1
|
Wang J, Zhang X, Li S, Wang Y, Zhang M, Chen H. Steam explosion-assisted grinding improves the functional properties and antioxidant activity of Java tea-leaf powders (Clerodendranthus spicatus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7965-7976. [PMID: 38822620 DOI: 10.1002/jsfa.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Java tea is widely consumed and has multiple health effects. This study established a steam explosion (SE) pretreatment method to prepare Java tea-leaf powders. The physicochemical, functional properties, phenolic extraction, and antioxidant activity of Java tea-leaf powders produced by simple and SE-assisted milling methods were investigated. RESULTS In comparison with simple milling, SE pretreatment broke the cell wall effectively and reduced the particle size of Java tea-leaf powders. Steam explosion-treated powders showed higher values for sensory signals, bulk and tap density, and for the water solubility index. After SE treatment, the adsorption capacities to glucose, soybean oil, and cholesterol of leaf powders were increased by up to 55, 95, and 80% respectively. The extracts from SE-treated powders also showed higher total polyphenol content and antioxidant activity. CONCLUSION Steam explosion treatment is helpful for the improvement of functional properties and antioxidant activity, which can benefit the development and application of Java tea-leaf powders. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
- School of Medicine, Shanxi Datong University, Datong, P. R. China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, P. R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
2
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
3
|
Wang Z, Deng Z, Yu C, Wu J, Luo T. Effects of steam explosion on raspberry leaf structure and the release of water-soluble nutrients and phenolics. Food Chem 2024; 445:138708. [PMID: 38387314 DOI: 10.1016/j.foodchem.2024.138708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Raspberry leaves were subjected to steam explosion at 0.5 and 1.0 MPa for 60-120 s, aiming to disrupt their physical and chemical structure and, consequently, promote the release of phenolic compounds into the leaf aqueous infusion. Under optimal condition of 1.0 MPa for 60 s, steam explosion led to a notable 23 % increase in total phenolic content, a 29 % elevation in ABTS radical scavenging capacity, and a 13 % rise in DPPH radical scavenging capacity of the aqueous infusion. Utilizing UHPLC-Q-TOF-MS/MS and UHPLC-QE-MS/MS techniques, respectively, a total of 39 phenolic compounds were identified from raspberry leaves, and the changes in the contents of the most important 11 species were analyzed following steam explosion. Through correlation analysis and considering the content of each phenolic compound, it was inferred that the heightened antioxidant capacity of the aqueous infusion primarily stemmed from a substantial increase in the release of ellagic acid after steam explosion.
Collapse
Affiliation(s)
- Zhiyue Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Chengwei Yu
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China.
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Tian XY, Liu JF, Cheng Z, Wu NN, Tan B. Structure, thermal stability, physicochemical and functional characteristics of insoluble dietary fiber obtained from rice bran with steam explosion treatment: Effect of different steam pressure and particle size of rice bran. Food Res Int 2024; 187:114310. [PMID: 38763627 DOI: 10.1016/j.foodres.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Rice bran was modified by steam explosion (SE) treatment to investigate the impact of different steam pressure (0.4, 0.8, 1.2, 1.6, and 2.0 MPa) with rice bran through 60 mesh and rice bran pulverization (60, 80, and 100 mesh) with the steam pressure of 1.2 MPa on the structure, thermal stability, physicochemical and functional characteristics of insoluble dietary fiber (IDF) extracted from rice bran. IDF with SE treatment from scanning electron microscopy images showed a porous honeycomb structure, and lamellar shape in IDF became obvious with the increase of steam pressure. The relative crystallinity and polymerization degree of crystalline regions in IDF from rice bran with SE treatment from X-ray diffraction analysis were decreased. Differential scanning calorimetry results showed that thermal stability of IDF with SE treatment increased with the increase of crushing degree. The results of FT-IR also suggested that some glycosidic and hydrogen bonds in IDF could be broken, and some cellulose and hemicellulose were degraded during SE process. The physicochemical and functional characteristics of IDF, including water-holding capacity, oil-holding, glucose adsorption capacity, α-amylase and pancreatic lipase inhibition capacity were decreased with the increase of steam pressure and crushing degree. The swelling and nitrite adsorption capacities of IDF were increased first and then decreased with the increase of steam pressure. The physicochemical and functional characteristics of IDF from rice bran were improved after SE treatment, which might provide references for the utilization of IDF from rice bran with SE treatment.
