1
|
Sinclair SH, Schwartz S. Diabetic retinopathy: New concepts of screening, monitoring, and interventions. Surv Ophthalmol 2024; 69:882-892. [PMID: 38964559 DOI: 10.1016/j.survophthal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The science of diabetes care has progressed to provide a better understanding of the oxidative and inflammatory lesions and pathophysiology of the neurovascular unit within the retina (and brain) that occur early in diabetes, even prediabetes. Screening for retinal structural abnormalities, has traditionally been performed by fundus examination or color fundus photography; however, these imaging techniques detect the disease only when there are sufficient lesions, predominantly hemorrhagic, that are recognized to occur late in the disease process after significant neuronal apoptosis and atrophy, as well as microvascular occlusion with alterations in vision. Thus, interventions have been primarily oriented toward the later-detected stages, and clinical trials, while demonstrating a slowing of the disease progression, demonstrate minimal visual improvement and modest reduction in the continued loss over prolonged periods. Similarly, vision measurement utilizing charts detects only problems of visual function late, as the process begins most often parafoveally with increasing number and progressive expansion, including into the fovea. While visual acuity has long been used to define endpoints of visual function for such trials, current methods reviewed herein are found to be imprecise. We review improved methods of testing visual function and newer imaging techniques with the recommendation that these must be utilized to discover and evaluate the injury earlier in the disease process, even in the prediabetic state. This would allow earlier therapy with ocular as well as systemic pharmacologic treatments that lower the and neuro-inflammatory processes within eye and brain. This also may include newer, micropulsed laser therapy that, if applied during the earlier cascade, should result in improved and often normalized retinal function without the adverse treatment effects of standard photocoagulation therapy.
Collapse
Affiliation(s)
| | - Stan Schwartz
- University of Pennsylvania Affiliate, Main Line Health System, USA
| |
Collapse
|
2
|
Li H, Jia W, Vujosevic S, Sabanayagam C, Grauslund J, Sivaprasad S, Wong TY. Current research and future strategies for the management of vision-threatening diabetic retinopathy. Asia Pac J Ophthalmol (Phila) 2024; 13:100109. [PMID: 39395715 DOI: 10.1016/j.apjo.2024.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Diabetic retinopathy (DR) is a major ocular complication of diabetes and the leading cause of blindness and visual impairment, particularly among adults of working-age adults. Although the medical and economic burden of DR is significant and its global prevalence is expected to increase, particularly in low- and middle-income countries, a large portion of vision loss caused by DR remains preventable through early detection and timely intervention. This perspective reviewed the latest developments in research and innovation in three areas, first novel biomarkers (including advanced imaging modalities, serum biomarkers, and artificial intelligence technology) to predict the incidence and progression of DR, second, screening and early detection of referable DR and vision-threatening DR (VTDR), and finally, novel therapeutic strategies for VTDR, including diabetic macular oedema (DME), with the goal of reducing diabetic blindness.
Collapse
Affiliation(s)
- Huating Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Centre for Diabetes, Shanghai International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Centre for Diabetes, Shanghai International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Shanghai, China
| | - Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility, Moorfields Eye Hospital, London, United Kingdom
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Chua J, Tan B, Wong D, Garhöfer G, Liew XW, Popa-Cherecheanu A, Loong Chin CW, Milea D, Li-Hsian Chen C, Schmetterer L. Optical coherence tomography angiography of the retina and choroid in systemic diseases. Prog Retin Eye Res 2024; 103:101292. [PMID: 39218142 DOI: 10.1016/j.preteyeres.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Optical coherence tomography angiography (OCTA) has transformed ocular vascular imaging, revealing microvascular changes linked to various systemic diseases. This review explores its applications in diabetes, hypertension, cardiovascular diseases, and neurodegenerative diseases. While OCTA provides a valuable window into the body's microvasculature, interpreting the findings can be complex. Additionally, challenges exist due to the relative non-specificity of its findings where changes observed in OCTA might not be unique to a specific disease, variations between OCTA machines, the lack of a standardized normative database for comparison, and potential image artifacts. Despite these limitations, OCTA holds immense potential for the future. The review highlights promising advancements like quantitative analysis of OCTA images, integration of artificial intelligence for faster and more accurate interpretation, and multi-modal imaging combining OCTA with other techniques for a more comprehensive characterization of the ocular vasculature. Furthermore, OCTA's potential future role in personalized medicine, enabling tailored treatment plans based on individual OCTA findings, community screening programs for early disease detection, and longitudinal studies tracking disease progression over time is also discussed. In conclusion, OCTA presents a significant opportunity to improve our understanding and management of systemic diseases. Addressing current limitations and pursuing these exciting future directions can solidify OCTA as an indispensable tool for diagnosis, monitoring disease progression, and potentially guiding treatment decisions across various systemic health conditions.
Collapse
Affiliation(s)
- Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Xin Wei Liew
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alina Popa-Cherecheanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Ophthalmology, Bucharest, Romania
| | - Calvin Woon Loong Chin
- Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Jia J, Liu B, Wang X, Ji F, Wen F, Xu H, Ding T. Metabolomics combined with intestinal microbiota reveals the mechanism of compound Qilian tablets against diabetic retinopathy. Front Microbiol 2024; 15:1453436. [PMID: 39220039 PMCID: PMC11362098 DOI: 10.3389/fmicb.2024.1453436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Diabetic retinopathy (DR) is one of the common chronic complications of diabetes mellitus, which has developed into the leading cause of irreversible visual impairment in adults worldwide. Compound Qilian tablets (CQLT) is a traditional Chinese medicine (TCM) developed for treating DR, but its mechanism is still unclear. This study explored the mechanism of action of CQLT in treating DR through metabolomics and intestinal microbiota. Methods Histopathologic examination of the pancreas and retina of Zucker diabetic fatty (ZDF) rats and immunohistochemistry were used to determine the expression levels of retinal nerve damage indicators ionized calcium binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP). Rat fecal samples were tested by LC-MS metabolomics to search for potential biomarkers and metabolic pathways for CQLT treatment of DR. Characteristic nucleic acid sequences of rat intestinal microbiota from each group were revealed using 16S rDNA technology to explore key microbes and related pathways for CQLT treatment of DR. At the same time, we investigated the effect of CQLT on the gluconeogenic pathway. Results After CQLT intervention, islet cell status was improved, Iba-1 and GFAP expression were significantly decreased, and abnormal retinal microvascular proliferation and exudation were ameliorated. Metabolomics results showed that CQLT reversed 20 differential metabolites that were abnormally altered in DR rats. Intestinal microbiota analysis showed that treatment with CQLT improved the abundance and diversity of intestinal flora. Functional annotation of metabolites and intestinal flora revealed that glycolysis/gluconeogenesis, alanine, aspartate and glutamate metabolism, starch and sucrose metabolism were the main pathways for CQLT in treating DR. According to the results of correlation analysis, there were significant correlations between Iba-1, GFAP, and intestinal microbiota and metabolites affected by CQLT. In addition, we found that CQLT effectively inhibited the gluconeogenesis process in diabetic mice. Conclusion In conclusion, CQLT could potentially reshape intestinal microbiota composition and regulate metabolite profiles to protect retinal morphology and function, thereby ameliorating the progression of DR.
