1
|
Rastegar-Pouyani N, Dongsar TS, Ataei M, Hassani S, Gumpricht E, Kesharwani P, Sahebkar A. An overview of the efficacy of inhaled curcumin: a new mode of administration for an old molecule. Expert Opin Drug Deliv 2024. [PMID: 38771504 DOI: 10.1080/17425247.2024.2358880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahshid Ataei
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
3
|
Sadeghi F, Kamali H, Kouhestanian S, Hadizadeh F, Nokhodchi A, Afrasiabi Garekani H. Supercritical CO 2 versus water as an antisolvent in the crystallization process to enhance dissolution rate of curcumin. Pharm Dev Technol 2022; 27:999-1008. [PMID: 36322612 DOI: 10.1080/10837450.2022.2143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antisolvent crystallization approach using either water (in conventional crystallization process (WAS)), or supercritical CO2 (in supercritical anti-solvent crystallization (SCAS)), was employed in presence of hydroxypropyl methylcellulose (HPMC) to enhance the dissolution of curcumin. The impact of pressure, temperature and depressurization time on the SCAS process was studied using the Box-Behnken design to achieve the highest saturation solubility. A physical mixture of curcumin-HPMC was prepared for comparison purposes. Saturation solubility, scanning electron microscopy, differential scanning calorimetry, X-ray diffraction analysis and Fourier transform infrared spectroscopy were conducted to characterize the solid-state characteristics of the crystallized samples. Dissolution studies helped in ascertaining the effects of the crystallization techniques on the performance of the formulation. Curcumin crystalized by different antisolvent displayed varied shapes, sizes, saturation solubility's and dissolution properties. In SCAS process, the maximum saturation solubility (2.83 µg/mL) was obtained when the pressure, temperature and depressurization time were 275 bars, 55 °C, and 22 min respectively. The SCAS samples showed the highest dissolution (70%) in 30 min compared to WAS (27%), physical mixture (18%) and unprocessed curcumin (16%). The improved dissolution rate of SCAS sample originates from the development of sponge-like particles with augmented porosity, decreased crystallinity as well as increased solubility of curcumin.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Kouhestanian
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.,Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Adami R, Russo P, Amante C, De Soricellis C, Della Porta G, Reverchon E, Del Gaudio P. Supercritical Antisolvent Technique for the Production of Breathable Naringin Powder. Pharmaceutics 2022; 14:pharmaceutics14081623. [PMID: 36015250 PMCID: PMC9414961 DOI: 10.3390/pharmaceutics14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are polyphenolic compounds largely present in fruits and vegetables possessing antioxidant properties, anti-inflammatory and antibacterial activities. Their use in clinical practice is very poor due to their low bioavailability, susceptibility to oxidation and degradation. Moreover, their slight solubility in biological fluids and a consequent low dissolution rate leads to an irregular absorption from solid dosage forms, even though, anti-inflammatory formulations could be used as support for several disease treatment, i.e. the COVID-19 syndrome. To improve flavonoid bioavailability particle size of the powder can be reduced to make it breathable and to promote the absorption in the lung tissues. Supercritical fluid based antisolvent technique has been used to produce naringin particles, with size, shape and density as well as free flowing properties able to fit inhalation needs. The dried particles are produced with the removal of the solvent at lower temperatures compared to the most used traditional micronization processes, such as spray drying. The best breathable fraction for naringin particles is obtained for particles with a d50~7 µm manufactured at 35 °C-150 bar and at 60 °C-130 bar, corresponding to 32.6% and 36.7% respectively. The powder is produced using a high CO2 molar fraction (0.99) that assure a better removal of the solvent. NuLi-1 cell line of immortalised bronchial epithelial cells adopted to evaluate powder cytotoxicity indicated after 24 h absence of toxicity at concentration of 25 µM.
