1
|
Buya AB, Mahlangu P, Witika BA. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X 2024; 8:100266. [PMID: 39050378 PMCID: PMC11268122 DOI: 10.1016/j.ijpx.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Lipid nanocarriers have attracted a great deal of interest in the delivery of therapeutic molecules. Despite their many advantages, compliance with quality standards and reproducibility requirements still constrain their industrial production. The relatively high failure rate in lipid nanocarrier research and development can be attributed to immature bottom-up manufacturing practices, leading to suboptimal control of quality attributes. Recently, the pharmaceutical industry has moved toward quality-driven manufacturing, emphasizing the integration of product and process development through the principles of quality by design. Quality by design in the pharmaceutical industry involves a thorough understanding of the quality profile of the target product and involves an assessment of potential risks during the design and development phases of pharmaceutical dosage forms. By identifying essential quality characteristics, such as the active ingredients, excipients and manufacturing processes used during research and development, it becomes possible to effectively control these aspects throughout the life cycle of the drug. Successful commercialization of lipid nanocarriers can be achieved if large-scale challenges are addressed using the QbD approach. QbD has become an essential tool because of its advantages in improving processes and product quality. The application of the QbD approach to the development of lipid nanocarriers can provide comprehensive and remarkable knowledge enabling the manufacture of high-quality products with a high degree of regulatory flexibility. This article reviews the basic considerations of QbD and its application in the laboratory and large-scale development of lipid nanocarriers. Furthermore, it provides forward-looking guidance for the industrial production of lipid nanocarriers using the QbD approach.
Collapse
Affiliation(s)
- Aristote B. Buya
- Centre de Recherche en Sciences Humaines (CRESH), Ministère de la Recherche Scientifique et Innovation Technologique, Kinshasa XI, B.P. 212, Democratic Republic of the Congo
- University of Kinshasa, Faculty of Pharmaceutical Sciences, BP 212 Kinshasa XI, Democratic Republic of the Congo
| | - Phindile Mahlangu
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
2
|
Mutylo E, Navrátil O, Waněk A, Šembera F, Štěpánek F. Formulation of minitablets with personalised dissolution profile by fluid-bed granulation ofdrug nanosuspensions. Int J Pharm 2024; 669:125013. [PMID: 39615613 DOI: 10.1016/j.ijpharm.2024.125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Transforming poorly soluble active pharmaceutical ingredients (APIs) into a nanoparticulate form is a proven way of improving their dissolution characteristics. The preparation of API nanosuspensions is commonly achieved by wet-stirred media milling. The challenge lies in converting the nanosuspension into a solid dosage form without compromising its re-dispersibility. In the present work, an API nanosuspension was combined with additional excipients and used as abinder in fluid-bed granulation to obtain granules with systematically varying dissolution properties. Specifically, polymeric excipients (hydroxypropyl methylcellulose grade E5 and polyvinylpyrrolidone grade K30) were used in the nanosuspension binder to granulate microcrystalline cellulose or Pearlitol CR-H substrate. The resulting granules were used as feed material to prepare minitablets whose combination enabled the formation of multi-unit dosage form (MUDF) capsules with tuneable drug release profiles, paving the way to rational design and manufacturing of precision medicines.
Collapse
Affiliation(s)
- Elizaveta Mutylo
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic; Zentiva k.s., U Kabelovny 130, Prague 10, 10237, Czech Republic
| | - Ondřej Navrátil
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic; Zentiva k.s., U Kabelovny 130, Prague 10, 10237, Czech Republic
| | - Adam Waněk
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic; Zentiva k.s., U Kabelovny 130, Prague 10, 10237, Czech Republic
| | - Filip Šembera
- Zentiva k.s., U Kabelovny 130, Prague 10, 10237, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| |
Collapse
|
3
|
Munu I, Nicusan AL, Crooks J, Pitt K, Windows-Yule C, Ingram A. Predicting tablet properties using In-Line measurements and evolutionary equation Discovery: A high shear wet granulation study. Int J Pharm 2024; 661:124405. [PMID: 38950660 DOI: 10.1016/j.ijpharm.2024.124405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
High shear wet granulation (HSWG) is widely used in tablet manufacturing mainly because of its advantages in improving flowability, powder handling, process run time, size distribution, and preventing segregation. In line process analytical technology measurements are essential in capturing detailed particle dynamics and presenting real-time data to uncover the complexity of the HSWG process and ultimately for process control. This study presents an opportunity to predict the properties of the granules and tablets through torque measurement of the granulation bowl and the force exerted on a novel force probe within the powder bed. Inline force measurements are found to be more sensitive than torque measurements to the granulation process. The characteristic force profiles present the overall fingerprint of the high shear wet granulation, in which the evolution of the granule formation can improve our understanding of the granulation process. This provides rich information relating to the properties of the granules, identification of the even distribution of the binder liquid, and potential granulation end point. Data were obtained from an experimental high shear mixer across a range of key process parameters using a face-centred surface response design of experiment (DoE). A closed-form analytical model was developed from the DOE matrix using the discovery of evolutionary equations. The model is able to provide a strong predictive indication of the expected tablet tensile strength based only on the data in-line. The use of a closed form mathematical equation carries notable advantages over other AI methodologies such as artificial neural networks, notably improved interpretability/interrogability, and minimal inference costs, thus allowing the model to be used for real-time decision making and process control. The capability of accurately predicting, in real time, the required compaction force required to achieve the desired tablet tensile strength from upstream data carries the potential to ensure compression machine settings rapidly reach and are maintained at optimal values, thus maximising efficiency and minimising waste.