Collapse
Affiliation(s)
| | | | | | | | | | - Huibo Xu
- Pharmacodynamic and Toxicological Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Tao Ding
- Pharmacodynamic and Toxicological Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
6
|
Ciudin A, Hernández C, Simó-Servat O, Simó R. The usefulness of the retina for identifying people with type 2 diabetes with prodromal stages of dementia. Neurosci Biobehav Rev 2024; 159:105592. [PMID: 38365136 DOI: 10.1016/j.neubiorev.2024.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Type 2 diabetes (T2D) is associated with cognitive impairment and dementia. The detection of cognitive impairment is important because this population is at higher risk of experiencing difficulties in the self-management of diabetes. Mild cognitive impairment (MCI) often remains undiagnosed due to lack of simple tools for screening at large scale. This represents an important gap in the patients' management because subjects with diabetes and MCI are at high risk of progressing to dementia. Due to its developmental origin as a brain-derived tissue, the retina has been proposed as a potential means of non-invasive and readily accessible exploration of brain pathology. Recent evidence showed that retinal imaging and/or functional tests are correlated with the cognitive function and brain changes in T2D. Simple retinal functional tests (i.e. retinal microperimetry) have proven to be useful as reliable tool for the cognitive evaluation and monitoring in patients with T2D>65 years. This review gives an overall update on the usefulness of retinal imaging in identifying patients with T2D at risk of developing dementia.
Collapse
Affiliation(s)
- Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Endocrinology Department, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain.
| |
Collapse
|
7
|
Moustafa M, Khalil A, Darwish NHE, Zhang DQ, Tawfik A, Al-Shabrawey M. 12-HETE activates Müller glial cells: The potential role of GPR31 and miR-29. Prostaglandins Other Lipid Mediat 2024; 171:106805. [PMID: 38141777 PMCID: PMC10939904 DOI: 10.1016/j.prostaglandins.2023.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.
Collapse
Affiliation(s)
- Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Abraham Khalil
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Noureldien H E Darwish
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Clinical Pathology, Mansoura College of Medicine, Mansoura University-Egypt
| | - Dao-Qi Zhang
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Amany Tawfik
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA.
| |
Collapse
|
8
|
Zou X, Ye S, Tan Y. Potential disease biomarkers for diabetic retinopathy identified through Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 14:1339374. [PMID: 38274229 PMCID: PMC10808752 DOI: 10.3389/fendo.2023.1339374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Background Diabetic retinopathy (DR), a leading cause of vision loss, has limited options for effective prevention and treatment. This study aims to utilize genomics and proteomics data to identify potential drug targets for DR. Methods We utilized plasma protein quantitative trait loci data from the Atherosclerosis Risk in Communities Study and the Icelandic Decoding Genetics Study for discovery and replication, respectively. Genetic associations with DR, including its subtypes, were derived from the FinnGen study. Mendelian Randomization (MR) analysis estimated associations between protein levels and DR risk, complemented by colocalization analysis to examine shared causal variants. Results Our MR analysis identified significant associations of specific plasma proteins with DR and proliferative DR (PDR). Elevated genetically predicted levels of WARS (OR = 1.16; 95% CI = 0.095-0.208, FDR = 1.31×10-4) and SIRPG (OR = 1.15; 95% CI = 0.071-0.201, FDR = 1.46×10-2) were associated with higher DR risk, while increased levels of ALDOC (OR = 1.56; 95% CI = 0.246-0.637, FDR = 5.48×10-3) and SIRPG (OR = 1.15; 95% CI = 0.068-0.208, FDR = 4.73×10-2) were associated with higher PDR risk. These findings were corroborated by strong colocalization evidence. Conclusions Our study highlights WARS, SIRPG, and ALDOC as significant proteins associated with DR and PDR, providing a basis for further exploration in drug development. Additional studies are needed to validate these proteins as disease biomarkers across diverse populations.
Collapse
Affiliation(s)
- Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China
| | - Suna Ye
- Senzhen Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Malakhova AI, Strakhov VV, Kovaleva YD, Malakhova YA. [Objective functional monitoring of retinoprotective treatment in diabetic retinopathy]. Vestn Oftalmol 2024; 140:45-56. [PMID: 38450466 DOI: 10.17116/oftalma202414001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In recent years, there has been a growing interest in the contribution of neuroretinal degeneration to the pathogenesis of diabetic retinopathy (DR). PURPOSE This study assesses the effect of the drug Retinalamin on the functional state of the retina in patients with DR using the Diopsys NOVA Vision Testing System that utilizes electrophysiological (EP) technology. MATERIAL AND METHODS The study included patients with type 1 and 2 diabetes mellitus (DM) with DR of any stage without macular edema. Patients underwent standard ophthalmological examination and objective functional examination of the retina using the Diopsys NOVA Vision Testing System. The control group consisted of patients with type 1 and 2 DM with DR who did not receive Retinalamin. RESULTS Significant changes in pattern electroretinography and flash electroretinography parameters were recorded in patients who received a course of Retinalamin. Two clinical examples are presented, which can be designated as the first experience of objective functional monitoring of treatment of patients with DR with Retinalamin. CONCLUSION Retinoprotective therapy is necessary already at the early stages of DR. Electroretinography is an objective tool for functional analysis of the earliest changes in retinal cells in DR. It is necessary to use the identified "therapeutic" window for the appointment of retinoprotective agents.
Collapse
Affiliation(s)
- A I Malakhova
- Smolensk Regional Clinical Hospital, Smolensk, Russia
| | - V V Strakhov
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - Y D Kovaleva
- Smolensk State Medical University, Smolensk, Russia
| | - Y A Malakhova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
10
|
Shanbagh S, Gadde SG, Shetty R, Heymans S, Abilash VG, Chaurasia SS, Ghosh A. Hyperglycemia-induced miR182-5p drives glycolytic and angiogenic response in Proliferative Diabetic Retinopathy and RPE cells via depleting FoxO1. Exp Eye Res 2024; 238:109713. [PMID: 37952722 DOI: 10.1016/j.exer.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Diabetic Retinopathy (DR) is associated with metabolic dysfunction in cells such as retinal pigmented epithelium (RPE). Small molecular weight microRNAs can simultaneously regulate multiple gene products thus having pivotal roles in disease pathogenesis. Since miR182-5p is involved in regulating glycolysis and angiogenesis, two pathologic processes of DR, we investigated its status in DR eyes and in high glucose model in vitro. METHOD ology: Total RNA was extracted from vitreous humor of PDR (n = 48) and macular hole (n = 22) subjects followed by quantification of miR182-5p and its target genes. ARPE-19 cells, cultured in DMEM under differential glucose conditions (5 mM and 25 mM) were used for metabolic and biochemical assays. Cells were transfected with miRNA182 mimic or antagomir to evaluate the gain and loss of function effects. RESULTS PDR patient eyes had high levels of miR182-5p levels (p < 0.05). RPE cells under high glucose stress elevated miR182-5p expression with altered glycolytic pathway drivers such as HK2, PFKP and PKM2 over extended durations. Additionally, RPE cells under high glucose conditions exhibited reduced FoxO1 and enhanced Akt activation. RPE cells transfected with miR182-5p mimic phenocopied the enhanced basal and compensatory glycolytic rates observed under high glucose conditions with increased VEGF secretion. Conversely, inhibiting miR182-5p reduced Akt activation, glycolytic pathway proteins, and VEGF while stabilizing FoxO1. CONCLUSION Glycolysis-associated proteins downstream of the FoxO1-Akt axis were regulated by miR182-5p. Further, miR182-5p increased expression of VEGFR2 and VEGF levels, likely via inhibition of ZNF24. Thus, the FoxO1-Akt-glycolysis/VEGF pathway driving metabolic dysfunction with concurrent angiogenic signaling in PDR may be potentially targeted for treatment via miR182-5p modulation.