Collapse
Affiliation(s)
- Xin-Yi Tian
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jian-Fu Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhuo Cheng
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Na-Na Wu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
5
|
Figueiredo CCM, Granero FO, Silva LP, Nogueira IFA, de Souza JF, Escaramboni B, de Oliva Neto P, da Silva RMG. Solid-state fermentation using wheat bran to produce glucose syrup and functional cereal bars. Bioprocess Biosyst Eng 2024; 47:1081-1094. [PMID: 38739268 DOI: 10.1007/s00449-024-03032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 μM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 μM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.
Collapse
Affiliation(s)
| | | | | | | | - Joyce Faria de Souza
- School of Sciences, Humanities and Languages, Bioenergy Research Institute, Bioprocess Unit, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Bruna Escaramboni
- School of Sciences, Humanities and Languages, Bioenergy Research Institute, Bioprocess Unit, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Pedro de Oliva Neto
- School of Sciences, Humanities and Languages, Bioenergy Research Institute, Bioprocess Unit, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Regildo Márcio Gonçalves da Silva
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
- Laboratory of Herbal Medicine and Natural Products, Department of Biotechnology, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Dom Antonio Avenue 2100, Assis, São Paulo, 19806-900, Brazil.
| |
Collapse
|
6
|
Liu L, Xu J, Zhang G, Gao N, Xu X, Zhao R. Ultrafine grinding improves the nutritional, physicochemical, and antioxidant activities of two varieties of whole-grain highland barley. J Food Sci 2024; 89:1960-1975. [PMID: 38488734 DOI: 10.1111/1750-3841.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 04/12/2024]
Abstract
Effects of ultrafine grinding on the nutritional profile, physicochemical properties, and antioxidant activities of whole-grain highland barley (HB) including white highland barley (WHB) and black highland barley (BHB) were studied. Whole-grain HB was regularly ground and sieved through 80 mesh get 80 M powder, and HB was ultrafine grounded and sieved through 80 mesh, 150 mesh, and 200 mesh get 80UMM, 150UMM, and 200UMM samples. Particle size of WHB and BHB reduced significantly after ultrafine grinding. As the particle size decreased, moisture content of WHB and BHB decreased significantly, whereas fat content increased significantly. Redistribution of fiber components in WHB and BHB from insoluble to soluble fractions was also observed. Wherein, content of soluble pentosan of WHB and BHB increased significantly from 0.56% and 0.78% (80 M) to 0.91% and 1.14% (200UMM), respectively. Damaged starch of WHB and BHB increased significantly from 8.16% and 8.21% (80 M) to 10.29% and 10.07% (200UMM), respectively. Content of phenolic acid and flavonoid of WHB and BHB and associated antioxidant capacity were increased after ultrafine grinding. Color of L* value increased significantly, a* and b* values decreased significantly, indicating the whiteness of WHB and BHB was increased after ultrafine grinding. Pasting temperature of WHB and BHB decreased, whereas peak viscosity increased. X-ray diffraction patterns of HB showed typical A- and V-style polymorphs and the relative crystallinity of HB decreased as the particle size decreased. Taken together, ultrafine grinding has shown great potential in improving the nutritional, physiochemical, and antioxidant properties of whole-grain HB. Our research findings could help better understand the ultrafine grinded whole grain HB in food industry.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jingwen Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ge Zhang
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Shanghai, China
| | - Nisi Gao
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Shanghai, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Shanghai, China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
7
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
8
|
Liu Y, Huang S, Meng T, Wang Y, Zhang Z. Effects of steam explosion on the nutritional and functional properties of black-grained wheat bran and its application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2175-2185. [PMID: 36541582 DOI: 10.1002/jsfa.