Collapse
Affiliation(s)
- Issa Munu
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; GSK Global Supply Chain, Priory St, Ware SG12 0DJ, UK.
| | - Andrei L Nicusan
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jason Crooks
- GSK Product Development, Park Rd, Ware SG12 0DP, UK
| | - Kendal Pitt
- GSK Global Supply Chain, Priory St, Ware SG12 0DJ, UK
| | - Christopher Windows-Yule
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew Ingram
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Birla D, Khandale N, Bashir B, ShahbazAlam M, Vishwas S, Gupta G, Dureja H, Kumbhar PS, Disouza J, Patravale V, Veiga F, Paiva-Santos AC, Pillappan R, Paudel KR, Goh BH, Singh M, Dua K, Singh SK. Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices. Drug Deliv Transl Res 2024:10.1007/s13346-024-01681-z. [PMID: 39126576 DOI: 10.1007/s13346-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.
Collapse
Affiliation(s)
- Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Md ShahbazAlam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ramkumar Pillappan
- NITTE (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bey Hing Goh
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Biofunctional Molecule Exploratory Research (BMEX) Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India
| | - Kamal Dua
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
5
|
Pockle R, Masareddy R, Bambulkar V, Desai R, Kiran S. Exploring magnesium myristate for its dual functionality as a binder and lubricant in the formulation of tablet. Ther Deliv 2024; 15:253-266. [PMID: 38420754 DOI: 10.4155/tde-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Purpose: To explore 'magnesium myristate' for its dual functionality as a lubricant and binder in the formulation of tablets. Methods: Using (DoE), tablet formulations using magnesium myristate and conventional excipients (magnesium stearate and PVP K30) were developed by wet granulation technique. The prepared granules and formulated tablets were evaluated for pre- and post-compression parameters, respectively. Results: Magnesium myristate exhibited excellent flow properties. The optimized formulations containing magnesium myristate exhibited increased hardness and in vitro drug release in comparison to conventional excipients. f2 similarity index for in vitro drug release showed no significant variations with optimized formulations and with the marketed formulations. Conclusion: Magnesium myristate shows a promising replacement for conventional excipients as both a lubricant and binder in tablet formulation.
Collapse
Affiliation(s)
- Rachana Pockle
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi - 590010, Karnataka, India
| | - Rajashree Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi - 590010, Karnataka, India
| | | | | | - Sai Kiran
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi - 590010, Karnataka, India
| |
Collapse
|
6
|
Dan A, Vaswani H, Šimonová A, Grząbka-Zasadzińska A, Li J, Sen K, Paul S, Tseng YC, Ramachandran R. End-point determination of heterogeneous formulations using inline torque measurements for a high-shear wet granulation process. Int J Pharm X 2023; 6:100188. [PMID: 37387778 PMCID: PMC10300204 DOI: 10.1016/j.ijpx.2023.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
In this study, the torque profiles of heterogeneous granulation formulations with varying powder properties in terms of particle size, solubility, deformability, and wettability, were studied, and the feasibility of identifying the end-point of the granulation process for each formulation based on the torque profiles was evaluated. Dynamic median particle size (d50) and porosity were correlated to the torque measurements to understand the relationship between torque and granule properties, and to validate distinction between different granulation stages based on the torque profiles made in previous studies. Generally, the torque curves obtained from the different granulation runs in this experimental design could be categorized into two different types of torque profiles. The primary factor influencing the likelihood of producing each profile was the binder type used in the formulation. A lower viscosity, higher solubility binder resulted in a type 1 profile. Other contributing factors that affected the torque profiles include API type and impeller speed. Material properties such as the deformability and solubility of the blend formulation and the binder were identified as important factors affecting both granule growth and the type of torque profiles observed. By correlating dynamic granule properties with torque values, it was possible to determine the granulation end-point based on a pre-determined target median particle size (d50) range which corresponded to specific markers identified in the torque profiles. In type 1 torque profiles, the end-point markers corresponded to the plateau phase, whereas in type 2 torque profiles the markers were indicated by the inflection point where the slope gradient changes. Additionally, we proposed an alternative method of identification by using the first derivative of the torque values, which facilitates an easier identification of the system approaching the end-point. Overall, this study identified the effects of different variations in formulation parameters on torque profiles and granule properties and implemented an improved method of identification of granulation end-point that is not dependent on the different types of torque profiles observed.
Collapse
Affiliation(s)
- Ashley Dan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 08854
| | - Haresh Vaswani
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 08854
| | - Alice Šimonová
- Department of Analytical Chemistry, Charles University, Hlavova 2030/8, 12843, Prague, Czech Republic
- Zentiva k. s., U Kabelovny 130, Prague, Czech Republic
| | - Aleksandra Grząbka-Zasadzińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Jingzhe Li
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Koyel Sen
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Shubhajit Paul
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Yin-Chao Tseng
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Rohit Ramachandran
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 08854
| |
Collapse
|
7
|
Li Z, Peng W, Zhu L, Liu W, Yang L, Chen L, Naeem A, Zhu W, Feng Y, Ming L. Study on Improving the Performance of Traditional Medicine Extracts with High Drug Loading Based on Co-spray Drying Technology. AAPS PharmSciTech 2023; 24:247. [PMID: 38030948 DOI: 10.1208/s12249-023-02703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Wanghai Peng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Lin Zhu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lingyu Yang
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Liangshan Ming
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
8
|
Matsunami K, Meyer J, Rowland M, Dawson N, De Beer T, Van Hauwermeiren D. T-shaped partial least squares for high-dosed new active pharmaceutical ingredients in continuous twin-screw wet granulation: Granule size prediction with limited material information. Int J Pharm 2023; 646:123481. [PMID: 37805145 DOI: 10.1016/j.ijpharm.2023.123481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
This work presents a granule size prediction approach applicable to diverse formulations containing new active pharmaceutical ingredients (APIs) in continuous twin-screw wet granulation. The approach consists of a surrogate selection method to identify similar materials with new APIs and a T-shaped partial least squares (T-PLS) model for granule size prediction across varying formulations and process conditions. We devised a surrogate material selection method, employing a combination of linear pre-processing and nonlinear classification algorithms, which effectively identified suitable surrogates for new materials. Using only material properties obtained through four characterization methods, our approach demonstrated its predictive prowess. The selected surrogate methods were seamlessly integrated with our developed T-PLS model, which was meticulously validated for high-dose formulations involving three new APIs. When surrogating new APIs based on Gaussian process classification, we achieved the lowest prediction errors, signifying the method's robustness. The predicted d-values were within the range of uncertainty bounds for all cases, except for d90 of API C. Notably, the approach offers a direct and efficient solution for early-phase formulation and process development, considerably reducing the need for extensive experimental work. By relying on just four material characterization methods, it streamlines the research process while maintaining a high degree of accuracy.