Collapse
Affiliation(s)
- Shaika Shanbagh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | | | | - V G Abilash
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Shyam S Chaurasia
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| |
Collapse
|
11
|
Bogdanov P, Duarri A, Sabater D, Salas A, Isla-Magrané H, Ramos H, Huerta J, Valeri M, García-Arumí J, Simó R, Hernández C. Blocking Hemopexin With Specific Antibodies: A New Strategy for Treating Diabetic Retinopathy. Diabetes 2023; 72:1841-1852. [PMID: 37722135 DOI: 10.2337/db23-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Hemopexin (HPX) is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. The aim of this study was to evaluate whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal (IVT) injections of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HRECs) was tested by scratch wound healing and tube formation using standardized methods, as well as by choroidal sprouting assays from retinal explants obtained in rats. We found that IVT injection of aHPX significantly reduced vascular leakage, retinal neurodegeneration, and inflammation. In addition, treatment with aHPX significantly reduced HREC migration and tube formation induced by high glucose concentration and suppressed choroidal sprouting even after vascular endothelial growth factor stimulation, with this effect being higher than obtained with bevacizumab. The antipermeability and antiangiogenic effects of IVT injection of aHPX suggest the blockade or inhibition of HPX as a new strategy for the treatment of advanced stages of diabetic retinopathy. ARTICLE HIGHLIGHTS Hemopexin (HPX) is the best-characterized permeability factor in steroid-sensitive nephrotic syndrome. We have previously reported that HPX is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. Here, we report that intravitreal injection of anti-HPX antibodies significantly reduces vascular leakage, retinal neurodegeneration, and inflammation in diabetic murine models and that the immunoneutralization of HPX exerts a significant antiangiogenic effect in vitro and in retinal explants. The blockade of HPX can be considered as a new therapy for advanced stages of diabetic retinopathy.
Collapse
Affiliation(s)
- Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - David Sabater
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Salas
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Helena Isla-Magrané
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Valeri
- Unit of High Technology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, Kordulewska N, Rozmus D, Cieślińska A, Grzybowski A. The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. Int J Mol Sci 2023; 24:15865. [PMID: 37958858 PMCID: PMC10650381 DOI: 10.3390/ijms242115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic retinopathy (DR) is renowned as a leading cause of visual loss in working-age populations with its etiopathology influenced by the disturbance of biochemical metabolic pathways and genetic factors, including gene polymorphism. Metabolic pathways considered to have an impact on the development of the disease, as well as genes and polymorphisms that can affect the gene expression, modify the quantity and quality of the encoded product (protein), and significantly alter the metabolic pathway and its control, and thus cause changes in the functioning of metabolic pathways. In this article, the screening of chromosomes and the most important genes involved in the etiology of diabetic retinopathy is presented. The common databases with manuscripts published from January 2000 to June 2023 have been taken into consideration and chosen. This article indicates the role of specific genes in the development of diabetic retinopathy, as well as polymorphic changes within the indicated genes that may have an impact on exacerbating the symptoms of the disease. The collected data will allow for a broader look at the disease and help to select candidate genes that can become markers of the disease.
Collapse
Affiliation(s)
- Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland;
| |
Collapse
|
13
|
Liang D, Qi Y, Liu L, Chen Z, Tang S, Tang J, Chen N. Jin-Gui-Shen-Qi Wan ameliorates diabetic retinopathy by inhibiting apoptosis of retinal ganglion cells through the Akt/HIF-1α pathway. Chin Med 2023; 18:130. [PMID: 37828620 PMCID: PMC10568827 DOI: 10.1186/s13020-023-00840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Jin-Gui-Shen-Qi Wan (JGSQ) has been used in China for thousands of years to treat various ailments, including frequent urination, blurred vision, and soreness in the waist and knees. It has traditional therapeutic advantages in improving eye diseases. AIM OF THE STUDY Clinical studies have confirmed the therapeutic efficacy of JGSQ in improving diabetes and vision; however, its efficacy and pharmacological effects in treating diabetic retinopathy (DR) remain unclear. Therefore, the aim of this study was to investigate the specific pharmacological effects and potential mechanisms of JGSQ in improving DR through a db/db model. MATERIALS AND METHODS db/db mice were given three different doses of orally administered JGSQ and metformin for 8 weeks, and then PAS staining of the retinal vascular network patch, transmission electron microscopy, H&E staining, and TUNEL staining were performed to determine the potential role of JGSQ in improving DR-induced neuronal cell apoptosis. Furthermore, network pharmacology analysis and molecular docking were carried out to identify the main potential targets of JGSQ, and the efficacy of JGSQ in improving DR was evaluated through western blotting and immunofluorescence staining, revealing its mechanism of action. RESULTS According to the results from H&E, TUNEL, and PAS staining of the retinal vascular network patch and transmission electron microscopy, JGSQ does not have an advantage in improving the abnormal morphology of vascular endothelial cells, but it has a significant effect on protecting retinal ganglion cells from apoptosis. Through network pharmacology and molecular docking, AKT, GAPDH, TNF, TP53, and IL-6 were identified as the main core targets of JGSQ. Subsequently, through western blot and immunofluorescence staining, it was found that JGSQ can inhibit HIF-1α, promote p-AKT expression, and inhibit TP53 expression. At the same time, inhibiting the release of inflammatory factors protects retinal ganglion cells and improves apoptosis in DR. CONCLUSION These results indicated that in the db/db DR mouse model, JGSQ can inhibit the expression of inflammatory cytokines and protect retinal ganglion cells from apoptosis, possibly by modulating the Akt/HIF-1α pathway.
