Highly Flexible, Thermally Conductive, and Thermomechanically Stiff Nanopapers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59206-59220. [PMID: 34851623 PMCID: PMC8678991 DOI: 10.1021/acsami.1c16201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 06/10/2023]
Abstract
Free-standing nanopapers based on graphene and its related materials have been widely studied and proposed for flexible heat spreader applications. Given that these materials are typically brittle, this work reports the exploitation of polycaprolactone (PCL) as a polymer binder to enhance resistance and flexibility of nanopapers based on graphite nanoplates (GNP), while maintaining a high thermal conductivity. Properties of nanopapers appear to correlate with the excellent PCL adhesion and strong nucleation of the surface of GNP flakes. Furthermore, different crystalline populations were observed for PCL within the nanopaper and were investigated in detail via differential scanning calorimetry advanced techniques and X-ray diffraction. These demonstrated the coexistence of conventional unoriented PCL crystals, oriented PCL crystals obtained as a consequence of the strong nucleation effect, and highly stable PCL fractions explained by the formation of crystalline pre-freezing layers, the latter having melting temperatures well above the equilibrium melting temperature for pristine PCL. This peculiar crystallization behavior of PCL, reported in this paper for the first time for a tridimensional structure, has a direct impact on material properties. Indeed, the presence of high thermal stability crystals, strongly bound to GNP flakes, coexisting with the highly flexible amorphous fraction, delivers an ideal solution for the strengthening and toughening of GNP nanopapers. Thermomechanical properties of PCL/GNP nanopapers, investigated both on a heating ramp and by creep tests at high temperatures, demonstrated superior stiffness well above the conventional melting temperature of PCL. At the same time, a thermal conductivity > 150 W/m·K was obtained for PCL/GNP nanopapers, representing a viable alternative to traditional metals in terms of heat dissipation, while affording flexibility and light weight, unmatched by conventional thermally conductive metals or ceramics. Besides the obtained performance, the formation of polymer crystals that are stable above the equilibrium melting temperature constitutes a novel approach in the self-assembly of highly ordered nanostructures based on graphene and related materials.
Collapse
Affiliation(s)
- Kun Li
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, 16146 Genova, Italy
| | - Daniele Battegazzore
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino-Alessandria Campus, viale Teresa Michel, 5, 15121 Alessandria, Italy
| | - Ricardo A. Pérez-Camargo
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Orietta Monticelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Basque
Foundation
for Science, IKERBASQUE, 48009 Bilbao, Spain
| | - Alberto Fina
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino-Alessandria Campus, viale Teresa Michel, 5, 15121 Alessandria, Italy
| |
Collapse
|
9
|
DelRe C, Chang B, Jayapurna I, Hall A, Wang A, Zolkin K, Xu T. Synergistic Enzyme Mixtures to Realize Near-Complete Depolymerization in Biodegradable Polymer/Additive Blends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105707. [PMID: 34623716 DOI: 10.1002/adma.202105707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Embedding catalysts inside of plastics affords accelerated chemical modification with programmable latency and pathways. Nanoscopically embedded enzymes can lead to near-complete degradation of polyesters via chain-end mediated processive depolymerization. The overall degradation rate and pathways have a strong dependence on the morphology of semicrystalline polyesters. Yet, most studies to date focus on pristine polymers instead of mixtures that contain additives and other components despite their nearly universal use in plastic production. Here, additives are introduced to purposely change the morphology of polycaprolactone (PCL) by increasing the bending and twisting of crystalline lamellae. These morphological changes immobilize chain ends preferentially at the crystalline/amorphous interfaces and limit chain-end accessibility by the embedded processive enzyme. This chain-end redistribution reduces the polymer-to-monomer conversion from >95% to less than 50%, causing formation of highly crystalline plastic pieces, including microplastics. By synergizing both random chain scission and processive depolymerization, it is feasible to navigate morphological changes in polymer/additive blends and to achieve near-complete depolymerization. The random scission enzymes in the amorphous domains create new chain ends that are subsequently bound and depolymerized by processive enzymes. Present studies further highlight the importance to consider how the host polymer's morphologies affect the reactions catalyzed by embedded catalytic species.