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, an increasing interest in healthy functional foods has been documented among health-conscious consumers. Steam explosion (SE)-treated black-grained wheat (BGW) bran was explored for the development of chiffon cakes with high nutritional and functional value. RESULTS The content of crude fat and total starch decreased with increasing SE pressure, whereas water-holding capacity and antioxidant activity increased, suggesting SE at 0.6-1.0 MPa could be an effective technique for enhancing the nutritional and functional properties of wheat bran. The protein, iron, zinc, manganese, selenium, and soluble dietary fiber contents, the water-holding, oil-binding, swelling, cholesterol binding, and cation-exchange capacities, and antioxidant activity of SE BGW bran were better than those of SE white-grained wheat bran. The addition of SE bran (0.8 MPa) to flour significantly decreased the peak viscosity, final viscosity, and setback and increased the pasting temperature. The effect of SE bran on the pasting properties of low-gluten and medium-gluten flour was stronger than that of high-gluten flour. SE BGW bran altered the physicochemical properties of chiffon cakes. When 6% SE BGW bran (0.8 MPa) was added, chiffon cakes exhibited good specific volume, hardness, chewiness, and other sensory qualities. CONCLUSIONS These results indicate that SE at 0.6-1.0 MPa is an effective technique for enhancing the nutritional and functional properties of wheat bran. SE BGW bran can be alternatives to food materials for developing health functional cereal-based products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Tianqi Meng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Tang X, Wang Z, Zheng J, Kan J, Chen G, Du M. Physicochemical, structure properties and in vitro hypoglycemic activity of soluble dietary fiber from adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) bran treated by steam explosion. Front Nutr 2023; 10:1124012. [PMID: 36819706 PMCID: PMC9937059 DOI: 10.3389/fnut.2023.1124012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
To enhance the content of adlay bran soluble dietary fiber (SDF) and improve its functionality, we investigated the influences of steam explosion (SE) on the physicochemical, structural properties, and in vitro hypoglycemic activities of adlay bran SDF. The cellulose, hemicellulose, and lignin contents of adlay bran decreased significantly after SE treatment. When the SE strength was 0.8 MPa for 3 min, the SDF content was 9.37%, which was a significant increase of 27.48% compared to the control. Under these conditions, SDF showed the highest oil-holding capacity (OHC) (2.18 g/g), cholesterol adsorption capacity (CAC) (27.29 mg/g), glucose adsorption capacity (GAC) (15.54 mg/g), glucose dialysis retardation index (GDRI) (36.57%), and α-Amylase activity inhibition ratio (α-AAIR) (74.14%). Compared with SDF from untreated adlay bran, SDF from SE-treated adlay bran showed lower weight molecular. In addition, differential scanning calorimetry (DSC) measurement showed that the peak temperature of SDF from adlay bran treated by SE increased by 4.19°C compared to the untreated SDF sample. The structure of SDF from adlay bran treated by SE showed that the SDF surface was rough and poriferous and the specific surface areas increased. In conclusion, SE pretreatment increases the content of SDF in adlay bran and improves its physicochemical, structural properties, and biological activities, which will be beneficial for the further exploitation of adlay bran.
Collapse
Affiliation(s)
- Xinjing Tang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Zhirong Wang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Guangjing Chen
- College of Food Science, Southwest University, Chongqing, China,College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China,*Correspondence: Muying Du,
| |
Collapse
|
10
|
LI G, CHAI X, ZHONG Z, FENG Y, SUN H, WANG B. Penicillium fermentation combined with enzyme treatment to enhance the release of phenolic acids from wheat bran. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guangyao LI
- Henan Institute of Science and Technology, China
| | | | - Zhiyi ZHONG
- Henan Institute of Science and Technology, China
| | - Yan FENG
- Henan Institute of Science and Technology, China
| | - Haiyan SUN
- Chinese Academy of Tropical Agricultural Sciences, China
| | - Baoshi WANG
- Henan Institute of Science and Technology, China
| |
Collapse
|
11
|
Zhang Y, Zhang M, Guo X, Bai X, Zhang J, Huo R, Zhang Y. Improving the adsorption characteristics and antioxidant activity of oat bran by superfine grinding. Food Sci Nutr 2023; 11:216-227. [PMID: 36655077 PMCID: PMC9834878 DOI: 10.1002/fsn3.3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023] Open
Abstract
Oat bran (OB) is a by-product of oat, which is rich in β-glucan. As a new food processing technology, ultrafine powder can improve the surface properties of samples. OB with different grinding times was prepared, and its functional components, physical properties, adsorption properties, and antioxidant properties were evaluated. Results showed that with increased grinding times, the average particle size of OB decreased significantly (p < .05). And the water-holding capacity, swelling capacity, and water solubility index of OB increased significantly (p < .05), whereas the animal and vegetable oil-holding capacities decreased. Oat bran could adsorb cholic acid and glucose, which was related to the time of superfine grinding. In addition, the antioxidant capacity of OB was improved after superfine grinding. Related analysis shows that there was significant positive relationship between β-glucan, polyphenols and soluble dietary fibers and antioxidant indicators (p < .05). The Fourier transform infrared (FTIR) results showed that the FTIR spectra of OB powder with different crushing times were similar. On the basis of the above analyses, it is suggested that OB prepared by superfine grinding for 5 min had good physical and chemical properties and antioxidant properties and is widely used in food.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| | - Meili Zhang