Collapse
Affiliation(s)
- Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Oost-Vlaanderen, Belgium.
| | - Jonathan Meyer
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Martin Rowland
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Neil Dawson
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Daan Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
9
|
Teng K, Fu H, Wu G, Gong P, Xie Y, Zhou P, Gong X, Qu H. QbD-Guided Traditional Chinese Medicine Manufacturing Process: Development and Optimization of Fluid-Bed Granulation and Drying Processes for Xiaochaihu Capsules. AAPS PharmSciTech 2023; 24:210. [PMID: 37821749 DOI: 10.1208/s12249-023-02663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Traditional methods of producing Xiaochaihu (XCH) capsules, a traditional Chinese medicine, are time-consuming, costly, and labor-intensive, which is not conductive to modernizing TCM. To address the challenges, new fluid-bed granulation and drying processes with water as the binder were developed and optimized guided by the principles of Quality by Design (QbD) in this study. Ishikawa diagram was applied to conduct a preliminary risk assessment, followed by 6-factor definitive screening design (DSD) serving as a QbD statistical tool to develop and optimize the new processes. Multiple potential factors and interactions were studied with a small number of experiments using the DSD. This study identified critical process parameters (CPPs), established quadratic regression models to reveal CPP-critical quality attributes (CQAs) connections within the DSD framework, and defined a dependable design space. Processes conducted by parameter combinations in the design space produced qualified granules with production yield and raw material utilization higher than 90% and moisture content lower than 4%. Furthermore, quantitative analysis of baicalin of all the granules ensured qualified contents of active pharmaceutical ingredient. The newly developed processes for XCH capsules, with advantages of shorter time, environmental friendliness, and decreased cost, exemplify the effective application of QbD and design of experiments (DoE) methodologies in the modernization of TCM manufacturing processes.
Collapse
Affiliation(s)
- Kaixuan Teng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Hao Fu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Gelin Wu
- Zhejiang Pralife Pharmaceutical Co., Ltd., Taizhou, 318000, China
| | - Ping Gong
- Zhejiang Pralife Pharmaceutical Co., Ltd., Taizhou, 318000, China
| | - Yongjian Xie
- Zhejiang Pralife Pharmaceutical Co., Ltd., Taizhou, 318000, China
| | - Peng Zhou
- Zhejiang Pralife Pharmaceutical Co., Ltd., Taizhou, 318000, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Li Z, Bai L, Li Y, Li M, Liu B, Sun Y, Zhang D, Fu Q. Cylindrical granules in the development of mesalazine solid formulations (Ⅰ): Physical properties, compression behaviors, and tableting performances. Int J Pharm 2023; 643:123208. [PMID: 37419433 DOI: 10.1016/j.ijpharm.2023.123208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Cylindrical granules have been employed in the pharmaceutical industry. However, to our knowledge, the study on the compressibility and tabletability of cylindrical granules has not been reported. This study aimed to explore the effects of the physical properties of cylindrical granules on the compression behaviors and the tableting performances, with mesalazine (MSZ) as a model drug. First, the six formulations of MSZ cylindrical granules were extruded by changing the ethanol proportion in the binder. Then, the physical characteristics of MSZ cylindrical granules were systematically studied. Subsequently, the compressibility and tabletability were evaluated using different mathematic models. It was worth noting that highly porous cylindrical granules possessed favorable compressibility and good tabletability due to the increased pore volume, reduced density, and decreased fracture forces. Finally, dissolution tests were conducted and highly porous granules showed higher dissolution rates than the less porous ones, but an opposite trend was observed for the corresponding tablets. This study proved the importance of physical properties in the tableting process of cylindrical granules and provided strategies to improve their compressibility and tabletability.
Collapse
Affiliation(s)
- Zhaohua Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijun Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yibo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Di Zhang
- Liaoning Inspection, Examination & Certification Centre, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
11
|
Wang L, Zhao L, Hong Y, Shen L, Lin X. Attribute transmission and effects of diluents and granulation liquids on granule properties and tablet quality for high shear wet granulation and tableting process. Int J Pharm 2023:123177. [PMID: 37364781 DOI: 10.1016/j.ijpharm.2023.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
This study aims to examine (i) the effect of diluent types (lactose monohydrate, corn starch, and microcrystalline cellulose) and granulation liquids (20% polyvinylpyrrolidone-k30, 65% alcohol, and dispersion containing 40% model drug- Pithecellobium clypearia Benth extracted powder) on granule properties and tablet quality for high shear wet granulation and tableting (HSWG-T) and, more importantly, (ii) the attribute transmission in the process. In general, the impact of diluents on granule properties and tablet quality was more dominant than that of granulation liquids. Attribute transmission patterns were revealed as follows. The granules' ISO. Roundness and density correlated with raw material (i.e., model drug, diluent, and/or granulation liquid) properties such as density and viscosity. The granules' compressibility parameter a correlated with the granules' Span, and parameter y0 correlated with the granules' flowability and friability. Compactibility parameters ka and kb correlated mainly with granule flowability and density, and parameter b correlated significantly and positively with tablet tensile strength. The compressibility correlated negatively with tablet solid fraction (SF) and friability, while the compactibility correlated positively with tablet disintegration time. Moreover, the rearrangement and elasticity of granules correlated positively with SF and friability, respectively. Overall, this study provides some guides for achieving high-quality tablets via HSWG-T.