Collapse
Affiliation(s)
- Christopher DelRe
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Boyce Chang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ivan Jayapurna
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Aaron Hall
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ariel Wang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kyle Zolkin
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Liu R, Nie Y, Ming Y, Hao T, Zhou Z. Simulations on polymer nanocomposite crystallization. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rongjuan Liu
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yongqiang Ming
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Tongfan Hao
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Zhiping Zhou
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
11
|
Yu X, Tian H, Lv C, Xiang A, Wu H. Analysis of poly(vinyl alcohol) crystallizability: the hindering effect of octa(γ-chloropropyl) POSS. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02834-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Li L, Gatto GJ, Brand RM, Krovi SA, Cottrell ML, Norton C, van der Straten A, Johnson LM. Long-acting biodegradable implant for sustained delivery of antiretrovirals (ARVs) and hormones. J Control Release 2021; 340:188-199. [PMID: 34678316 DOI: 10.1016/j.jconrel.2021.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022]
Abstract
Women worldwide confront two major reproductive health challenges: the need for contraception and protection from sexually transmitted infections, including Human Immunodeficiency Virus (HIV). Multipurpose Prevention Technologies (MPTs) that simultaneously prevent unintended pregnancy and HIV could address these challenges with a single product. Here, we developed a long-acting (LA) subcutaneously administered and biodegradable implant system that provides sustained delivery of contraceptive and antiretroviral (ARV) with zero-order release kinetics. The MPT system involves two implants comprising an extruded tube of a biodegradable polymer, poly(ε-caprolactone) (PCL). Each implant is filled with a formulation of progestin [levonorgestrel (LNG) or etonogestrel (ENG)], or a formulation of a potent ARV [tenofovir alafenamide (TAF), or 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA)]. We demonstrated sustained in-vitro release of LNG, ENG, and EFdA from the implant system for 13-17 months, while maintaining high stability of the drugs (>99%) within the implant reservoirs. We further elucidated the controlled release mechanism of the implant and leveraged several tunable parameters (e.g., type and quantity of the excipient, PCL properties, and implant wall thickness) to tailor the release kinetics and enhance the mechanical integrity of the MPT implant. The optimized MPT showed sustained in-vitro release of ENG and EFdA over 1 year while maintaining a high level of formulation stability and structural integrity. The MPT implant system was further evaluated in a preclinical study using a rodent model and demonstrated sustained release of EFdA (6 months) and ENG (12 months) with high stability of the drug formulation (>95%). This manuscript supports the continued advancement of LA delivery systems for MPTs.
Collapse
Affiliation(s)
- Linying Li
- Biomedical Technologies Group, RTI International, Research Triangle Park, NC 27709, USA
| | - Gregory J Gatto
- Global Public Health Impact Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Rhonda M Brand
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sai Archana Krovi
- Biomedical Technologies Group, RTI International, Research Triangle Park, NC 27709, USA
| | - Mackenzie L Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chasity Norton
- Biomedical Technologies Group, RTI International, Research Triangle Park, NC 27709, USA
| | - Ariane van der Straten
- Center for AIDS Prevention Studies, Dept of Medicine, University of California San Francisco, San Francisco, CA 94104, USA; ASTRA consulting, Kensington, CA 94708, USA
| | - Leah M Johnson
- Biomedical Technologies Group, RTI International, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Kang GY, Ma W, Liu MZ, Luo HX, Yu CY, Wei H. Expanding Cyclic Topology-Based Biomedical Polymer Panel: Universal Synthesis of Hetero-"8"-Shaped Copolymers and Topological Modulation of Polymer Degradation. Macromol Rapid Commun 2021; 42:e2100298. [PMID: 34242443 DOI: 10.1002/marc.202100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/03/2021] [Indexed: 12/26/2022]
Abstract
8-Shaped copolymers with two macrocycles connected together represent an interesting cyclic topology-derived polymer species due to the simultaneous incorporation of two cyclic moieties and the reported unique physical and chemical properties. To provide a proof-of-concept for a broad readership on biomedical polymers, a well-defined hetero-8-shaped amphiphilic copolymer, cyclic-poly(oligo(ethylene glycol)monomethyl ether methacrylate)-b-cyclic PCL (cPOEGMA-b-cPCL) is synthesized by an elegant integration of intrachain click cyclization and interchain click coupling. The potential of the self-assembled micelles of cPOEGMA-b-cPCL for controlled drug release is evaluated by in vitro drug loading and drug release, cellular uptake, cytotoxicity, and degradation studies. Most importantly, the micelles based on cPOEGMA-b-cPCL show much slower degradation profiles than the previously reported linear counterpart, POEGMA-b-PCL and tadpole-shaped analog, PEG-b-cPCL because of the presence of cyclic hydrophilic POEGMA segment. Therefore, this study not only develops a robust strategy for a universal precise synthesis of well-defined hetero-8-shaped copolymers based on diverse vinyl and ring-structured monomers, but also reveals the first modulation of polymer degradation property by topological control of the nondegradable moiety in the polymer construct through advanced macromolecular engineering.