Collapse
Affiliation(s)
- Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoxia Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen C, Wang Z, Yan W, Lan Y, Yan X, Li T, Han J. Anti-VEGF combined with ocular corticosteroids therapy versus anti-VEGF monotherapy for diabetic macular edema focusing on drugs injection times and confounding factors of pseudophakic eyes: A systematic review and meta-analysis. Pharmacol Res 2023; 196:106904. [PMID: 37666311 DOI: 10.1016/j.phrs.2023.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To assess the effectiveness and safety of combining intravitreal endothelial growth factor inhibitor (anti-VEGF) and ocular corticosteroids for diabetic macular edema (DME). METHODS Articles concentrating on the efficacy and safety of combining anti-VEGF and ocular corticosteroids therapy for DME versus anti-VEGF monotherapy was screened systematically. Meta-analysis was conducted on the basis of a protocol registered in the PROSPERO (CRD42023408338) and performed on the extracted continuous variables and dichotomous variables. The outcome was expressed as weighted mean difference (MD) and risk ratio (RR). RESULTS Add up to 21 studies including 1468 eyes were enrolled in this study. The MD for best-corrected visual acuity (BCVA) improvement at 1/3/6/12-month between the combination therapy group and monotherapy group were 2.56 (95% CI [0.43, 4.70]), 2.46 (95% CI [-0.40, 5.32]), - 1.76 (95% CI [-3.18, -0.34]), - 1.94 (95% CI [-3.87, 0.00]), respectively. The MD for central retinal thickness (CMT) reduction at 1/3/6/12-month between two groups were - 66.27 (95% CI [-101.08, -31.47]), - 33.62 (95% CI [-57.55, -9.70]), - 4.54 (95% CI [-16.84, 7.76]), - 26.67 (95% CI [-41.52, -11.82]), respectively. Additionally, the combination group had higher relative risk of high intraocular pressure and cataract progression events. CONCLUSIONS Anti-VEGF combined with ocular corticosteroids had a significant advantage over anti-VEGF monotherapy within 3 months of DME treatment, which reached the maximum with increasing anti-VEGF injection times to 3. However, with the prolongation of the treatment cycle, the effect of combined therapy after 6 months was no better than monotherapy, and the side effects of combined therapy were more severe.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
15
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
16
|
Lee J, Hu Z, Wang YA, Nath D, Liang W, Cui Y, Ma JX, Duerfeldt AS. Design, Synthesis, and Structure-Activity Relationships of Biaryl Anilines as Subtype-Selective PPAR-alpha Agonists. ACS Med Chem Lett 2023; 14:766-776. [PMID: 37312852 PMCID: PMC10258832 DOI: 10.1021/acsmedchemlett.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
The role of peroxisome proliferator-activated receptor alpha (PPARα) in retinal biology is clarifying, and evidence demonstrates that novel PPARα agonists hold promising therapeutic utility for diseases like diabetic retinopathy and age-related macular degeneration. Herein, we disclose the design and initial structure-activity relationships for a new biaryl aniline PPARα agonistic chemotype. Notably, this series exhibits subtype selectivity for PPARα over other isoforms, a phenomenon postulated to be due to the unique benzoic acid headgroup. This biphenyl aniline series is sensitive to B-ring functionalization but allows isosteric replacement, and provides an opportunity for C-ring extension. From this series, 3g, 6j, and 6d were identified as leads with <90 nM potency in a cell-based luciferase assay cell and exhibited efficacy in various disease-relevant cell contexts, thereby setting the stage for further characterization in more advanced in vitro and in vivo models.
Collapse
Affiliation(s)
- Julia
J. Lee
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ziwei Hu
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuhong Anna Wang
- Department
of Physiology, University of Oklahoma Health
Sciences Center, Oklahoma
City, Oklahoma 73104, United States
| | - Dinesh Nath
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United
States
| | - Wentao Liang
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Yi Cui
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
- Department
of Ophthalmology, Fujian Medical University
Union Hospital, Fujian 350001, China
| | - Jian-Xing Ma
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Adam S. Duerfeldt
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
18
|
Li Z, Yu H, Liu C, Wang C, Zeng X, Yan J, Sun Y. Efficiency co-delivery of ellagic acid and oxygen by a non-invasive liposome for ameliorating diabetic retinopathy. Int J Pharm 2023; 641:122987. [PMID: 37207860 DOI: 10.1016/j.ijpharm.2023.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications of diabetes, which has become the fourth leading cause of vision loss worldwide. Current treatment of DR relies on intravitreal injections of antiangiogenic agents, which has made considerable achievements in reducing visual impairment. However, long-term invasive injections require advanced technology and can lead to poor patient compliance as well as the incidence of ocular complications including bleeding, endophthalmitis, retinal detachment and others. Hence, we developed non-invasive liposomes (EA-Hb/TAT&isoDGR-Lipo) for efficiency co-delivery of ellagic acid and oxygen, which can be administered intravenously or by eye drops. Among that, ellagic acid (EA), as an aldose reductase inhibitor, could remove excessive reactive oxygen species (ROS) induced by high glucose for preventing retinal cell apoptosis, as well as reduce retinal angiogenesis through the blockage of VEGFR2 signaling pathway; carried oxygen could ameliorate DR hypoxia, and further enhanced the anti-neovascularization efficacy. Our results showed that EA-Hb/TAT&isoDGR-Lipo not only effectively protected retinal cells from high glucose-induced damage, but also inhibited VEGF-induced vascular endothelial cells migration, invasion, and tube formation in vitro. In addition, in a hypoxic cell model, EA-Hb/TAT&isoDGR-Lipo could reverse retinal cell hypoxia, thereby reducing the expression of VEGF. Significantly, after being administered as an injection or eye drops, EA-Hb/TAT&isoDGR-Lipo obviously ameliorated the structure (central retinal thickness and retinal vascular network) of retina by eliminating ROS and down-regulating the expression of GFAP, HIF-1α, VEGF and p-VEGFR2 in a DR mouse model. In summary, EA-Hb/TAT&isoDGR-Lipo holds great potentials in improvement of DR, which provides a novel approach for the treatment of DR.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
19
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
20
|
Darwish NHE, Hussein KA, Elmasry K, Ibrahim AS, Humble J, Moustafa M, Awadalla F, Al-Shabrawey M. Bone Morphogenetic Protein-4 Impairs Retinal Endothelial Cell Barrier, a Potential Role in Diabetic Retinopathy. Cells 2023; 12:1279. [PMID: 37174679 PMCID: PMC10177364 DOI: 10.3390/cells12091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFβ) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 μM), p38 (SB202190, 10 μM), ERK (U0126, 10 μM) and ER stress (Phenylbutyric acid or PBA, 30 μmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.
Collapse
Affiliation(s)
- Noureldien H. E. Darwish
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Khaled A. Hussein
- Oral and Dental Research Insitute, Department of Oral Medicine and Surgery, National Research Center, Cairo 11553, Egypt
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Science, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35111, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Julia Humble
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Mohamed Moustafa
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Fatma Awadalla
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Mohamed Al-Shabrawey
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| |
Collapse
|
21
|
Deliyanti D, Figgett WA, Gebhardt T, Trapani JA, Mackay F, Wilkinson-Berka JL. CD8 + T Cells Promote Pathological Angiogenesis in Ocular Neovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:522-536. [PMID: 36794587 DOI: 10.1161/atvbaha.122.318079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND CD4+ (cluster of differentation) and CD8+ T cells are increased in the ocular fluids of patients with neovascular retinopathy, yet their role in the disease process is unknown. METHODS We describe how CD8+ T cells migrate into the retina and contribute to pathological angiogenesis by releasing cytokines and cytotoxic factors. RESULTS In oxygen-induced retinopathy, flow cytometry revealed the numbers of CD4+ and CD8+ T cells were increased in blood, lymphoid organs, and retina throughout the development of neovascular retinopathy. Interestingly, the depletion of CD8+ T cells but not CD4+ T cells reduced retinal neovascularization and vascular leakage. Using reporter mice expressing gfp (green fluorescence protein) in CD8+ T cells, these cells were localized near neovascular tufts in the retina, confirming that CD8+ T cells contribute to the disease. Furthermore, the adoptive transfer of CD8+ T cells deficient in TNF (tumor necrosis factor), IFNγ (interferon gamma), Prf (perforin), or GzmA/B (granzymes A/B) into immunocompetent Rag1-/- mice revealed that CD8+ T cells mediate retinal vascular disease via these factors, with TNF influencing all aspects of vascular pathology. The pathway by which CD8+ T cells migrate into the retina was identified as CXCR3 (C-X-C motif chemokine receptor 3) with the CXCR3 blockade reducing the number of CD8+ T cells within the retina and retinal vascular disease. CONCLUSIONS We discovered that CXCR3 is central to the migration of CD8+ T cells into the retina as the CXCR3 blockade reduced the number of CD8+ T cells within the retina and vasculopathy. This research identified an unappreciated role for CD8+ T cells in retinal inflammation and vascular disease. Reducing CD8+ T cells via their inflammatory and recruitment pathways is a potential treatment for neovascular retinopathies.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences (D.D., J.L.W.-B.), University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Monash University, Melbourne, Victoria, Australia (D.D., J.L.W.-B.)