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| | - Xinyue Guo
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| | - Xue Bai
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| | - Jing Zhang
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| | - Rui Huo
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| | - YuanYuan Zhang
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotP.R. China
| |
Collapse
|
12
|
Kong F, Li Y, Xue D, Ding Y, Sun X, Guo X, Wang W. Physical properties, antioxidant capacity, and starch digestibility of cookies enriched with steam-exploded wheat bran. Front Nutr 2022; 9:1068785. [PMID: 36570167 PMCID: PMC9768449 DOI: 10.3389/fnut.2022.1068785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Wheat bran-based food is rich in bioactive compounds, and steam explosion enhances the nutritional properties of wheat bran. This study examined the potential utilization of steam-exploded wheat bran (SWB) in cookie formulation. The influence of steam explosion on the chemical compounds in wheat bran and the effects of SWB on the physical properties, antioxidant capacity, and starch digestibility of cookies were investigated. The results showed that steam explosion facilitated the release of reducing sugar, flavonoids, phenolic substances, and amino acid nitrogen in wheat bran, thereby improving its nutritional properties. The reduction of sugar, total flavonoids, total phenolics, and amino acid nitrogen contents of wheat bran after steam explosion increased by 34.22, 183.02, 284.09, and 93.39%, respectively, compared with those of native wheat bran. Substitution of SWB for wheat flour mainly induced higher water, sodium carbonate, and sucrose solvent retention capacities, which were positively related to the spread ratio and hardness of cookies. The cookies with more SWB substitution (30-50%) expressed a higher spread ratio and harder texture than the others. The substitution of SWB caused changes in the antioxidant properties of cookies, which were related to the phenolic content. The cookies with SWB showed a higher DPPH radical scavenging activity (16.30-30.93%) than that of the control (14.74%). SWB might form a matrix barrier to hinder starch digestion, thus reducing the digestibility of cookies. The cookies enriched with 30-50% of the SWB exhibited greater physical properties and antioxidant capacity but lower starch digestibility than those of other cookies. The results will contribute to expanding the application range and improving the quality of bran-rich flour products.
Collapse
Affiliation(s)
- Feng Kong
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China,*Correspondence: Feng Kong
| | - Yue Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Di Xue
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Yishuai Ding
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xiaofan Sun
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Wenhao Wang
- Gambol Pet Group Co., Ltd., Liaocheng, China
| |
Collapse
|
13
|
Zeng Q, Kong F, Li Y, Guo X. Correlation of steam explosion severity with morphological and physicochemical characterization of soybean meal. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.991888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Steam explosion, a novel effective technology for cereal modification, integrates high-temperature autohydrolysis and structural disruption, which can significantly influence the morphological and physicochemical characterization of the feedstocks. The deep knowledge of the structural changes that are brought about by the treatment severity is connected with the technological demands to improve the processing efficiency and to increase the industrial application of the feedstocks by steam explosion. In this study, the changes in morphological and physicochemical properties of soybean meal induced by steam explosion were investigated. The correlation of steam explosion severity with soybean meal's final quality was also analyzed. The results showed that steam explosion effectively increased the fractal dimension from 1.6553 to 1.8871, the glycinin content from 151.38 to 334.94 mg/g, and the 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging activity from 28.69 to 63.78%. The gray value, color (L* and a* values), and the total phenol and polysaccharide contents of soybean meal were reduced with greater steam explosion severity. Steam explosion severity had a remarkable positive correlation with the fractal dimension and DPPH radical scavenging activity. However, steam explosion severity had no significant correlation with the textural and adsorption properties of the soybean meal. This study focused on the morphological and physicochemical property changes of the soybean meal during a steam explosion process, which could guide the application of steam explosion in food systems.