Collapse
Affiliation(s)
- Gui-Ying Kang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Wei Ma
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Ming-Zhu Liu
- School of Chemistry and Materials Engineering, Medicinal and Edible Plant Resources of Hainan Province Key Laboratory, Hainan Vocational University of Science and Technology, Haikou, 571126, China
| | - Hai-Xi Luo
- School of Chemistry and Materials Engineering, Medicinal and Edible Plant Resources of Hainan Province Key Laboratory, Hainan Vocational University of Science and Technology, Haikou, 571126, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Ruiz MB, Pérez-Camargo RA, López JV, Penott-Chang E, Múgica A, Coulembier O, Müller AJ. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Int J Biol Macromol 2021; 186:255-267. [PMID: 34246673 DOI: 10.1016/j.ijbiomac.2021.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Polylactide is one of the most versatile biopolymers, but its slow crystallization limits its temperature usage range. Hence finding ways to enhance it is crucial to widen its applications. Linear and cyclic poly (L-lactide) (l-PLLA and c-PLLA) of similarly low molecular weights (MW) were synthesized by ring-opening polymerization of L-lactide, and ring-expansion methodology, respectively. Two types of blends were prepared by solution mixing: (a) l-PLLA/c-PLLA, at extreme compositions (rich in linear or in cyclic chains), and (b) blends of each of these low MW materials with a commercial high MW linear PLA. The crystallization of the different blends was evaluated by polarized light optical microscopy and differential scanning calorimetry. It was found, for the first time, that in the l-PLLA rich blends, small amounts of c-PLLA (i.e., 5 and 10 wt%) increase the nucleation density, nucleation rate (1/τ0), spherulitic growth rate (G), and overall crystallization rate (1/τ50%), when compared to neat l-PLLA, due to a synergistic effect (i.e., nucleation plus plasticization). In contrast, the opposite effect was found in the c-PLLA rich blends. The addition of small amounts of l-PLLA to a matrix of c-PLLA chains causes a decrease in the nucleation density, 1/τ0, G, and 1/τ50% values, due to threading effects between cyclic and linear chains. Small amounts of l-PLLA and c-PLLA enhance the crystallization ability of a commercial high MW linear PLA without affecting its melting temperature. The l-PLLA only acts as a plasticizer for the PLA matrix, whereas c-PLLA has a synergistic effect in accelerating the crystallization of PLA that goes beyond simple plasticization. The addition of small amounts of c-PLLA affects not only PLA crystal growth but also its nucleation due to the unique cyclic chains topology.
Collapse
Affiliation(s)
- Marina Betegón Ruiz
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Ricardo A Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Juan V López
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Evis Penott-Chang
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
15
|
Li L, Areson C, van der Straten A, Johnson LM. Effects of Polymer Blending on the Performance of a Subcutaneous Biodegradable Implant for HIV Pre-Exposure Prophylaxis (PrEP). Int J Mol Sci 2021; 22:ijms22126529. [PMID: 34207212 PMCID: PMC8235439 DOI: 10.3390/ijms22126529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 12/16/2022] Open
Abstract
Long-acting (LA) HIV pre-exposure prophylaxis (PrEP) can mitigate challenges of adhering to daily or on-demand regimens of antiretrovirals (ARVs). We are developing a subcutaneous implant comprising polycaprolactone (PCL) for sustained delivery of ARVs for PrEP. Here we use tenofovir alafenamide (TAF) as a model drug. Previously, we demonstrated that the release rates of drugs are controlled by the implant surface area and wall thickness, and the molecular weight (MW) of PCL. Here, we further advance the implant design and tailor the release rates of TAF and the mechanical integrity of the implant through unique polymer blend formulations. In vitro release of TAF from the implant exhibited zero-order release kinetics for ~120 days. TAF release rates were readily controlled via the MW of the polymer blend, with PCL formulations of higher MW releasing the drug faster than implants with lower MW PCL. Use of polymer MW to tune drug release rates is partly explained by PCL crystallinity, as higher PCL crystalline material is often associated with a slower release rate. Moreover, results showed the ability to tailor mechanical properties via PCL blends. Blending PCL offers an effective approach for tuning the ARV release rates, implant duration, and integrity, and ultimately the biodegradation profiles of the implant.
Collapse
Affiliation(s)
- Linying Li
- Engineered Systems RTI International, Durham, NC 27709, USA; (L.L.); (C.A.)
| | - Christine Areson
- Engineered Systems RTI International, Durham, NC 27709, USA; (L.L.); (C.A.)
| | - Ariane van der Straten
- Center for AIDS Prevention Studies, Department of Medicine, University of California San Francisco, San Francisco, CA 94104, USA;
- ASTRA Consulting, Kensington, CA 94708, USA
| | - Leah M. Johnson
- Engineered Systems RTI International, Durham, NC 27709, USA; (L.L.); (C.A.)