Collapse
Affiliation(s)
- Renata Adami
- Department of Physics E. Caianiello, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Correspondence: (R.A.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara De Soricellis
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Odontoiatry, Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 1, 84081 Baronissi, SA, Italy;
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
- Correspondence: (R.A.); (P.D.G.)
| |
Collapse
|
5
|
Sadeghi F, Soleimanian Z, Hadizadeh F, Shirafkan A, Kamali H, Afrasiabi Garekani H. Anti-solvent crystallization of celecoxib in the presence of PVP for enhancing the dissolution rate: Comparison of water and supercritical CO2 as two antisolvents. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ubeyitogullari A, Ciftci ON. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility. Sci Rep 2019; 9:19112. [PMID: 31836788 PMCID: PMC6911079 DOI: 10.1038/s41598-019-55619-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Health-promoting effects of curcumin are well-known; however, curcumin has a very low bioavailability due to its crystalline structure. The main objective of this study was to develop a novel green nanoparticle formation method to generate low-crystallinity curcumin nanoparticles to enhance the bioavailability of curcumin. Nanoporous starch aerogels (NSAs) (surface area of 60 m2/g, pore size of 20 nm, density of 0.11 g/cm3, and porosity of 93%) were employed as a mold to produce curcumin nanoparticles with the help of supercritical carbon dioxide (SC-CO2). The average particle size of the curcumin nanoparticles was 66 nm. Impregnation into NSAs decreased the crystallinity of curcumin and did not create any chemical bonding between curcumin nanoparticles and the NSA matrix. The highest impregnation capacity was 224.2 mg curcumin/g NSA. Curcumin nanoparticles significantly enhanced the bioaccessibility of curcumin by 173-fold when compared to the original curcumin. The concentration of curcumin in the bioaccessible fraction was improved from 0.003 to 0.125 mg/mL by impregnation of curcumin into NSAs (42-fold). This is a novel approach to produce food grade curcumin nanoparticles with reduced crystallinity and maximize the utilization of curcumin due to increased bioaccessibility.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA.
| |
Collapse
|
7
|
Zhao Z, Zhang X, Cui Y, Huang Y, Huang Z, Wang G, Liang R, Pan X, Tao L, Wu C. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent inamorphous lactose carriers for dry powder inhalers. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Matos RL, Lu T, Prosapio V, McConville C, Leeke G, Ingram A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Sayyar Z, Malmiri HJ. Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Curcumin as a lipophilic bioactive compound can be incorporated into water-based formulations when it turns into curcumin nanodispersions. In fact, nanodispersion systems, increase curcumin bioavailability, solubility and stability, and furthermore increase curcumin uses in aqueous food and pharmaceutical formulations. Present study focuses on the preparation of curcumin nanodispersions under subcritical water conditions (temperature of 120 °C and pressure of 1.5 bar for 2 h) and using selected another two different methods namely, spontaneous emulsification and solvent displacement. Lecithin as carrier oil, Tween 80 as emulsifier and polyethylene glycol as co-surfactant, with a ratio of 1:8:1, were used in all the preparation techniques. Obtained results indicated that curcumin nanodispersions with smallest mean particle size (70 nm), polydispersity index (0.57), curcumin loss (5.5%) and turbidity (0.04 Nephelometric Turbidity Unit), and maximum loading ability (0.189 g/L), loading efficiency (94.5%) and conductivity (0.157 mS/cm) were obtained under subcritical water conditions. The results also exhibited that the prepared spherical curcumin nanoparticles in the water by this technique had desirable physical stability as their mean zeta potential value was (−12.6 mV). It also observed that, as compared to spontaneous emulsification and solvent displacement methods, the prepared curcumin nanodispersions via subcritical water method had highest anti-oxidant and antibacterial activities.
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , 51335-1996, Iran
| | | |
Collapse
|
10
|
Sayyar Z, Jafarizadeh Malmiri H. Photocatalytic and antibacterial activities study of prepared self-cleaning nanostructure surfaces using synthesized and coated ZnO nanoparticles with Curcumin nanodispersion. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zkri-2018-2096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Zinc oxide nanoparticles had been synthesized and encapsulated using Curcumin nanoemulsions, Zn(Cur)O NPs, under subcritical water conditions. The effects of temperature (120, 140 and 160 °C) and pH values of the reaction solution (4, 7 and 10) on the particle size, grain size, cristallinity, specific surface area, band gap, Urbach energy, morphology, photocatalytic activity and antibacterial properties of the prepared Zn(Cur)O NPs were evaluated using XRD, FT-IR, SEM, EDX and UV-Vis spectroscopy analysis. The obtained results indicate that the prepared spherical and rod shapes Zn(Cur)O NPs had a crystallite size distribution of 10–100 nm. Furthermore, the results reveal that most uniform Zn(Cur)O NPs with highest photocatalytic activity, quantum yield (0.161 mol·m−2 s−1), specific surface area (242 m2/g), minimum band gap (2.62 eV) and Urbach energy (0.125 meV) were formed at 160 °C and natural pH. The highest antibacterial activities against both Gram positive and negative bacteria strains, were achieved using the synthesized Zn(Cur)O at 160 °C and basic pH(10).