| | - William A Figgett
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia (W.A.F.)
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (W.A.F., T.G.)
| | - Thomas Gebhardt
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (W.A.F., T.G.)
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology (J.A.T.), University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia (J.A.T.)
| | - Fabienne Mackay
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (F.M.)
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences (D.D., J.L.W.-B.), University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Monash University, Melbourne, Victoria, Australia (D.D., J.L.W.-B.)
| |
Collapse
|
22
|
Hernández C, Simó-Servat O, Porta M, Grauslund J, Harding SP, Frydkjaer-Olsen U, García-Arumí J, Ribeiro L, Scanlon P, Cunha-Vaz J, Simó R. Serum glial fibrillary acidic protein and neurofilament light chain as biomarkers of retinal neurodysfunction in early diabetic retinopathy: results of the EUROCONDOR study. Acta Diabetol 2023; 60:837-844. [PMID: 36959506 DOI: 10.1007/s00592-023-02076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
AIMS Neurodegeneration and glial activation are primary events in the pathogenesis of diabetic retinopathy. Serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are biomarkers of underlying neuroinflammatory and neurodegenerative disease processes. The aim of the present study was to assess the usefulness of these serum biomarkers for the identification and monitoring of retinal neurodysfunction in subjects with type 2 diabetes. METHODS A case-control study was designed including 38 patients from the placebo arm of the EUROCONDOR clinical trial: 19 with and 19 without retinal neurodysfunction assessed by multifocal electroretinography. GFAP and NfL were measured by Simoa. RESULTS Serum levels of GFAP and NfL directly correlated with age (r = 0.37, p = 0.023 and r = 0.54, p < 0.001, respectively). In addition, a direct correlation between GFAP and NfL was observed (r = 0.495, p = 0.002). Serum levels of GFAP were significantly higher at baseline in those subjects in whom neurodysfunction progressed after the 2 years of follow-up (139.1 ± 52.5 pg/mL vs. 100.2 ± 54.6 pg/mL; p = 0.04). CONCLUSIONS GFAP could be a useful serum biomarker for retinal neurodysfunction. Monitoring retinal neurodysfunction using blood samples would be of benefit in clinical decision-making. However, further research is needed to validate this result as well as to establish the best cutoff values.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jakob Grauslund
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, and St. Paul's Eye Unit. Liverpool University Hospitals, Liverpool, UK
| | - Ulrik Frydkjaer-Olsen
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - José García-Arumí
- Department of Ophthalmology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Luísa Ribeiro
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Peter Scanlon
- Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, UK
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
23
|
Lenin R, Jha KA, Gentry J, Shrestha A, Culp EV, Vaithianathan T, Gangaraju R. Tauroursodeoxycholic Acid Alleviates Endoplasmic Reticulum Stress-Mediated Visual Deficits in Diabetic tie2-TNF Transgenic Mice via TGR5 Signaling. J Ocul Pharmacol Ther 2023; 39:159-174. [PMID: 36791327 PMCID: PMC10081728 DOI: 10.1089/jop.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/11/2022] [Indexed: 02/17/2023] Open
Abstract
Purpose: This study evaluated if tauroursodeoxycholic acid (TUDCA) alleviates pro-inflammatory and endoplasmic reticulum (ER) stress-mediated visual deficits in diabetic tie2-TNF transgenic mice via Takeda G protein-coupled receptor 5 (TGR5) receptor signaling. Methods: Adult tie2-TNF transgenic or age-matched C57BL/6J (wildtype, WT) mice were made diabetic and treated subcutaneously with TUDCA. After 4 weeks, visual function, vascular permeability, immunohistology, and molecular analyses were assessed. Human retinal endothelial cells (HRECs) silenced for TGR5, followed by TNF and high glucose (HG) stress-mediated endothelial permeability, and transendothelial migration of activated leukocytes were assessed with TUDCA in vitro. Results: Compared with WT mice, tie2-TNF mice showed a decreased visual function correlated with a decrease in protein kinase C α (PKCα) in rod bipolar cells, and increased vascular permeability was further exacerbated in diabetic-tie2-TNF mice. Conversely, TUDCA alleviated these changes in diabetic mice. An increase in inflammation and ER stress in retina coincided with an increase in TGR5 expression in diabetic tie2-TNF mice that decreased with TUDCA. In vitro, HRECs exposed to TNF+HG demonstrated >2-fold increase in TGR5 expression, a 3-fold increase in leukocyte transmigration with a concomitant increase in permeability. Although TUDCA reversed these effects, HRECs silenced for TGR5 and challenged with TUDCA or TGR5 agonist failed to reverse the TNF+HG induced effects. Conclusions: Our data suggest that TUDCA will serve as an excellent therapeutic agent for diabetic complications addressing both vascular and neurodegenerative changes in the retina. Perturbation of the TGR5 receptor in the retina might play a role in linking retinal ER stress to neurovascular dysfunction in diabetic retinopathy.
Collapse
Affiliation(s)
- Raji Lenin
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kumar Abhiram Jha
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jordy Gentry
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Abhishek Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erielle V. Culp
- Department of Pharmacology, Addiction Science, and Toxicology, and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thirumalini Vaithianathan
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Pharmacology, Addiction Science, and Toxicology, and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
24
|
Lee AJ, Moon CH, Lee YJ, Jeon HY, Park WS, Ha KS. Systemic C-peptide supplementation ameliorates retinal neurodegeneration by inhibiting VEGF-induced pathological events in diabetes. FASEB J 2023; 37:e22763. [PMID: 36625326 DOI: 10.1096/fj.202201390rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Diabetic retinopathy (DR) is caused by retinal vascular dysfunction and neurodegeneration. Intraocular delivery of C-peptide has been shown to be beneficial against hyperglycemia-induced microvascular leakage in the retina of diabetes; however, the effect of C-peptide on diabetes-induced retinal neurodegeneration remains unknown. Moreover, extraocular C-peptide replacement therapy against DR to avoid various adverse effects caused by intravitreal injections has not been studied. Here, we demonstrate that systemic C-peptide supplementation using osmotic pumps or biopolymer-conjugated C-peptide hydrogels ameliorates neurodegeneration by inhibiting vascular endothelial growth factor-induced pathological events, but not hyperglycemia-induced vascular endothelial growth factor expression, in the retinas of diabetic mice. C-peptide inhibited hyperglycemia-induced activation of macroglial and microglial cells, downregulation of glutamate aspartate transporter 1 expression, neuronal apoptosis, and histopathological changes by a mechanism involving reactive oxygen species generation in the retinas of diabetic mice, but transglutaminase 2, which is involved in retinal vascular leakage, is not associated with these pathological events. Overall, our findings suggest that systemic C-peptide supplementation alleviates hyperglycemia-induced retinal neurodegeneration by inhibiting a pathological mechanism, involving reactive oxygen species, but not transglutaminase 2, in diabetes.