- Correspondence: ; Tel.: +1-919-541-7233
| |
Collapse
|
16
|
Aoki D, Aibara G, Takata T. Reversible cyclic-linear topological transformation using a long-range rotaxane switch. Polym Chem 2021. [DOI: 10.1039/d1py01197a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A reversible linear-cyclic topological transformation of polymers facilitated by a long-range rotaxane switch.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Gota Aibara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
- JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
17
|
Sangroniz L, Ocando C, Cavallo D, Müller AJ. Melt Memory Effects in Poly(Butylene Succinate) Studied by Differential Fast Scanning Calorimetry. Polymers (Basel) 2020; 12:E2796. [PMID: 33256010 PMCID: PMC7761523 DOI: 10.3390/polym12122796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022] Open
Abstract
It is widely accepted that melt memory effect on polymer crystallization depends on thermal history of the material, however a systematic study of the different parameters involved in the process has been neglected, so far. In this work, poly(butylene succinate) has been selected to analyze the effect of short times and high cooling/heating rates that are relevant from an industrial point of view by taking advantage of fast scanning calorimetry (FSC). The FSC experiments reveal that the width of melt memory temperature range is reduced with the time spent at the self-nucleation temperature (Ts), since annealing of crystals occurs at higher temperatures. The effectiveness of self-nuclei to crystallize the sample is addressed by increasing the cooling rate from Ts temperature. The effect of previous standard state on melt memory is analyzed by (a) changing the cooling/heating rate and (b) applying successive self-nucleation and annealing (SSA) technique, observing a strong correlation between melting enthalpy or crystallinity degree and the extent of melt memory. The acquired knowledge can be extended to other semicrystalline polymers to control accurately the melt memory effect and therefore, the time needed to process the material and its final performance.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Connie Ocando
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Melt density, equilibrium melting temperature, and crystallization characteristics of highly pure cyclic poly(ε-Caprolactone)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Nakagawa S, Yoshie N. Periodic Surface Pattern Induced by Crystallization of Polymer Brushes in Solvents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505 Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505 Japan
| |
Collapse
|
20
|
Local Effects of Ring Topology Observed in Polymer Conformation and Dynamics by Neutron Scattering-A Review. Polymers (Basel) 2020; 12:polym12091884. [PMID: 32825628 PMCID: PMC7563567 DOI: 10.3390/polym12091884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
The physical properties of polymers depend on a range of both structural and chemical parameters, and in particular, on molecular topology. Apparently simple changes such as joining chains at a point to form stars or simply joining the two ends to form a ring can profoundly alter molecular conformation and dynamics, and hence properties. Cyclic polymers, as they do not have free ends, represent the simplest model system where reptation is completely suppressed. As a consequence, there exists a considerable literature and several reviews focused on high molecular weight cyclics where long range dynamics described by the reptation model comes into play. However, this is only one area of interest. Consideration of the conformation and dynamics of rings and chains, and of their mixtures, over molecular weights ranging from tens of repeat units up to and beyond the onset of entanglements and in both solution and melts has provided a rich literature for theory and simulation. Experimental work, particularly neutron scattering, has been limited by the difficulty of synthesizing well-characterized ring samples, and deuterated analogues. Here in the context of the broader literature we review investigations of local conformation and dynamics of linear and cyclic polymers, concentrating on poly(dimethyl siloxane) (PDMS) and covering a wide range of generally less high molar masses. Experimental data from small angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), including Neutron Spin Echo (NSE), are compared to theory and computational predictions.
Collapse
|
21
|
Morphology and growth rate of spherulite of cyclic poly(ε-caprolactone) having a triazole group at the closing point. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Liénard R, De Winter J, Coulembier O. Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200236] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Romain Liénard
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
| |
Collapse
|
23
|
High Molecular‐Weight Cyclic Polyesters from Solvent‐Free Ring‐Opening Polymerization of Lactones with a Pyridyl‐Urea/MTBD. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Differences in Crystallization Behaviors between Cyclic and Linear Polymer Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2403-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Ono R, Atarashi H, Yamazaki S, Kimura K. Molecular weight dependence of the growth rate of spherulite of cyclic poly(ε-caprolactone) polymerized by ring expansion reaction. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Xiang L, Ryu W, Kim J, Ree M. Cyclic topology effects on the morphology of biocompatible and environment-friendly poly(ε-caprolactone) under nanoscale film confinement. Polym Chem 2020. [DOI: 10.1039/d0py00665c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Quantitative grazing incidence X-ray scattering analysis combined with X-ray reflectivity using synchrotron radiation sources was explored for the first time cyclic topology effects on the nanoscale film morphology of poly(ε-caprolactone).