Collapse
|
14
|
Saini P, Islam M, Das R, Shekhar S, Sinha ASK, Prasad K. Wheat Bran as Potential Source of Dietary Fiber: Prospects and Challenges. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Nemes SA, Călinoiu LF, Dulf FV, Fărcas AC, Vodnar DC. Integrated Technology for Cereal Bran Valorization: Perspectives for a Sustainable Industrial Approach. Antioxidants (Basel) 2022; 11:antiox11112159. [PMID: 36358531 PMCID: PMC9686942 DOI: 10.3390/antiox11112159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Current research focuses on improving the bioaccessibility of functional components bound to cereal bran cell walls. The main bioactive components in cereal bran that have major biological activities include phenolic acids, biopeptides, dietary fiber, and novel carbohydrates. Because of the bound form in which these bioactive compounds exist in the bran matrix, their bioaccessibility is limited. This paper aims to comprehensively analyze the functionality of an integrated technology comprising pretreatment techniques applied to bran substrate followed by fermentation bioprocesses to improve the bioaccessibility and bioavailability of the functional components. The integrated technology of specific physical, chemical, and biological pretreatments coupled with fermentation strategies applied to cereal bran previously-pretreated substrate provide a theoretical basis for the high-value utilization of cereal bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Silvia Amalia Nemes
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcas
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
16
|
Ma C, Ni L, Guo Z, Zeng H, Wu M, Zhang M, Zheng B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022; 11:3370. [PMID: 36359983 PMCID: PMC9658468 DOI: 10.3390/foods11213370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Steam explosion is a widely used hydrothermal pretreatment method, also known as autohydrolysis, which has become a popular pretreatment method due to its lower energy consumption and lower chemical usage. In this review, we summarized the technical principle of steam explosion, and its definition, modification and application in dietary fiber, which have been explored by researchers in recent years. The principle and application of steam explosion technology in the modification of food dietary fiber were analyzed. The change in dietary fiber structure; physical, chemical, and functional characteristics; the advantages and disadvantages of the method; and future development trends were discussed, with the aim to strengthen the economic value and utilization of plants with high dietary fiber content and their byproducts.
Collapse
Affiliation(s)
- Chao Ma
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Liying Ni
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Zebin Guo
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maoyu Wu
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Ming Zhang
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Baodong Zheng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Wang B, Li G, Li L, Zhang M, Yang T, Xu Z, Qin T. Novel processing strategies to enhance the bioaccessibility and bioavailability of functional components in wheat bran. Crit Rev Food Sci Nutr 2022; 64:3044-3058. [PMID: 36190261 DOI: 10.1080/10408398.2022.2129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangyao Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linbo Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Tianyou Yang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS); Beijing Capital Agribusiness Future Biotechnology, Beijing, China
| |
Collapse
|
18
|
Wang L, Pang T, Kong F, Chen H. Steam Explosion Pretreatment for Improving Wheat Bran Extrusion Capacity. Foods 2022; 11:foods11182850. [PMID: 36140978 PMCID: PMC9498297 DOI: 10.3390/foods11182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Extrusion improves the texture of wheat bran and enhances its product edibility, making it a promising processing method. However, the extrusion performance of wheat bran without any treatment is not satisfactory and limits the utilization of wheat bran in food processing. In this study, steam explosion pretreatment was used to treat wheat bran to investigate its promotion of wheat bran extrusion. The results showed that steam explosion could increase the extrusion ratio of wheat bran extrudate by 36%. Grinding the steam-exploded wheat bran extrudate yields wheat bran flour with smaller particle sizes and higher cell wall breakage. Fourier transform infrared spectroscopy and chemical composition results revealed that steam explosion degraded insoluble dietary fiber and disrupted the dense structure of the cell wall in wheat bran. The water-extracted arabinoxylan and soluble dietary fiber content of steam-exploded wheat bran were 13.95% and 7.47%, respectively, improved by 1567.42% and 241.75% compared to untreated samples. The total phenol and flavonoid contents, water solubility index, and cation exchange capacity of steam-exploded wheat bran extrudate were all superior to raw wheat bran extrudate. In summary, this study demonstrates that steam explosion improves the extrusion capacity of wheat bran and facilitates its utilization.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Correspondence: ; Tel.: +86-010-8254-4978
| | - Tairan Pang
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Feng Kong
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hongzhang Chen
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
19
|
Kong F, Zeng Q, Li Y, Di X, Ding Y, Guo X. Effect of steam explosion on nutritional components, physicochemical and rheological properties of brown rice powder. Front Nutr 2022; 9:954654. [PMID: 36071937 PMCID: PMC9441901 DOI: 10.3389/fnut.2022.954654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Brown rice powder is underutilized mainly due to its lower starch digestibility and poor processing performance. The present study investigated the potential of steam explosion on the improvement of nutritional and physicochemical characteristic in brown rice powder and rheological property of paste. Compared with native brown rice powder, steam explosion at 0.5 MPa for 7 min increased the water-extractable arabinoxylans (5.77%), reducing sugar content (21.04%), and iodine blue value (30.38%), which indicated steam explosion that destroyed the intact cells of brown rice. Later the crystalline structure of brown rice powder was destroyed into an amorphous structure by steam explosion. Steam explosion enhanced the degree of gelatinization (4.76~351.85%) and solvent retention capacity (SRC) of brown rice powder, compared with native sample. The effect on the intact cells and starch structure of brown rice caused the starch digestibility enhancement remarkable. Viscoelastic profiles confirmed that steam explosion weakened the paste strength and elasticity corresponded with hardness and cohesiveness by increasing the loss factor (tanδ). This work provided important information for brown rice powder modified by steam explosion (0.5 MPa, 7 min) with good nutritional property (nutrients and digestibility) and processability (SRC, textural, and rheological property). Steam exploded brown rice powder (0.5 MPa, 7 min) could serve as a potential ingredient widely used in food products.