Collapse
Affiliation(s)
- Ah-Jun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Chan-Hee Moon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
25
|
Han F, Zhang J, Li K, Wang W, Dai D. Triptolide protects human retinal pigment epithelial ARPE-19 cells against high glucose-induced cell injury by regulation of miR-29b/PTEN. Arch Physiol Biochem 2023; 129:54-60. [PMID: 32730124 DOI: 10.1080/13813455.2020.1797101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress and inflammation are necessary pathogenic factors contributing to the aetiology of diabetic retinopathy (DR). Triptolide (TPL) is derived from the traditional Chinese herb lei gong teng with anti-inflammatory, immunosuppressive and antitumor activities. This article was developed to examine the effect of TPL on DR. ARPE-19 cells were pre-treated with TPL and then stimulated by high glucose (HG). We found that TPL treatment enhanced cell viability, decreased apoptosis and ROS production in HG-treated RPE cells. MiR-29b was low-expressed in HG-treated cells, but TPL raised its expression. In addition, the protective activity of TPL towards ARPE-19 cells was attenuated when miR-29b was reduced. By utilising bioinformatics evaluation, PTEN was predicted as a downstream target of miR-29b. Also, TPL obstructed PI3K/AKT signalling pathways in HG-treated ARPE-19 Cells. Taken together, TPL secured ARPE-19 cells from HG-induced oxidative damage via regulating miR-29b/PTEN axis.
Collapse
Affiliation(s)
- Fengmei Han
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| | - Jingyi Zhang
- Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| | - Kun Li
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| | - Wenying Wang
- Department of Ophthalmologic Examination, Cangzhou Central Hospital, Cangzhou, China
| | - Dongshu Dai
- Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
26
|
Ramos H, Bogdanov P, Simó R, Deàs-Just A, Hernández C. Transcriptomic Analysis Reveals That Retinal Neuromodulation Is a Relevant Mechanism in the Neuroprotective Effect of Sitagliptin in an Experimental Model of Diabetic Retinopathy. Int J Mol Sci 2022; 24:ijms24010571. [PMID: 36614016 PMCID: PMC9820711 DOI: 10.3390/ijms24010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Synaptic dysfunction and neuronal damage have been extensively associated with diabetic retinopathy (DR). Our group evidenced that chronic hyperglycemia reduces the retinal expression of presynaptic proteins, which are crucial for proper synaptic function. The aim of the study was to explore the effect of topically administered sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4, on the retinal expression patterns of an experimental model of DR. Transcriptome analysis was performed, comparing the retinas of 10 diabetic (db/db) mice randomly treated with sitagliptin eye drops (10 mg/mL) twice daily and the retinas of 10 additional db/db mice that received vehicle eye drops. Ten non-diabetic mice (db/+) were used as a control group. The Gene Ontology (GO) and Reactome databases were used to perform the gene set enrichment analysis (GSEA) in order to explore the most enriched biological pathways among the groups. The most differentiated genes of these pathways were validated through quantitative RT-PCR. Transcriptome analysis revealed that sitagliptin eye drops have a significant effect on retinal expression patterns and that neurotransmission is the most enriched biological process. Our study evidenced enriched pathways that contain genes involved in membrane trafficking, transmission across chemical synapses, vesicle-mediated transport, neurotransmitter receptors and postsynaptic signal transmission with negative regulation of signaling as a consequence of neuroprotector treatment with sitagliptin. This improves the modulation of the macromolecule biosynthetic process with positive regulation of cell communication, which provides beneficial effects for the neuronal metabolism. This study suggests that topical administration of sitagliptin ameliorates the abnormalities on presynaptic and postsynaptic signal transmission during experimental DR and that this improvement is one of the main mechanisms behind the previously demonstrated beneficial effects.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Correspondence: (P.B.); (C.H.)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Anna Deàs-Just
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Correspondence: (P.B.); (C.H.)
| |
Collapse
|
27
|
Long Non-coding RNA SPAG5-AS1 Attenuates Diabetic Retinal Vascular Dysfunction by Inhibiting Human Retinal Microvascular Endothelial Cell Proliferation, Migration, and Tube Formation by Regulating the MicroRNA-1224-5p/IRS-1 Axis. Mol Biotechnol 2022; 65:904-912. [DOI: 10.1007/s12033-022-00572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
|
28
|
Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells 2022; 11:cells11213362. [PMID: 36359761 PMCID: PMC9655436 DOI: 10.3390/cells11213362] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR), with increasing incidence, is the major cause of vision loss and blindness worldwide in working-age adults. Diabetic macular edema (DME) remains the main cause of vision impairment in diabetic patients, with its pathogenesis still not completely elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of DR and DME. Currently, intravitreal injection of anti-VEGF agents remains as the first-line therapy in DME treatment due to the superior anatomic and functional outcomes. However, some patients do not respond satisfactorily to anti-VEGF injections. More than 30% patients still exist with persistent DME even after regular intravitreal injection for at least 4 injections within 24 weeks, suggesting other pathogenic factors, beyond VEGF, might contribute to the pathogenesis of DME. Recent advances showed nearly all the retinal cells are involved in DR and DME, including breakdown of blood-retinal barrier (BRB), drainage dysfunction of Müller glia and retinal pigment epithelium (RPE), involvement of inflammation, oxidative stress, and neurodegeneration, all complicating the pathogenesis of DME. The profound understanding of the changes in proteomics and metabolomics helps improve the elucidation of the pathogenesis of DR and DME and leads to the identification of novel targets, biomarkers and potential therapeutic strategies for DME treatment. The present review aimed to summarize the current understanding of DME, the involved molecular mechanisms, and the changes in proteomics and metabolomics, thus to propose the potential therapeutic recommendations for personalized treatment of DME.
Collapse
|
29
|
Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy. J Clin Med 2022; 11:jcm11195824. [PMID: 36233694 PMCID: PMC9572303 DOI: 10.3390/jcm11195824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Diabetic retinopathy (DR) is a diabetes mellitus (DM) complication where neurodegeneration plays a significant role. The aim of our study was to determine the differences between type 1 DM (T1DM) and 2 DM (T2DM) in the multifocal electroretinogram (mERG).; (2) Methods: A mERG study was performed in two groups, a T1DM group with 72 eyes of 36 patients compared with 72 eyes of 36 patients with T2DM, randomly selected from our DM databases, without DR. We studied how HbA1c and DM duration affects amplitude and implicit time of mERG; (3) Results: the study of DM duration shows patients with T1DM have lower amplitude values compared to T2DM patients, although implicit time increases in patients with T2DM. HbA1c over 7% only affects T1DM patients with an increase of implicit time; (4) Conclusions: the retinas of patients with T1DM seem more sensitive to changes in HbA1c levels than in patients with DMT2, although the duration of diabetes affects both types of DM patients.