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemistry
- Division of Advanced Materials Science
- and Polymer Research Institute
- Pohang University of Science and Technology
- Pohang 37673
| | - Wonyeong Ryu
- Department of Chemistry
- Division of Advanced Materials Science
- and Polymer Research Institute
- Pohang University of Science and Technology
- Pohang 37673
| | - Jehan Kim
- Pohang Accelerator Laboratory
- Pohang University of Science and Technology
- Pohang 37673
- Republic of Korea
| | - Moonhor Ree
- Department of Chemistry
- Division of Advanced Materials Science
- and Polymer Research Institute
- Pohang University of Science and Technology
- Pohang 37673
| |
Collapse
|
27
|
Promoted crystallization kinetics of biodegradable poly(butylene succinate) by a nucleation agent of green chemical. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1929-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Wang J, Li L, Yang W, Yan Z, Zhou Y, Wang B, Zhang B, Bu W. Sub-10 nm Scale Lamellar Structures with a High Degree of Long-Range Order Fabricated by Orthogonal Self-Assembly of Crown Ether/Secondary Dialkylammonium Recognition and Metal···Metal/π-π Interactions. ACS Macro Lett 2019; 8:1012-1016. [PMID: 35619497 DOI: 10.1021/acsmacrolett.9b00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We here present an orthogonal self-assembly strategy to fabricate a series of metallosupramolecular polymers by coupling planar platinum(II) complexes and starlike poly(ε-caprolactone), through Pt···Pt/π-π interactions and host-guest recognition between secondary dialkylammonium salts and crown ether groups. The solid metallosupramolecular polymers exhibit sub-10 nm scale lamellar structures and one of them occupies an extraordinary degree of long-range order. The platinum(II) complexes can be regarded as an individual supramolecular block to microphase segregate the polymeric segment. Moreover, the metallosupramolecular polymers show intense luminescence and appreciable proton conductivity, originating from these two supramolecular connection modes, respectively. This work paves the way for fabricating metallosupramolecular polymers showing both highly ordered nanostructures and multifunctional properties.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lijie Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Weili Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zihao Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yufeng Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Binghua Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Bin Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Weifeng Bu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
29
|
Johnson LM, Krovi SA, Li L, Girouard N, Demkovich ZR, Myers D, Creelman B, van der Straten A. Characterization of a Reservoir-Style Implant for Sustained Release of Tenofovir Alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics 2019; 11:pharmaceutics11070315. [PMID: 31277461 PMCID: PMC6680758 DOI: 10.3390/pharmaceutics11070315] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022] Open
Abstract
Long-acting (LA) HIV pre-exposure prophylaxis (PrEP) offers the potential to improve adherence by lowering the burden of daily or on-demand regimens of antiretroviral (ARV) drugs. This paper details the fabrication and in vitro performance of a subcutaneous and trocar-compatible implant for the LA delivery of tenofovir alafenamide (TAF). The reservoir-style implant comprises an extruded tube of a biodegradable polymer, poly(ε-caprolactone) (PCL), filled with a formulation of TAF and castor oil excipient. Parameters that affect the daily release rates of TAF are described, including the surface area of the implant, the thickness of the PCL tube walls (between 45 and 200 µm), and the properties of the PCL (e.g., crystallinity). In vitro studies show a linear relationship between daily release rates and surface area, demonstrating a membrane-controlled release mechanism from extruded PCL tubes. Release rates of TAF from the implant are inversely proportional to the wall thickness, with release rates between approximately 0.91 and 0.15 mg/day for 45 and 200 µm, respectively. The sustained release of TAF at 0.28 ± 0.06 mg/day over the course of 180 days in vitro was achieved. Progress in the development of this implant platform addresses the need for new biomedical approaches to the LA delivery of ARV drugs.