Collapse
|
20
|
Fărcaș AC, Socaci SA, Nemeș SA, Salanță LC, Chiș MS, Pop CR, Borșa A, Diaconeasa Z, Vodnar DC. Cereal Waste Valorization through Conventional and Current Extraction Techniques-An Up-to-Date Overview. Foods 2022; 11:foods11162454. [PMID: 36010454 PMCID: PMC9407619 DOI: 10.3390/foods11162454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, in the European Union more than 100 million tons of food are wasted, meanwhile, millions of people are starving. Food waste represents a serious and ever-growing issue which has gained researchers’ attention due to its economic, environmental, social, and ethical implications. The Sustainable Development Goal has as its main objective the reduction of food waste through several approaches such as the re-use of agro-industrial by-products and their exploitation through complete valorization of their bioactive compounds. The extraction of the bioactive compounds through conventional methods has been used for a long time, whilst the increasing demand and evolution for using more sustainable extraction techniques has led to the development of new, ecologically friendly, and high-efficiency technologies. Enzymatic and ultrasound-assisted extractions, microwave-assisted extraction, membrane fractionation, and pressure-based extraction techniques (supercritical fluid extraction, subcritical water extraction, and steam explosion) are the main debated green technologies in the present paper. This review aims to provide a critical and comprehensive overview of the well-known conventional extraction methods and the advanced novel treatments and extraction techniques applied to release the bioactive compounds from cereal waste and by-products.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemeș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Laboratory for Testing Quality and Food Safety, Calea Florești Street, No. 64, 400516 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Andrei Borșa
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Zorița Diaconeasa
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Yang L, Wang S, Zhang H, Du C, Li S, Yang J. Effects of black soybean powder particle size on the characteristics of mixed powder and wheat flour dough. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kong F, Zeng Q, Li Y, Zhao Y, Guo X. Improving bioaccessibility and physicochemical property of blue-grained wholemeal flour by steam explosion. Front Nutr 2022; 9:877704. [PMID: 35967773 PMCID: PMC9363763 DOI: 10.3389/fnut.2022.877704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Whole grain contains many health-promoting ingredients, but due to its poor bioaccessibility and processibility, it is not widely accepted by consumers. The steam explosion was exploited to modify the nutritional bioaccessibility and the physicochemical properties of wholemeal flour in this study. In vitro starch digestibility, in vitro protein digestibility of wholemeal flour, total flavonoids content, and total phenolics content of digestive juice were used to evaluate the bioaccessibility, and a significant variation (p < 0.05) was noted. Results showed that steam explosion enhanced the gastric protein digestibility ranged from 5.67 to 6.92% and the intestinal protein digestibility ranged from 16.77 to 49.12%. Steam-exploded wholemeal flour (0.5 MPa, 5 min) had the highest protein digestibility and rapidly digestible starch content. Compared with native flour, steam explosion (0.5 MPa, 5 min) contributed to a 0.72-fold and 0.33-fold increment of total flavonoids content and total phenolics content in digestible juice. Chemical changes of wholemeal flour, induced by steam explosion, caused the changes in the solvent retention capacity, rheological property of wholemeal flour, and altered the falling number (and liquefaction number). An increasing tendency to solid-like behavior and the gel strength of wholemeal flour was significantly enhanced by the steam explosion at 0.5 MPa for 5 min, while the gluten was not weakened. This study indicated that steam-exploded wholemeal flour (0.5 MPa, 5 min) could serve as a potential ingredient with the noticeable bioaccessibility and physicochemical properties in cereal products.