Collapse
Affiliation(s)
- LiangFeng Wang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - YanLong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
12
|
Hayashi Y, Noguchi M, Oishi T, Ono T, Okada K, Onuki Y. Application of unsupervised and supervised learning to a material attribute database of tablets produced at two different granulation scales. Int J Pharm 2023; 641:123066. [PMID: 37217121 DOI: 10.1016/j.ijpharm.2023.123066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
The purpose of this study is to demonstrate the usefulness of machine learning (ML) for analyzing a material attribute database from tablets produced at different granulation scales. High shear wet granulators (scale 30 g and 1000 g) were used and data were collected according to the design of experiments at different scales. In total, 38 different tablets were prepared, and the tensile strength (TS) and dissolution rate after 10 min (DS10) were measured. In addition, 15 material attributes (MAs) related to particle size distribution, bulk density, elasticity, plasticity, surface properties, and moisture content of granules were evaluated. By using unsupervised learning including principal component analysis and hierarchical cluster analysis, the regions of tablets produced at each scale were visualized. Subsequently, supervised learning with feature selection including partial least squares regression with variable importance in projection and elastic net were applied. The constructed models could predict the TS and DS10 from the MAs and the compression force with high accuracy (R2= 0.777 and 0.748, respectively), independent of scale. In addition, important factors were successfully identified. ML can be used for better understanding of similarity/dissimilarity between scales, for constructing predictive models of critical quality attributes, and for determining critical factors.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Pharmaceutical Technology Management Department, Production Division, Nichi-Iko Pharmaceutical Co., Ltd, 205-1 Shimoumezawa Namerikawa-shi, Toyama 936-0857, Japan; Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani Toyama-shi, Toyama 930-0194, Japan.
| | - Miho Noguchi
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani Toyama-shi, Toyama 930-0194, Japan
| | - Takuya Oishi
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani Toyama-shi, Toyama 930-0194, Japan
| | - Takashi Ono
- Toyama Pharmaceutical Technology Department, Pharmaceutical Technology, 15 Management Department, Production Division, Nichi-Iko Pharmaceutical Co. Ltd, 205-1, Shimoumezawa Namerikawa-shi, Toyama 936-0857, Japan
| | - Kotaro Okada
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani Toyama-shi, Toyama 930-0194, Japan
| | - Yoshinori Onuki
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani Toyama-shi, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Kenekar VV, Ghugare SB, Patil-Shinde V. Multi-objective optimization of high-shear wet granulation process for better granule properties and fluidized bed drying characteristics. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
14
|
Yan H, Liu Y, Peng H, Li K, Li C, Jiang S, Chen M, Han D, Gong J. Improving calcium citrate food functions through spherulitic growth in reactive crystallization and a mechanism study. Food Chem 2023; 404:134550. [DOI: 10.1016/j.foodchem.2022.134550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
15
|
Technological advances and challenges for exploring attribute transmission in tablet development by high shear wet granulation. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
16
|
Homayoonfal M, Malekjani N, Baeghbali V, Ansarifar E, Hedayati S, Jafari SM. Optimization of spray drying process parameters for the food bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:5631-5671. [PMID: 36547397 DOI: 10.1080/10408398.2022.2156976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spray drying (SD) is one of the most important thermal processes used to produce different powders and encapsulated materials. During this process, quality degradation might happen. The main objective of applying optimization methods in SD processes is maximizing the final nutritional quality of the product besides sensory attributes. Optimization regarding economic issues might be also performed. Applying optimization approaches in line with mathematical models to predict product changes during thermal processes such as SD can be a promising method to enhance the quality of final products. In this review, the application of the response surface methodology (RSM), as the most widely used approach, is introduced along with other optimization techniques such as factorial, Taguchi, and some artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS). Also, probabilistic methods such as Monte Carlo are briefly introduced. Some recent case studies regarding the implementation of these methods in SD processes are also exemplified and discussed.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Vahid Baeghbali
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ansarifar
- Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Hedayati
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
17
|
Optimization of fluidized bed agglomeration process of a pineapple powder mixture using a binder solution of ginger extract and vitamin C. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Using a Material Library to Understand the Change of Tabletability by High Shear Wet Granulation. Pharmaceutics 2022; 14:pharmaceutics14122631. [PMID: 36559125 PMCID: PMC9783360 DOI: 10.3390/pharmaceutics14122631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding the tabletability change of materials after granulation is critical for the formulation and process design in tablet development. In this paper, a material library consisting of 30 pharmaceutical materials was used to summarize the pattern of change of tabletability during high shear wet granulation and tableting (HSWGT). Each powdered material and the corresponding granules were characterized by 19 physical properties and nine compression behavior classification system (CBCS) parameters. Principal component analysis (PCA) was used to compare the physical properties and compression behaviors of ungranulated powders and granules. A new index, namely the relative change of tabletability (CoTr), was proposed to quantify the tabletability change, and its advantages over the reworking potential were demonstrated. On the basis of CoTr values, the tabletability change classification system (TCCS) was established. It was found that approximately 40% of materials in the material library presented a loss of tabletability (i.e., Type I), 50% of materials had nearly unchanged tabletability (i.e., Type II), and 10% of materials suffered from increased tabletability (i.e., Type III). With the help of tensile strength (TS) vs. compression pressure curves implemented on both powders and granules, a data fusion method and the PLS2 algorithm were further applied to identify the differences in material properties requirements for direct compression (DC) and HSWGT. Results indicated that increasing the plasticity or porosity of the starting materials was beneficial to acquiring high TS of tablets made by HSWGT. In conclusion, the presented TCCS provided a means for the initial risk assessment of materials in tablet formulation design and the data modeling method helped to predict the impact of formulation ingredients on the strength of compacts.