Collapse
Affiliation(s)
- Leah M Johnson
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Sai Archana Krovi
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Linying Li
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Natalie Girouard
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Zach R Demkovich
- Women's Global Health Imperative, RTI International, 351 California Street, Suite 500, San Francisco, CA 94104, USA
| | - Daniel Myers
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| | - Ben Creelman
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| | - Ariane van der Straten
- Women's Global Health Imperative, RTI International, 351 California Street, Suite 500, San Francisco, CA 94104, USA
| |
Collapse
|
30
|
Tao L, Liu K, Li T, Xiao R. Structure and properties of bio‐based polyamide 109 treated with superheated water. POLYM INT 2019. [DOI: 10.1002/pi.5835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Tao
- The Key Laboratory of High‐Performance Fiber and Product, Ministry of EducationCollege of Materials Science and Engineering, Donghua University Shanghai P.R. China
| | - Ke Liu
- The Key Laboratory of High‐Performance Fiber and Product, Ministry of EducationCollege of Materials Science and Engineering, Donghua University Shanghai P.R. China
| | - Taotao Li
- The Key Laboratory of High‐Performance Fiber and Product, Ministry of EducationCollege of Materials Science and Engineering, Donghua University Shanghai P.R. China
| | - Ru Xiao
- The Key Laboratory of High‐Performance Fiber and Product, Ministry of EducationCollege of Materials Science and Engineering, Donghua University Shanghai P.R. China
| |
Collapse
|
31
|
Hagita K, Fujiwara S, Iwaoka N. An accelerated united-atom molecular dynamics simulation on the fast crystallization of ring polyethylene melts. J Chem Phys 2019; 150:074901. [PMID: 30795675 DOI: 10.1063/1.5080332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To investigate crystallinities based on trans-structures, we determined the differences in the crystallization properties of ring and linear polymers by performing united-atom-model molecular dynamics (MD) simulations of homogeneous polyethylene melts of equal length, N, which refers to the number of monomers per chain. Modified parameters based on the DREIDING force field for the CH2 units were used in order to accelerate the crystallization process. To detect polymer crystallization, we introduced some local-order parameters that relate to trans-segments in addition to common crystallinities using neighboring bond orders. Through quenching MD simulations at 5 K/ns, we roughly determined temperature thresholds, Tth, at which crystallization is observed although it was hard to determine the precise Tth as observed in the laboratory time frame with the present computing resources. When N was relatively small (100 and 200), Tth was determined to be 320 and 350 K for the linear- and ring-polyethylene melts, respectively, while Tth was found to be 330 and 350 K, respectively, when N was 1000. Having confirmed that the crystallization of a ring-polyethylene melt occurs faster than that of the analogous linear melt, we conclude that the trans-segment-based crystallinities are effective for the analysis of local crystal behavior.
Collapse
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan
| | - Susumu Fujiwara
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nobuyuki Iwaoka
- Tsuruoka College, National Institute of Technology, Tsuruoka 997-8511, Japan
| |
Collapse
|
32
|
Ree BJ, Satoh T, Yamamoto T. Micelle Structure Details and Stabilities of Cyclic Block Copolymer Amphiphile and Its Linear Analogues. Polymers (Basel) 2019; 11:E163. [PMID: 30960147 PMCID: PMC6401893 DOI: 10.3390/polym11010163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigate structures and stabilities of the micelles of a cyclic amphiphile (c-PBA-b-PEO) composed of poly(n-butyl acrylate) (PBA) and poly(ethylene oxide) (PEO) blocks and its linear diblock and triblock analogues (l-PBA-b-PEO and l-PBA-b-PEO-b-PBA) by using synchrotron X-ray scattering and quantitative data analysis. The comprehensive scattering analysis gives details and insights to the micellar architecture through structural parameters. Furthermore, this analysis provides direct clues for structural stabilities in micelles, which can be used as a good guideline to design highly stable micelles. Interestingly, in water, all topological polymers are found to form ellipsoidal micelles rather than spherical micelles; more interestingly, the cyclic polymer and its linear triblock analog make oblate-ellipsoidal micelles while the linear diblock analog makes a prolate-ellipsoidal micelle. The analysis results collectively inform that the cyclic topology enables more compact micelle formation as well as provides a positive impact on the micellar structural integrity.
Collapse
Affiliation(s)
- Brian J Ree
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
33
|
Arrighi V, Gagliardi S, Ganazzoli F, Higgins JS, Raffaini G, Tanchawanich J, Taylor J, Telling MTF. Effect of Chain Length and Topological Constraints on Segmental Relaxation in Cyclic PDMS. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valeria Arrighi
- Institute of Chemical Sciences, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Simona Gagliardi
- Institute of Chemical Sciences, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Fabio Ganazzoli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy
| | - Julia S. Higgins
- Chemical Engineering Department, Imperial College London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Giuseppina Raffaini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy
| | - Jeerachada Tanchawanich
- Institute of Chemical Sciences, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Jenny Taylor
- Institute of Chemical Sciences, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Mark T. F. Telling
- ISIS, Rutherford
Appleton Laboratory, Chilton, Didcot OX11 OQX, United Kingdom
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
34
|
Iyer K, Muthukumar M. Langevin dynamics simulation of crystallization of ring polymers. J Chem Phys 2018; 148:244904. [DOI: 10.1063/1.5023602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Kiran Iyer
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
35
|
Xiang L, Ryu W, Kim H, Ree M. Precise Synthesis, Properties, and Structures of Cyclic Poly(ε-caprolactone)s. Polymers (Basel) 2018; 10:E577. [PMID: 30966611 PMCID: PMC6403704 DOI: 10.3390/polym10060577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Cyclic PCL (c-PCL) has drawn great attention from academia and industry because of its unique, unusual structure and property characteristics due to the absence of end groups in addition to the biocompatibility and biodegradability of its linear analogue. As a result of much research effort, several synthetic methods have been developed to produce c-PCLs so far. Their chain, morphology and property characteristics were investigated even though carried out on a very limited basis. This feature article reviews the research progress made in the synthesis, morphology, and properties of c-PCL; all results and their pros and cons are discussed in terms of purity and molecular weight distribution in addition to the cyclic topology effect. In addition, we attempted to synthesize a series of c-PCL products of high purity by using intramolecular azido-alkynyl click cyclization chemistry and subsequent precise and controlled separation and purification; and their thermal degradation and phase transitions were investigated in terms of the cyclic topology effect.