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Hoda Jafarizadeh Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran , Tel.: +98-41-33459099, Fax: +98-41-33444355, E-mail:
| |
Collapse
|
11
|
Franco P, Reverchon E, De Marco I. PVP/ketoprofen coprecipitation using supercritical antisolvent process. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Matos RL, Lu T, McConville C, Leeke G, Ingram A. Analysis of curcumin precipitation and coating on lactose by the integrated supercritical antisolvent-fluidized bed process. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Mehta P, Bothiraja C, Mahadik K, Kadam S, Pawar A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed Pharmacother 2018; 108:828-837. [PMID: 30372894 DOI: 10.1016/j.biopha.2018.09.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary disease represents a major global health issue. They are commonly treated by various synthetic molecules. But, frequent high-dose of oral and injectable drugs may lead to severe side effects and this juncture demands inhaled formulations that facilitate effective drug delivery to the lower airways with negligible side effects. Natural phytoconstituents or phytoalexin (i.e. plant antibiotics) have showed an unique treatment array with minimum side effects and great capability to treat intrapulmonary and extrapulmonary diseases compared to synthetic drugs. Moreover, the progress of disciplines such as nanotechnology, material science and particle engineering allows further improvement of the treatment capability and efficiency. This article review and analyze literatures on inhaled phytoconstituents which were published in the last 10 years. Additionally, it will also offer the researcher with some basic background information for phytoconstituents profile, formulation requirements and drug delivery systems.
Collapse
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India
| | - C Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed to be University), LBS Road, Pune 30, Maharashtra, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India.
| |
Collapse
|
14
|
Abstract
This review discusses recent developments in the manufacture of inhalable dry powder formulations. Pulmonary drugs have distinct advantages compared with other drug administration routes. However, requirements of drugs properties complicate the manufacture. Control over crystallization to make particles with the desired properties in a single step is often infeasible, which calls for micronization techniques. Although spray drying produces particles in the desired size range, a stable solid state may not be attainable. Supercritical fluids may be used as a solvent or antisolvent, which significantly reduces solvent waste. Future directions include application areas such as biopharmaceuticals for dry powder inhalers and new processing strategies to improve the control over particle formation such as continuous manufacturing with in-line process analytical technologies.
Collapse
|
15
|
Curcumin composite particles prepared by spray drying and in vitro anti-cancer activity on lung cancer cell line. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Zhao Z, Huang Z, Zhang X, Huang Y, Cui Y, Ma C, Wang G, Freeman T, Lu XY, Pan X, Wu C. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Expert Opin Drug Deliv 2018. [PMID: 29532682 DOI: 10.1080/17425247.2018.1450865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hygroscopicity of raffinose carrier for dry powder inhaler (DPI) was the main obstacle for its further application. Hygroscopicity-induced agglomeration would cause deterioration of aerosolization performance of raffinose, undermining the delivery efficiency. METHODS Cyclodextrin-raffinose binary carriers (CRBCs) were produced by spray-drying so as to surmount the above issue. Physicochemical attributes and formation mechanism of CRBCs were explored in detail. The flow property of CRBCs was examined by FT4 Powder Rheometer. Hygroscopicity of CRBCs was elucidated by dynamic vapor sorption study. Aerosolization performance was evaluated by in vitro deposition profile and in vivo pharmacokinetic profile of CRBC based DPI formulations. RESULTS The optimal formulation of CRBC (R4) was proven to possess anti-hygroscopicity and aerosolization performance enhancement properties. Concisely, the moisture uptake of R4 was c.a. 5% which was far lower than spray-dried raffinose (R0, c.a. 65%). R4 exhibited a high fine particle fraction value of 70.56 ± 0.61% and it was 3.75-fold against R0. The pulmonary and plasmatic bioavailability of R4 were significantly higher than R0 (p < 0.05). CONCLUSION CRBC with anti-hygroscopicity and aerosolization performance enhancement properties was a promising approach for pulmonary drug delivery, which could provide new possibilities to the application of hygroscopic carriers for DPI.