Collapse
|
19
|
Suk Kim J, ud Din F, Jin Choi Y, Ran Woo M, Cheon S, Hun Ji S, Park S, Oh Kim J, Seok Youn Y, Lim SJ, Giu Jin S, Choi HG. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: A prospective alternative to conventional solid dispersion. Int J Pharm 2022; 628:122286. [DOI: 10.1016/j.ijpharm.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
20
|
The effect of granules characters on mechanical properties of press-coated tablets: A comparative study. Int J Pharm 2022; 624:121986. [PMID: 35820516 DOI: 10.1016/j.ijpharm.2022.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate the correlation between critical granules characters (including particle size, surface roughness, and apparent porosity) and mechanical properties of press-coated tablets. Granules of a model formulation were prepared through Roll Compaction Granulation (RCG), High Shear Granulation (HSG), and Fluidized Bed Granulation (FBG) to prepare granules with different surface roughness and apparent porosity. The surface roughness and porosity of granules had a significantly greater effect on mechanical properties than the particle size of granules. Whether for brittle or plastic materials, FBG granules with the roughest surface and the greatest apparent porosity exhibited the best compression properties. The elastic recovery test, the interlayer adhesion forces study, the break pattern test, and the X-ray microcomputed tomography investigation suggested that granules with great apparent porosity and rough surfaces could contribute to the production of stable press-coated structures. Moreover, for press-coated tablets prepared using granules, the proper granules in the coat layer could eliminate the side effect of the rigid core on the mechanical strength. The above understandings will be conducive to the selection of compatible and appropriate granules characters, which can enhance mechanical properties and extend the application of press-coated tablets.
Collapse
|
21
|
Asgarpour Khansary M, Shirazian S, Walker G. A molecularly enhanced proof of concept for targeting cocrystals at molecular scale in continuous pharmaceuticals cocrystallization. Proc Natl Acad Sci U S A 2022; 119:e2114277119. [PMID: 35594395 PMCID: PMC9173768 DOI: 10.1073/pnas.2114277119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
It is impossible to optimize a process for a target drug product with the desired profile without a proper understanding of the interplay among the material attributes, the process parameters, and the attributes of the drug product. There is a particular need to bridge the micro- and mesoscale events that occur during this process. Here, we propose а molecular engineering methodology for the continuous cocrystallization process, based on Raman spectra measured experimentally with a probe and from quantum mechanical calculations. Using molecular dynamics simulations, the theoretical Raman spectra were calculated from first principles for local mixture structures under an external shear force at various temperatures. A proof of concept is developed to build the process design space from the computed data. We show that the determined process design space provides valuable insight for optimizing the cocrystallization process at the nanoscale, where experimental measurements are difficult and/or inapplicable. The results suggest that our method may be used to target cocrystallization processes at the molecular scale for improved pharmaceutical synthesis.
Collapse
Affiliation(s)
| | - Saeed Shirazian
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX Ireland
| | - Gavin Walker
- Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, V94 T9PX Ireland
| |
Collapse
|
22
|
Blaiotta G, Romano R, Trifuoggi M, Aponte M, Miro A. Development of a Wet-Granulated Sourdough Multiple Starter for Direct Use. Foods 2022; 11:foods11091278. [PMID: 35564001 PMCID: PMC9105756 DOI: 10.3390/foods11091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The search for sourdough starters for the direct production of baked goods with all the advantages of biological sourdough fermentation is still a crucial issue. In this study, 43 Lactic Acid Bacteria strains isolated from mature sourdoughs were evaluated for features of technological interest and tested for fermentation ability. Three microbial combinations were selected and used to produce bread. Based on GC-MS and sensory analysis, bread made by using the three combinations of strains was characterized by a more complex aroma profile with the prevalence of VOCs typical of sourdough bread. To set up the best way to keep microbial viability upon drying, the three combinations were subject to freeze-drying and wet granulation, with the latter being used for the first time for food starters’ stabilization. Wet granulation ensured optimal strains’ viability. Surprisingly, the height attained by mature sourdoughs when inoculated with wet granulated starters was constantly higher than the height reached by sourdoughs made with the same starters as fresh cells. The microbial combination E75-B72 exhibited the best performances and may represent a starter able to ensure sourdough bread production in 16 h of fermentation at 28 °C.
Collapse
Affiliation(s)
- Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.B.); (R.R.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.B.); (R.R.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia, 80126 Naples, Italy;
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.B.); (R.R.)
- Correspondence: ; Tel.: +39-081-2539398
| | - Agnese Miro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
23
|
Koide T, Hiyama Y. Analysis of Over-Granulated Particles using Near-Infrared Chemical Imaging and Attenuated Total Reflectance-Infrared Techniques. Int J Pharm 2022. [PMID: 35202724 DOI: 10.1016/j.ijpharm.2022.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To elucidate the previously described mechanism of segregation caused by over-granulation, we analyzed over-granulated particles using the techniques of near-infrared chemical imaging (NIR-CI) and attenuated total reflectance infrared (ATR-IR). The same area of over-granulated particles was measured using both techniques. The distributions of the active ingredient, ethenzamide, and other additives in the over-granulated particles were compared. As ATR-IR chemical imaging easily identifies components and has higher spatial resolution than NIR-CI, it permitted a clearer observation of the distribution of ingredients, particularly in fine cornstarch particles. Using both techniques, segregation of components were observed as previously reported. Although lactose was barely observed in the ethenzamide-enriched regions, ethenzamide and cornstarch were observed in lactose-enriched regions. This suggests that only lactose aggregated and segregated from the other compounds during the process of granulation. Hydrophilic lactose aggregation is supposedly caused by the behavior of water during granulation. In conclusion, ATR-IR chemical imaging is an excellent analytical technique for obtaining the detailed distribution of components. Furthermore, fusion of ATR-IR chemical imaging and NIR-CI is a useful tool for understanding drug manufacturing processes and may be applicable to pharmaceutical manufacturing and quality control.