Collapse
Affiliation(s)
| | | | | | | | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
23
|
Yang L, Wang S, Zhang W, Zhang H, Guo L, Zheng S, Du C. Effect of black soybean flour particle size on the nutritional, texture and physicochemical characteristics of cookies. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kong F, Zeng Q, Li Y, Ding Y, Xue D, Guo X. Improving Antioxidative and Antiproliferative Properties Through the Release of Bioactive Compounds From Eucommia ulmoides Oliver Bark by Steam Explosion. Front Nutr 2022; 9:916609. [PMID: 35845794 PMCID: PMC9280486 DOI: 10.3389/fnut.2022.916609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Eucommia ulmoides Oliver bark is a potential medicinal plant-based feedstock for bioactive products and possesses the effective functions of antioxidant and antitumor. Network pharmacology was employed to reveal the oxidative and free radical damage and cancer-related potential compounds of Eucommia ulmoides Oliver in this study. The result showed that quercetin might be the key compound to resist these two types of diseases. Then, the effect of steam explosion on the release of bioactive compounds and the antioxidative and antiproliferative properties of the extract from Eucommia ulmoides Oliver bark were investigated. Results showed that steam explosion at 0.7 MPa for 30 min significantly enhanced the total phenolic, total flavonoids, and quercetin content of Eucommia ulmoides Oliver bark. Reducing power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity of the steam-exploded extracting solution were 1.72 and 2.76 times of native. The antiproliferative activity to CT26 and HepG2 of the extract from steam-exploded Eucommia ulmoides Oliver bark (SEU) was higher than those of native-exploded Eucommia ulmoides Oliver bark (NEU). All these results suggested that steam explosion could be applied to release the bioactive compounds, thus enhanced the antioxidative and antiproliferative activities of medicinal and edible plant-based sources.
Collapse
|
25
|
Li N, Wang S, Wang T, Liu R, Zhi Z, Wu T, Sui W, Zhang M. Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods 2022; 11:foods11121722. [PMID: 35741920 PMCID: PMC9222537 DOI: 10.3390/foods11121722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
Three medicinal fungi were used to carry out solid-state fermentation (SSF) of wheat bran. The results showed that the use of these fungi for SSF significantly improved wheat bran’s nutritional properties including the extraction yield of soluble dietary fiber (SDF), total phenolic content (TPC), total flavonoid content (TFC), physical properties containing swelling capacity (SC) and oil absorption capacity (OAC), as well as antioxidant activities. Electronic nose and GC–MS analyses showed that fermented wheat bran had different volatiles profiles compared to unfermented wheat bran. The results suggest that SSF by medicinal fungi is a promising way for the high-value utilization of wheat bran.
Collapse
Affiliation(s)
- Ningjie Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Songjun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Tianli Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
- Correspondence: (R.L.); (M.Z.)
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium;
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (N.L.); (S.W.); (T.W.); (T.W.); (W.S.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (R.L.); (M.Z.)
| |
Collapse
|
26
|
Kong F, Zeng Q, Li Y, Guo X. Effect of Steam Explosion on Structural Characteristics of β-Conglycinin and Morphology, Chemical Compositions of Soybean Meal. Front Nutr 2022; 9:896664. [PMID: 35719153 PMCID: PMC9202520 DOI: 10.3389/fnut.2022.896664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, steam explosion was applied as a means to degrade β-conglycinin. We investigated changes in morphology, the chemical composition of soybean meal, and the structural characteristics of β-conglycinin. The results showed that steam explosion at 0.7 MPa for 8 min could effectively decrease the β-conglycinin content of soybean meal while the histamine content was not increased. The structural characteristics of soybean meal proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and X-ray diffraction (XRD). Steam explosion caused the degradation of high weight proteins and reduced the band density of α', α, and β subunits in β-conglycinin. The micro-surface of soybean meal seemed to be in the cracked or puffed stage and the color became brown or dark after steam explosion. Steam explosion facilitated the dissolution of water-extractable arabinoxylans, which are 4.81 fold higher than that of native soybean meal. Phytic acid was exposed to the hydrothermal environment of the steam explosion process and consequently degraded by 12.95-24.69%. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of soybean meal extract was gradually increased from 20.70 to 33.71% with the rising of treated pressure from 0.3 to 0.7 MPa, which was 1.11-1.81 fold of native extract. The steam explosion may be a new modification technology that could decrease antigenicity, and steam-exploded soybean meal (0.7 MPa, 8 min) with lower β-conglycinin and phytic acid content that could be widely used in food products.