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemistry, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Wonyeong Ryu
- Department of Chemistry, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Heesoo Kim
- Department of Microbiology and Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 38066, Korea.
| | - Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science and Technology, Pohang 37673, Korea.
| |
Collapse
|
36
|
Kelly GM, Elman JF, Jiang Z, Strzalka J, Albert JN. Thermal transitions in semi-crystalline polymer thin films studied via spectral reflectance. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zaldua N, Liénard R, Josse T, Zubitur M, Mugica A, Iturrospe A, Arbe A, De Winter J, Coulembier O, Müller AJ. Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(l-lactide) and Poly(d-lactide). Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02638] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | | | - Amaia Iturrospe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Arbe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | | | | | | |
Collapse
|
38
|
Li L, He L, Wang B, Ge P, Jing L, Liu H, Gong C, Zhang B, Zhang J, Bu W. Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes as nanostructured platforms for proton transport. Chem Commun (Camb) 2018; 54:8092-8095. [DOI: 10.1039/c8cc04518f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes can be confined into two-dimensional nanochannels, leading to remarkable enhancements and rational control of proton conductivity.
Collapse
|
39
|
Kossack W, Schulz M, Thurn-Albrecht T, Reinmuth J, Skokow V, Kremer F. Temperature-dependent IR-transition moment orientational analysis applied to thin supported films of poly-ε-caprolactone. SOFT MATTER 2017; 13:9211-9219. [PMID: 29188852 DOI: 10.1039/c7sm01988b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel experimental setup is described which enables one to carry out infrared transition moment orientational analysis (IR-TMOA) depending on temperature. By this, three dimensional molecular order parameter tensors of IR-active transition dipole moments with respect to the sample coordinate system can be determined in their thermal evolution (35 °C < T < 59 °C). As an example crystallinity and macroscopic order of poly-ε-caprolcatone are monitored. Both remain largely unaltered up to T ∼ 50 °C, above which they decrease. These reductions are explained as the melting of flat-on crystalline lamellae that make up about 34% of the crystalline material. The remaining crystallites are arranged into bulk-like, confined spherulitic structures and do not melt by more than (3 ± 3)%. Therefore, flat-on oriented lamellae are supposed to be kinetically favored by confinement during melt crystallization but are thermodynamically less stable than two-dimensionally confined bulk-like spherulites.
Collapse
Affiliation(s)
- Wilhelm Kossack
- Molecular Physics department, Peter Debye Institut für weiche Materie, University Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Kelly GM, Haque FM, Grayson SM, Albert JNL. Suppression of Melt-Induced Dewetting in Cyclic Poly(ε-caprolactone) Thin Films. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni M. Kelly
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Farihah M. Haque
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Julie N. L. Albert
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
41
|
Xiao H, Luo C, Yan D, Sommer JU. Molecular Dynamics Simulation of Crystallization Cyclic Polymer Melts As Compared to Their Linear Counterparts. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01570] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hongyi Xiao
- Department
of Physics, Beijing Normal University, 100875 Beijing, China
- Institute
Theory of Polymers, Leibniz-Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Chuanfu Luo
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Dadong Yan
- Department
of Physics, Beijing Normal University, 100875 Beijing, China
| | - Jens-Uwe Sommer
- Institute
Theory of Polymers, Leibniz-Institute of Polymer Research Dresden, 01069 Dresden, Germany
| |
Collapse
|
42
|
Sun P, Zhu W, Chen J, Liu J, Wu Y, Zhang K. Synthesis of well-defined cyclic polyesters via self-accelerating click reaction. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Ultrathin film crystallization of poly(ε-caprolactone) in blends containing styrene-isoprene block copolymers: The nano-rose morphology. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Ikehara T, Kataoka T. Diverse morphological formations and lamellar dimensions of poly(ε-caprolactone) crystals in the monolayers grafted onto solid substrates. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Baba E, Yatsunami T, Tezuka Y, Yamamoto T. Formation and Properties of Vesicles from Cyclic Amphiphilic PS-PEO Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10344-10349. [PMID: 27623059 DOI: 10.1021/acs.langmuir.6b03148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Linear polystyrene-poly(ethylene oxide)-polystyrene (PS-PEO-PS) block copolymers and corresponding cyclized PS-PEO counterparts with three different PS molecular weights were synthesized and self-assembled to investigate the effects arising from the topology. Linear PS5-PEO45-PS5 (L1) and cyclic PS10-PEO45 (C1) formed micelles. As previously reported for poly(n-butyl acrylate) and PEO block copolymers, the micelles from C1 showed more than 30 °C higher phase transition temperature (cloud point, Tc) than those from L1. Linear PS10-PEO45-PS10 (L2) and cyclic PS20-PEO45 (C2) resulted in the formation of a structure called large compound micelles. Self-assembly of linear PS40-PEO48-PS40 (L3) and cyclic PS86-PEO48 (C3) lead to the formation of vesicles. The vesicles were characterized by TEM, DLS, and SLS. Remarkably, the vesicles from L3 (Tc = 69, 59, and 48 °C in the presence of 1, 5, and 10 wt % of NaCl, respectively) were found to be somewhat more thermally stable than those from C3 (Tc = 62, 52, and 43 °C in the presence of 1, 5, and 10 wt % of NaCl, respectively). This trend of the thermal stability was counterintuitively opposed to the case of the micelles. Moreover, Tc of the vesicles was controlled by the ratio of L3 and C3.