Collapse
Affiliation(s)
- Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Yukio Hiyama
- Division of Drugs, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
24
|
Rao RR, Pandey A, Hegde AR, Kulkarni VI, Chincholi C, Rao V, Bhushan I, Mutalik S. Metamorphosis of Twin Screw Extruder-Based Granulation Technology: Applications Focusing on Its Impact on Conventional Granulation Technology. AAPS PharmSciTech 2021; 23:24. [PMID: 34907508 PMCID: PMC8816530 DOI: 10.1208/s12249-021-02173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
In order to be at pace with the market requirements of solid dosage forms and regulatory standards, a transformation towards systematic processing using continuous manufacturing (CM) and automated model-based control is being thought through for its fundamental advantages over conventional batch manufacturing. CM eliminates the key gaps through the integration of various processes while preserving quality attributes via the use of process analytical technology (PAT). The twin screw extruder (TSE) is one such equipment adopted by the pharmaceutical industry as a substitute for the traditional batch granulation process. Various types of granulation techniques using twin screw extrusion technology have been explored in the article. Furthermore, individual components of a TSE and their conjugation with PAT tools and the advancements and applications in the field of nutraceuticals and nanotechnology have also been discussed. Thus, the future of granulation lies on the shoulders of continuous TSE, where it can be coupled with computational mathematical studies to mitigate its complications.
Collapse
|
25
|
Liu B, Wang J, Zhou Q, Zhao L, Wang Y, Shen L, Feng Y, Du R. High shear wet granulation: Improved understanding of the effects of process variables on granule and tablet properties of a high-dose, high-hydrophobicity API based on quality by design and multivariate analysis approaches. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
26
|
Macho O, Gabrišová Ľ, Peciar P, Juriga M, Kubinec R, Rajniak P, Svačinová P, Vařilová T, Šklubalová Z. Systematic Study of the Effects of High Shear Granulation Parameters on Process Yield, Granule Size, and Shape by Dynamic Image Analysis. Pharmaceutics 2021; 13:pharmaceutics13111894. [PMID: 34834308 PMCID: PMC8623888 DOI: 10.3390/pharmaceutics13111894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the work was to analyze the influence of process parameters of high shear granulation on the process yield and on the morphology of granules on the basis of dynamic image analysis. The amount of added granulation liquid had a significant effect on all monitored granulometric parameters and caused significant changes in the yield of the process. In regard of the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid ratio of ≈1. The smallest granules were formed at an impeller speed of 700 rpm, but the granules formed at 500 rpm showed both the most desirable shape and the highest process yield. Variation in the shape factors relied not only on the process parameters, but also on the area equivalent diameter of the individual granules in the batch. A linear relationship was found between the amount of granulation liquid and the compressibility of the granules. Using response surface methodology, models for predicting the size of granules and process yield related to the amount of added liquid and the impeller speed were generated, on the basis of which the size of granules and yield can be determined with great accuracy.
Collapse
Affiliation(s)
- Oliver Macho
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia; (Ľ.G.); (P.P.); (M.J.)
- Correspondence:
| | - Ľudmila Gabrišová
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia; (Ľ.G.); (P.P.); (M.J.)
| | - Peter Peciar
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia; (Ľ.G.); (P.P.); (M.J.)
| | - Martin Juriga
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovakia; (Ľ.G.); (P.P.); (M.J.)
| | - Róbert Kubinec
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava 4, Slovakia;
| | - Pavol Rajniak
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.S.); (T.V.); (Z.Š.)
| | - Tereza Vařilová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.S.); (T.V.); (Z.Š.)
| | - Zdenka Šklubalová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.S.); (T.V.); (Z.Š.)
| |
Collapse
|
27
|
Maharjan R, Lee JC, Kim NA, Jeong SH. Preparation of seeded granules to improve mechanical properties and various drug loading for pharmaceutical application. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Araújo GP, Martins FT, Taveira SF, Cunha-Filho M, Marreto RN. Effects of Formulation and Manufacturing Process on Drug Release from Solid Self-emulsifying Drug Delivery Systems Prepared by High Shear Mixing. AAPS PharmSciTech 2021; 22:254. [PMID: 34668093 DOI: 10.1208/s12249-021-02128-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
This study sought to investigate the influence of formulation and process factors of the high shear mixing (HSM) on the properties of solid self-emulsifying drug delivery systems (S-SEDDS) containing the model drug carvedilol (CAR). Firstly, liquid SEDDS (L-SEDDS) were prepared by mixing castor oil with different proportions of surfactant (Solutol or Kolliphor RH40) and cosolvent (Transcutol or PEG400). A miscible L-SEDDS with high drug solubility (124.3 mg/g) was selected and gave rise to 10% (m/m) CAR loaded-emulsion with reduced particle size. Then, a factorial experimental design involving five component's concentration and two process factors was used to study the solidification of the selected L-SEDDS by HSM. CAR content, diffractometric profile, and in vitro dissolution were determined. Morphological and flow analyses were also performed. Porous and spherical particles with mean sizes ranging from 160 to 210 µm were obtained. Particle size was not affected by any formulation factor studied. Powder flowability, in turn, was influenced by L-SEDDS and crospovidone concentration. CAR in vitro dissolution from S-SEDDS was significantly increased compared to the drug as supplied and was equal (pH 1.2) or lower (pH 6.8) than that determined for L-SEDDS. Colloidal silicon dioxide decreased drug dissolution, whereas an increase in water-soluble diluent lactose and L-SEDDS concentration increased CAR dissolution. The proper selection of liquid and solid constituents proved to be crucial to developing an S-SEDDS by HSM. Indeed, the results obtained here using experimental design contribute to the production of S-SEDDS using an industrially viable process.