Collapse
|
30
|
Song Z, He C, Wen J, Yang J, Chen P. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy. Curr Genomics 2022; 23:246-261. [PMID: 36777876 PMCID: PMC9875540 DOI: 10.2174/1389202923666220531105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.
Collapse
Affiliation(s)
- Zhaoxia Song
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China;,Address correspondence to this author at the Department of Medical Genetics, College of Basic Medical Sciences, Jilin University. Address: Room 413, 126 Xinmin Street, Changchun, Jilin 130021, China; Tel/Fax: 0086-18584362191; E-mail:
| |
Collapse
|
31
|
Li J, Guo C, Wang T, Xu Y, Peng F, Zhao S, Li H, Jin D, Xia Z, Che M, Zuo J, Zheng C, Hu H, Mao G. Interpretable machine learning-derived nomogram model for early detection of diabetic retinopathy in type 2 diabetes mellitus: a widely targeted metabolomics study. Nutr Diabetes 2022; 12:36. [PMID: 35931671 PMCID: PMC9355962 DOI: 10.1038/s41387-022-00216-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Early identification of diabetic retinopathy (DR) is key to prioritizing therapy and preventing permanent blindness. This study aims to propose a machine learning model for DR early diagnosis using metabolomics and clinical indicators. Methods From 2017 to 2018, 950 participants were enrolled from two affiliated hospitals of Wenzhou Medical University and Anhui Medical University. A total of 69 matched blocks including healthy volunteers, type 2 diabetes, and DR patients were obtained from a propensity score matching-based metabolomics study. UPLC-ESI-MS/MS system was utilized for serum metabolic fingerprint data. CART decision trees (DT) were used to identify the potential biomarkers. Finally, the nomogram model was developed using the multivariable conditional logistic regression models. The calibration curve, Hosmer–Lemeshow test, receiver operating characteristic curve, and decision curve analysis were applied to evaluate the performance of this predictive model. Results The mean age of enrolled subjects was 56.7 years with a standard deviation of 9.2, and 61.4% were males. Based on the DT model, 2-pyrrolidone completely separated healthy controls from diabetic patients, and thiamine triphosphate (ThTP) might be a principal metabolite for DR detection. The developed nomogram model (including diabetes duration, systolic blood pressure and ThTP) shows an excellent quality of classification, with AUCs (95% CI) of 0.99 (0.97–1.00) and 0.99 (0.95–1.00) in training and testing sets, respectively. Furthermore, the predictive model also has a reasonable degree of calibration. Conclusions The nomogram presents an accurate and favorable prediction for DR detection. Further research with larger study populations is needed to confirm our findings.
Collapse
Affiliation(s)
- Jushuang Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chengnan Guo
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Wang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixi Xu
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Peng
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuzhen Zhao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihui Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongzhen Jin
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhezheng Xia
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingzhu Che
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Zuo
- Center on Clinical Research, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honglin Hu
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Guangyun Mao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Center on Clinical Research, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
32
|
New Insights into Treating Early and Advanced Stage Diabetic Retinopathy. Int J Mol Sci 2022; 23:ijms23158513. [PMID: 35955655 PMCID: PMC9368971 DOI: 10.3390/ijms23158513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of preventable blindness in the working-age population. The disease progresses slowly, and we can roughly differentiate two stages: early-stage (ESDR), in which there are mild retinal lesions and visual acuity is generally preserved, and advanced-stage (ASDR), in which the structural lesions are significant and visual acuity is compromised. At present, there are no specific treatments for ESDR and the current recommended action is to optimize metabolic control and maintain close control of blood pressure. However, in the coming years, it is foreseeable that therapeutic strategies based in neuroprotection will be introduced in the clinical arena. This means that screening aimed at identifying patients in whom neuroprotective treatment might be beneficial will be crucial. Regarding the treatment of ASDR, the current primary course is based on laser photocoagulation and intravitreal injections of anti-angiogenic factors or corticosteroids. Repeated intravitreal injections of anti-VEGF agents as the first-line treatment would be replaced by more cost-effective and personalized treatments based on the results of “liquid biopsies” of aqueous humor. Finally, topical administration (i.e., eye drops) of neuroprotective, anti-inflammatory and anti-angiogenic agents will represent a revolution in the treatment of DR in the coming decade. In this article, all these approaches and others will be critically discussed from a holistic perspective.
Collapse
|
33
|
Zhao X, Ling F, Zhang GW, Yu N, Yang J, Xin XY. The Correlation Between MicroRNAs and Diabetic Retinopathy. Front Immunol 2022; 13:941982. [PMID: 35958584 PMCID: PMC9358975 DOI: 10.3389/fimmu.2022.941982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Micro ribonucleic acids (miRNAs), as a category of post-transcriptional gene inhibitors, have a wide range of biological functions, are involved in many pathological processes, and are attractive therapeutic targets. Considerable evidence in ophthalmology indicates that miRNAs play an important role in diabetic retinopathy (DR), especially in inflammation, oxidative stress, and neurodegeneration. Targeting specific miRNAs for the treatment of DR has attracted much attention. This is a review focusing on the pathophysiological roles of miRNAs in DR, diabetic macular edema, and proliferative DR complex multifactorial retinal diseases, with particular emphasis on how miRNAs regulate complex molecular pathways and underlying pathomechanisms. Moreover, the future development potential and application limitations of therapy that targets specific miRNAs for DR are discussed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Ophthalmology, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
| | - Feng Ling
- Department of Ophthalmology, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
| | - Guang wei Zhang
- Department of Cardiology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Na Yu
- Department of Scientific research, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
| | - Jing Yang
- Department of Biology, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, Inner Mongolia, China
- *Correspondence: Jing Yang, ; Xiang yang Xin,
| | - Xiang yang Xin
- Department of Ophthalmology, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
- *Correspondence: Jing Yang, ; Xiang yang Xin,
| |
Collapse
|
34
|
Ramos H, Bogdanov P, Huerta J, Deàs-Just A, Hernández C, Simó R. Antioxidant Effects of DPP-4 Inhibitors in Early Stages of Experimental Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:antiox11071418. [PMID: 35883908 PMCID: PMC9312245 DOI: 10.3390/antiox11071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the diabetic retina. For this purpose, db/db mice received sitagliptin or vehicle eye drops twice per day for two weeks. Age-matched db/+ mice were used as the control group. We evaluated retinal mRNA (RT-PCR) and protein levels (Western blotting and immunohistochemistry) of different components from both the antioxidant system (NRF2, CAT, GPX, GR, CuZnSOD, and MnSOD) and the prooxidant machinery (PKC and TXNIP). We also studied superoxide levels (dihydroethidium staining) and oxidative damage to DNA/RNA (8-hydroxyguanosine immunostaining) and proteins (nitrotyrosine immunostaining). Finally, NF-кB translocation and IL-1β production were assessed through Western blotting and/or immunohistochemistry. We found that sitagliptin protected against diabetes-induced oxidative stress by reducing superoxide, TXNIP, PKC, and DNA/RNA/protein oxidative damage, and it prevented the downregulation of NRF2 and antioxidant enzymes, with the exception of catalase. Sitagliptin also exerted anti-inflammatory effects, avoiding both NF-кB translocation and IL-1β production. Sitagliptin prevents the diabetes-induced imbalance between ROS production and antioxidant defenses that occurs in diabetic retinas.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
| | - Anna Deàs-Just
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Correspondence: (C.H.); (R.S.); Tel.: +34-934-894-172 (C.H.)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Correspondence: (C.H.); (R.S.); Tel.: +34-934-894-172 (C.H.)