Collapse
Affiliation(s)
- Eisuke Baba
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshiaki Yatsunami
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takuya Yamamoto
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University , Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
46
|
Zardalidis G, Mars J, Allgaier J, Mezger M, Richter D, Floudas G. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains. SOFT MATTER 2016; 12:8124-8134. [PMID: 27714349 DOI: 10.1039/c6sm01622g] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < Me), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > Me undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.
Collapse
Affiliation(s)
- George Zardalidis
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece.
| | - Julian Mars
- Institute of Physics, Johannes Gutenberg University Mainz and Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science and Institute for Complex Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Markus Mezger
- Institute of Physics, Johannes Gutenberg University Mainz and Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Dieter Richter
- Jülich Centre for Neutron Science and Institute for Complex Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece.
| |
Collapse
|
47
|
Non-monotonic molecular weight dependence of crystallization rates of linear and cyclic poly(epsilon-caprolactone)s in a wide temperature range. POLYM INT 2016. [DOI: 10.1002/pi.5157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Yamamoto T, Yagyu S, Tezuka Y. Light- and Heat-Triggered Reversible Linear–Cyclic Topological Conversion of Telechelic Polymers with Anthryl End Groups. J Am Chem Soc 2016; 138:3904-11. [DOI: 10.1021/jacs.6b00800] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takuya Yamamoto
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152−8552, Japan
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060−8628, Japan
| | - Sakyo Yagyu
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152−8552, Japan
| | - Yasuyuki Tezuka
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152−8552, Japan
| |
Collapse
|
49
|
López JV, Pérez-Camargo RA, Zhang B, Grayson SM, Müller AJ. The influence of small amounts of linear polycaprolactone chains on the crystallization of cyclic analogue molecules. RSC Adv 2016. [DOI: 10.1039/c6ra04823d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
C-PCL/L-PCL blends show a synergistic decrease in their isothermal crystallization rates as compared to the expectation of a simple mixing law due to the threading effect of the linear on the cyclic chains.
Collapse
Affiliation(s)
- Juan V. López
- Grupo de Polímeros USB
- Departamento de Ciencia de los Materiales
- Universidad Simón Bolívar
- Caracas 1080-A
- Venezuela
| | - Ricardo A. Pérez-Camargo
- Grupo de Polímeros USB
- Departamento de Ciencia de los Materiales
- Universidad Simón Bolívar
- Caracas 1080-A
- Venezuela
| | - Boyu Zhang
- Department of Chemistry
- Tulane University
- New Orleans
- USA
| | | | - Alejandro J. Müller
- Grupo de Polímeros USB
- Departamento de Ciencia de los Materiales
- Universidad Simón Bolívar
- Caracas 1080-A
- Venezuela
| |
Collapse
|
50
|
Yamamoto T, Tezuka Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. SOFT MATTER 2015; 11:7458-7468. [PMID: 26264187 DOI: 10.1039/c5sm01557j] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A variety of single- and multicyclic polymers having programmed chemical structures with guaranteed purity have now become obtainable owing to a number of synthetic breakthroughs achieved in recent years. Accordingly, a broadening range of studies has been undertaken to gain updated insights on fundamental polymer properties of cyclic polymers in either solution or bulk, in either static or dynamic states, and in self-assemblies, leading to unusual properties and functions of polymer materials based on their cyclic topologies. In this article, we review recent studies aiming to achieve distinctive properties and functions by cyclic polymers unattainable by their linear or branched counterparts. We focus, in particular, on selected examples of unprecedented topology effects of cyclic polymers upon self-assemblies, dynamics and responses, to highlight current progress in Topological Polymer Chemistry.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
| | | |
Collapse
|