Collapse
|
29
|
Wang Z, Cao J, Li W, Wang Y, Luo G, Qiao Y, Zhang Y, Xu B. Using a material database and data fusion method to accelerate the process model development of high shear wet granulation. Sci Rep 2021; 11:16514. [PMID: 34389766 PMCID: PMC8363627 DOI: 10.1038/s41598-021-96097-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
High shear wet granulation (HSWG) has been wildly used in manufacturing of oral solid dosage (OSD) forms, and process modeling is vital to understanding and controlling this complex process. In this paper, data fusion and multivariate modeling technique were applied to develop a formulation-process-quality model for HSWG process. The HSWG experimental data from both literature and the authors' laboratory were fused into a single and formatted representation. A material database and material matching method were used to compensate the incomplete physical characterization of literature formulation materials, and dimensionless parameters were utilized to reconstruct process variables at different granulator scales. The exploratory study on input materials properties by principal component analysis (PCA) revealed that the formulation data collected from different articles generated a formulation library which was full of diversity. In prediction of the median granule size, the partial least squares (PLS) regression models derived from literature data only and a combination of literature data and laboratory data were compared. The results demonstrated that incorporating a small number of laboratory data into the multivariate calibration model could help significantly reduce the prediction error, especially at low level of liquid to solid ratio. The proposed data fusion methodology was beneficial to scientific development of HSWG formulation and process, with potential advantages of saving both experimental time and cost.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China
| | - Junjie Cao
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China
| | - Wanting Li
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China
| | - Yawen Wang
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China
| | - Gan Luo
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China
| | - Yanjiang Qiao
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing, 100029, People's Republic of China
| | - Yanling Zhang
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China. .,Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing, 100029, People's Republic of China.
| | - Bing Xu
- Department of Chinese Medicine Informatics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North Third Ring East Road, Beijing, 100029, People's Republic of China. .,Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing, 100029, People's Republic of China.
| |
Collapse
|
30
|
Domokos A, Pusztai É, Madarász L, Nagy B, Gyürkés M, Farkas A, Fülöp G, Casian T, Szilágyi B, Nagy ZK. Combination of PAT and mechanistic modeling tools in a fully continuous powder to granule line: Rapid and deep process understanding. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Waghule T, Dabholkar N, Gorantla S, Rapalli VK, Saha RN, Singhvi G. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach. Biomed Pharmacother 2021; 141:111940. [PMID: 34328089 DOI: 10.1016/j.biopha.2021.111940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
The intersection of lipid-based nanoparticles and lyotropic liquid crystals has provided a novel type of nanocarrier system known as 'lipid-based lyotropic liquid crystals' or 'liquid crystalline nanoparticles' (LCNPs). The unique advantages and immense popularity of LCNPs can be exploited in a better way if the formulation of LCNPs is done using the approach of quality by design (QbD). QbD is a systematic method that can be utilized in formulation development. When QbD is applied to LCNPs formulation, it will proffer many unique advantages, such as better product and process understanding, the flexibility of process within the design space, implementation of more effective and efficient control strategies, easy transfer from bench to bedside, and more robust product. In this work, the application of QbD in the formulation of LCNPs has been explored. The elements of QbD, viz. quality target product profile, critical quality attributes, critical material attributes, critical process parameters, quality risk management, design of experiments, and control strategy for the development of LCNPs have been explained in-depth with case studies. The present work will help the reader to understand the nitty-gritties in the application of QbD in the formulation of LCNPs, and provide a base for QbD-driven formulation of LCNPs with a regulatory perspective.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
32
|
Solid Form and Phase Transformation Properties of Fexofenadine Hydrochloride during Wet Granulation Process. Pharmaceutics 2021; 13:pharmaceutics13060802. [PMID: 34072083 PMCID: PMC8229471 DOI: 10.3390/pharmaceutics13060802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
The quality control of drug products during manufacturing processes is important, particularly the presence of different polymorphic forms in active pharmaceutical ingredients (APIs) during production, which could affect the performance of the formulated products. The objective of this study was to investigate the phase transformation of fexofenadine hydrochloride (FXD) and its influence on the quality and performance of the drug. Water addition was key controlling factor for the polymorphic conversion from Form I to Form II (hydrate) during the wet granulation process of FXD. Water-induced phase transformation of FXD was studied and quantified with XRD and thermal analysis. When FXD was mixed with water, it rapidly converted to Form II, while the conversion is retarded when FXD is formulated with excipients. In addition, the conversion was totally inhibited when the water content was <15% w/w. The relationship between phase transformation and water content was studied at the small scale, and it was also applicable for the scale-up during wet granulation. The effect of phase transition on the FXD tablet performance was investigated by evaluating granule characterization and dissolution behavior. It was shown that, during the transition, the dissolved FXD acted as a binder to improve the properties of granules, such as density and flowability. However, if the water was over added, it can lead to the incomplete release of the FXD during dissolution. In order to balance the quality attributes and the dissolution of granules, the phase transition of FXD and the water amount added should be controlled during wet granulation.
Collapse
|
33
|
Improvement of a 1D Population Balance Model for Twin-Screw Wet Granulation by Using Identifiability Analysis. Pharmaceutics 2021; 13:pharmaceutics13050692. [PMID: 34064771 PMCID: PMC8151179 DOI: 10.3390/pharmaceutics13050692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the pharmaceutical industry has undergone changes in the production of solid oral dosages from traditional inefficient and expensive batch production to continuous manufacturing. The latest advancements include increased use of continuous twin-screw wet granulation and application of advanced modeling tools such as Population Balance Models (PBMs). However, improved understanding of the physical process within the granulator and improvement of current population balance models are necessary for the continuous production process to be successful in practice. In this study, an existing compartmental one-dimensional PBM of a twin-screw granulation process was improved by altering the original aggregation kernel in the wetting zone as a result of an identifiability analysis. In addition, a strategy was successfully applied to reduce the number of model parameters to be calibrated in both the wetting zone and kneading zones. It was found that the new aggregation kernel in the wetting zone is capable of reproducing the particle size distribution that is experimentally observed at different process conditions as well as different types of formulations, varying in hydrophilicity and API concentration. Finally, it was observed that model parameters could be linked not only to the material properties but also to the liquid to solid ratio, paving the way to create a generic PBM to predict the particle size distribution of a new formulation.