Collapse
Affiliation(s)
| | | | | | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
27
|
Wan F, Feng C, Luo K, Cui W, Xia Z, Cheng A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Khaleel G, Sharanagat VS, Singh L, Kumar Y, Kumar K, Kishor A, Saikumar A, Mani S. Characterization of kinnow (
Citrus reticulate
) peel and its effect on the quality of muffin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Lochan Singh
- Contract Research Organization, NIFTEM Sonipat 131028 India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, SLIET Punjab 148106 India
| | - Kshitiz Kumar
- Department of Food Processing Technology A D Patel Institute of Technology New V V Nagar, Gujarat 388121 India
| | - Anand Kishor
- Department of Food Engineering, NIFTEM Sonipat 131028 India
| | | | - Sarvanan Mani
- Department of Basic and Applied Sciences, NIFTEM Sonipat 131028 India
| |
Collapse
|
29
|
Impact of steam explosion pretreatment of defatted soybean meal on the flavor of soy sauce. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Lignocellulose particle size and rheological properties changes in periodic peristalsis enzymatic hydrolysis at high solids. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Guo X, He X, Dai T, Liu W, Liang R, Chen J, Liu C. The physicochemical and pasting properties of purple corn flour ground by a novel low temperature impact mill. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Wheat Bran Modifications for Enhanced Nutrition and Functionality in Selected Food Products. Molecules 2021; 26:molecules26133918. [PMID: 34206885 PMCID: PMC8271396 DOI: 10.3390/molecules26133918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/12/2023] Open
Abstract
The established use of wheat bran (WB) as a food ingredient is related to the nutritional components locked in its dietary fibre. Concurrently, the technological impairment it poses has impeded its use in product formulations. For over two decades, several modifications have been investigated to combat this problem. Ninety-three (93) studies (review and original research) published in English between January 1997 and April 2021 reporting WB modifications for improved nutritional, structural, and functional properties and prospective utilisation in food formulations were included in this paper. The modification methods include mechanical (milling), bioprocessing (enzymatic hydrolysis and fermentation with yeasts and bacteria), and thermal (dry heat, extrusion, autoclaving), treatments. This review condenses the current knowledge on the single and combined impact of various WB pre-treatments on its antioxidant profile, fibre solubilisation, hydration properties, microstructure, chemical properties, and technological properties. The use of modified WB in gluten-free, baked, and other food products was reviewed and possible gaps for future research are proposed. The application of modified WB will have broader application prospects in food formulations.
Collapse
|
33
|
Pectin/lignocellulose nanofibers/chitin nanofibers bionanocomposite as an efficient biosorbent of cholesterol and bile salts. Carbohydr Polym 2021; 261:117883. [PMID: 33766370 DOI: 10.1016/j.carbpol.2021.117883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/23/2022]
Abstract
A new biosorbent Ca-crosslinked pectin/lignocellulose nanofibers/chitin nanofibers (PLCN) was synthesized for cholesterol and bile salts adsorption from simulated intestinal fluid during gastric-intestinal passage. The physico-chemical properties of PLCN were studied using SEM, FTIR, XRD, DSC and BET. Before gastrointestinal passage, PLCN had an amorphous single-phase, compact structure formed via hydrogen and van der Waals bonds that revealed an irregular shape with the shriveled surface but watery condition and enzymatic digestion led to create a porous structure without destruction because of the water-insoluble nanofibers, therefore increasing the adsorption capacity. The maximum adsorption capacity reached 37.9 and 5578.4 mg/g for cholesterol and bile salts, respectively. Freundlich isotherm model indicated the reversible heterogeneous adsorption of both cholesterol and bile salts on PLCN. Further, their adsorption followed pseudo-second order kinetic model. These results suggest that PLCN has potential as a gastrointestinal-resistant biosorbent for cholesterol and bile salts adsorption applicable in medicine and food industry.
Collapse
|
34
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|