Collapse
Affiliation(s)
- Ziyu Zhao
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Zhengwei Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Xuejuan Zhang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China.,b Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou , P.R. China
| | - Ying Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Yingtong Cui
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Cheng Ma
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Guanlin Wang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | | | | | - Xin Pan
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Chuanbin Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| |
Collapse
|
17
|
Ong YXJ, Lee LY, Davoodi P, Wang CH. Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Supercritical Antisolvent Process: PVP/Nimesulide Coprecipitates. ADVANCES IN BIONANOMATERIALS 2018. [DOI: 10.1007/978-3-319-62027-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1678-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Kurniawansyah F, Mammucari R, Tandya A, Foster NR. Scale − Up and economic evaluation of the atomized rapid injection solvent extraction process. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Prosapio V, Reverchon E, De Marco I. Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Abstract
This review reports on the beneficial pharmacological properties of naturally occurring polyphenols for the treatment of inflammatory pulmonary diseases. In addition, it presents an overview of the different types of inhalable formulations which have been developed in order to achieve efficient delivery of polyphenols to the respiratory tract. The main biological activities of polyphenols (anti-oxidant and anti-inflammatory) are covered, with particular emphasis on the studies describing their therapeutic effects on different factors and conditions characteristic of lung pathologies. Special focus is on the technological aspects which influence the pulmonary delivery of drugs. The various polyphenol-based inhalable formulations reported in the literature are examined with specific attention to the preparation methodologies, aerosol performance, lung deposition and in vitro and in vivo polyphenol uptake by the pulmonary epithelial cells.
Collapse
Affiliation(s)
- Valentina Trotta
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Santo Scalia
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
23
|
Kurniawansyah F, Quachie L, Mammucari R, Foster NR. Improving the dissolution properties of curcumin using dense gas antisolvent technology. Int J Pharm 2017; 521:239-248. [PMID: 28185959 DOI: 10.1016/j.ijpharm.2017.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 01/09/2023]
Abstract
The dissolution properties of curcumin are notoriously poor and hinder its bioavailability. To improve its dissolution properties, curcumin has been formulated with methyl-β-cyclodextrin and polyvinylpyrrolidone by the atomized rapid injection solvent extraction (ARISE) system. The compounds were co-precipitated from organic solutions using carbon dioxide at 30°C and 95bar as the antisolvent. Curcumin formulations were also produced by physical mixing and freeze drying for comparative purposes. The morphology, crystallinity, solid state molecular interactions, apparent solubility and dissolution profiles of samples were observed. The results indicate that the ARISE process is effective in the preparation of curcumin micro-composites with enhanced dissolution profiles compared to unprocessed material and products from physical mixing and freeze drying.
Collapse
Affiliation(s)
- Firman Kurniawansyah
- School of Chemical Engineering, University of New South Wales, Sydney 2052 NSW, Australia; Department of Chemical Engineering, Institute of Technology Sepuluh Nopember, Surabaya, Indonesia
| | - Lisa Quachie
- School of Chemical Engineering, University of New South Wales, Sydney 2052 NSW, Australia
| | - Raffaella Mammucari
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Neil R Foster
- School of Chemical and Petroleum Engineering, Curtin University, Perth 6845, WA, Australia.
| |
Collapse
|
24
|
Kurniawansyah F, Mammucari R, Foster NR. Polymorphism of curcumin from dense gas antisolvent precipitation. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.10.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Hou L, Shi Y, Jiang G, Liu W, Han H, Feng Q, Ren J, Yuan Y, Wang Y, Shi J, Zhang Z. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. NANOTECHNOLOGY 2016; 27:315105. [PMID: 27346852 DOI: 10.1088/0957-4484/27/31/315105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China. Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|