Collapse
|
34
|
Nandi U, Trivedi V, Ross SA, Douroumis D. Advances in Twin-Screw Granulation Processing. Pharmaceutics 2021; 13:pharmaceutics13050624. [PMID: 33925577 PMCID: PMC8146340 DOI: 10.3390/pharmaceutics13050624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Twin-screw granulation (TSG) is a pharmaceutical process that has gained increased interest from the pharmaceutical industry for its potential for the development of oral dosage forms. The technology has evolved rapidly due to the flexibility of the equipment design, the selection of the process variables and the wide range of processed materials. Most importantly, TSG offers the benefits of both batch and continuous manufacturing for pharmaceutical products, accompanied by excellent process control, high product quality which can be achieved through the implementation of Quality by Design (QbD) approaches and the integration of Process Analytical Tools (PAT). Here, we present basic concepts of the various twin-screw granulation techniques and present in detail their advantages and disadvantages. In addition, we discuss the detail of the instrumentation used for TSG and how the critical processing paraments (CPP) affect the critical quality attributes (CQA) of the produced granules. Finally, we present recent advances in TSG continuous manufacturing including the paradigms of modelling of continuous granulation process, QbD approaches coupled with PAT monitoring for granule optimization and process understanding.
Collapse
Affiliation(s)
- Uttom Nandi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
| | - Vivek Trivedi
- Medway School of Pharmacy, Medway Campus, University of Kent, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
| | - Steven A. Ross
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Cubi-Tech Extrusion: 3, Sextant Park, Neptune Cl, Rochester ME2 4LU, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Correspondence: ; Tel.: +44-2083318440
| |
Collapse
|
35
|
Liu B, Wang J, Zeng J, Zhao L, Wang Y, Feng Y, Du R. A review of high shear wet granulation for better process understanding, control and product development. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Transition from binder to matrix-forming: The effect of hydroxypropylmethylcellulose concentration on the properties of starch/hydroxypropylmethylcellulose granules prepared in a high shear granulator. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Kittikunakorn N, Liu T, Zhang F. Twin-screw melt granulation: Current progress and challenges. Int J Pharm 2020; 588:119670. [PMID: 32739382 DOI: 10.1016/j.ijpharm.2020.119670] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Twin-screw melt granulation (TSMG) is a new alternative method for granulation that offers several advantages over wet and dry granulation methods. TSMG has rapidly gained interest over recent years in the pharmaceutical industry. Since it is an inherently continuous process with controlled temperature and shear history, TSMG produces products with more consistent quality than the batch process. Several studies have investigated how various formulation and processing parameters influence granulation behavior and granule properties; however, there are still challenges that require a better mechanistic understanding. This review summarizes the current progress of TSMG while highlighting how various formulation and process parameters affect the physicochemical properties of granules. The challenges related to the process-induced physicochemical changes of drug substances are also discussed.
Collapse
Affiliation(s)
- Nada Kittikunakorn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, University Avenue, Austin, TX 78712, United States
| | - Tongzhou Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, University Avenue, Austin, TX 78712, United States
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, University Avenue, Austin, TX 78712, United States.
| |
Collapse
|
38
|
High shear seeded granulation: Its preparation mechanism, formulation, process, evaluation, and mathematical simulation. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Kemp IC, van Millingen A, Khaled H. Development and verification of a novel design space and improved scale-up procedure for fluid bed granulation using a mechanistic model. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.10.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Zhang Y, Cheng BCY, Zhou W, Xu B, Gao X, Qiao Y, Luo G. Improved Understanding of the High Shear Wet Granulation Process under the Paradigm of Quality by Design Using Salvia miltiorrhiza Granules. Pharmaceutics 2019; 11:E519. [PMID: 31600941 PMCID: PMC6835650 DOI: 10.3390/pharmaceutics11100519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND High shear wet granulation (HSWG) is a shaping process for granulation that has been enhanced for application in the pharmaceutical industry. However, study of HSWG is complex and challenging due to the relatively poor understanding of HSWG, especially for sticky powder-like herbal extracts. AIM In this study, we used Salvia miltiorrhiza granules to investigate the HSWG process across different scales using quality by design (QbD) approaches. METHODS A Plackett-Burman experimental design was used to screen nine granulation factors in the HSWG process. Moreover, a quadratic polynomial regression model was established based on a Box-Behnken experimental design to optimize the granulation factors. In addition, the scale-up of HSWG was implemented based on a nucleation regime map approach. RESULTS According to the Plackett-Burman experimental design, it was found that three granulation factors, including salvia ratio, binder amount, and chopper speed, significantly affected the granule size (D50) of S. miltiorrhiza in HSWG. Furthermore, the results of the Box-Behnken experimental design and validation experiment showed that the model successfully captured the quadratic polynomial relationship between granule size and the two granulation factors of salvia ratio and binder amount. At the same experiment points, granules at all scales had similar size distribution, surface morphology, and flow properties. CONCLUSIONS These results demonstrated that rational design, screening, optimization, and scale-up of HSWG are feasible using QbD approaches. This study provides a better understanding of HSWG process under the paradigm of QbD using S. miltiorrhiza granules.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Wenjuan Zhou
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Interdisciplinary Research Center on Multi-Omics of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102400, China.
| | - Bing Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| | - Xiaoyan Gao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Interdisciplinary Research Center on Multi-Omics of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102400, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| | - Yanjiang Qiao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| | - Gan Luo
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
- Interdisciplinary Research Center on Multi-Omics of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102400, China.
- Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102400, China.
| |
Collapse
|
41
|
Stage-wise characterization of the high shear granulation process by impeller torque changing rate. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|