| |
Collapse
|
35
|
Kaur G, Song Y, Xia K, McCarthy K, Zhang F, Linhardt RJ, Harris NR. Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina. Glycobiology 2022; 32:720-734. [PMID: 35552402 PMCID: PMC9280546 DOI: 10.1093/glycob/cwac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The endothelial glycocalyx regulates vascular permeability, inflammation, and coagulation, and acts as a mechanosensor. The loss of glycocalyx can cause endothelial injury and contribute to several microvascular complications and, therefore, may promote diabetic retinopathy. Studies have shown a partial loss of retinal glycocalyx in diabetes, but with few molecular details of the changes in glycosaminoglycan (GAG) composition. Therefore, the purpose of our study was to investigate the effect of hyperglycemia on GAGs of the retinal endothelial glycocalyx. METHODS GAGs were isolated from rat retinal microvascular endothelial cells (RRMECs), media, and retinas, followed by liquid chromatography-mass spectrometry assays. Quantitative real-time polymerase chain reaction was used to study mRNA transcripts of the enzymes involved in GAG biosynthesis. RESULTS AND CONCLUSIONS Hyperglycemia significantly increased the shedding of heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). There were no changes to the levels of HS in RRMEC monolayers grown in high-glucose media, but the levels of CS and HA decreased dramatically. Similarly, while HA decreased in the retinas of diabetic rats, the total GAG and CS levels increased. Hyperglycemia in RRMECs caused a significant increase in the mRNA levels of the enzymes involved in GAG biosynthesis (including EXTL-1,2,3, EXT-1,2, ChSY-1,3, and HAS-2,3), with these increases potentially being compensatory responses to overall glycocalyx loss. Both RRMECs and retinas of diabetic rats exhibited glucose-induced alterations in the disaccharide compositions and sulfation of HS and CS, with the changes in sulfation including N,6-O-sulfation on HS and 4-O-sulfation on CS.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin McCarthy
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
36
|
Munk MR, Somfai GM, de Smet MD, Donati G, Menke MN, Garweg JG, Ceklic L. The Role of Intravitreal Corticosteroids in the Treatment of DME: Predictive OCT Biomarkers. Int J Mol Sci 2022; 23:ijms23147585. [PMID: 35886930 PMCID: PMC9319632 DOI: 10.3390/ijms23147585] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
This work aims to summarize predictive biomarkers to guide treatment choice in DME. Intravitreal anti-VEGF is considered the gold standard treatment for centers involving DME, while intravitreal steroid treatment has been established as a second-line treatment in DME. However, more than 1/3 of the patients do not adequately respond to anti-VEGF treatment despite up to 4-weekly injections. Not surprisingly, insufficient response to anti-VEGF therapy has been linked to low-normal VEGF levels in the serum and aqueous humor. These patients may well benefit from an early switch to intravitreal steroid treatment. In these patients, morphological biomarkers visible in OCT may predict treatment response and guide treatment decisions. Namely, the presence of a large amount of retinal and choroidal hyperreflective foci, disruption of the outer retinal layers and other signs of chronicity such as intraretinal cysts extending into the outer retina and a lower choroidal vascular index are all signs suggestive of a favorable treatment response of steroids compared to anti-VEGF. This paper summarizes predictive biomarkers in DME in order to assist individual treatment decisions in DME. These markers will help to identify DME patients who may benefit from primary dexamethasone treatment or an early switch.
Collapse
Affiliation(s)
- Marion R. Munk
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Bern Photographic Reading Center, Inselspital, University Hospital Bern, 3010 Bern, Switzerland
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
- Correspondence: ; Tel.: +41-31-632-25-01
| | - Gabor Mark Somfai
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland;
- Spross Research Institute, 8063 Zurich, Switzerland
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Marc D. de Smet
- Medical/Surgical Retina and Ocular Inflammation, University of Lausanne, MIOS SA, 1015 Lausanne, Switzerland;
| | - Guy Donati
- Centre Ophtalmologique de la Colline, University of Geneve, 1205 Geneve, Switzerland;
| | - Marcel N. Menke
- Department of Ophthalmology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland;
| | - Justus G. Garweg
- Swiss Eye Institute, Berner Augenklinik am Lindenhofspital, 3012 Bern, Switzerland;
| | - Lala Ceklic
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Bern Photographic Reading Center, Inselspital, University Hospital Bern, 3010 Bern, Switzerland
| |
Collapse
|
37
|
Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022; 67:1574-1592. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM), causing significant visual impairment worldwide. Current gold standards for retarding the progress of DR include blood sugar control and regular fundus screening. Despite these measures, the incidence and prevalence of DR and vision-threatening DR remain high. Given its slowly progressive course and long latent period, opportunities to contain or slow DR before it threatens vision must be explored. This narrative review assesses the recently described unconventional strategies to retard DR progression. These include gut-ocular flow, gene therapy, mitochondrial dysfunction-oxidative stress, stem cell therapeutics, neurodegeneration, anti-inflammatory treatments, lifestyle modification, and usage of phytochemicals. These therapies impact DR directly, while some of them also influence DM control. Most of these strategies are currently in the preclinical stage, and clinical evidence remains low. Nevertheless, our review suggests that these approaches have the potential for human use to prevent the progression of DR.
Collapse
Affiliation(s)
- Brijesh Takkar
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
38
|
State-of-the-Art Research on Diabetic Retinopathy. J Clin Med 2022; 11:jcm11133790. [PMID: 35807075 PMCID: PMC9267317 DOI: 10.3390/jcm11133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
|
39
|
Zhang J, Zhang X, Zou Y, Han F. CPSF1 mediates retinal vascular dysfunction in diabetes mellitus via the MAPK/ERK pathway. Arch Physiol Biochem 2022; 128:708-715. [PMID: 32046510 DOI: 10.1080/13813455.2020.1722704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the expression and underlying molecular mechanism of CPSF1 in diabetic retinopathy. Streptozotocin (STZ)-induced Sprague-Dawley (SD) rats were employed as a diabetic model, and high-glucose (HG)-induced human retinal vascular endothelial cells (HRVECs)were used as an in vitro experimental model to explore the effect of CPSF1. The results showed that CPSF1 was downregulated in diabetic retinopathy (DR) tissues and HRVECs under HG conditions. Adeno-associated viral CPSF1 attenuated histological abnormalities of retinas. CPSF1 regulates the apoptosis, migration, and vascularisation of HRVECs under HG conditions in vitro. CPSF1 mediates retinal vascular dysfunction by suppressing the phosphorylation mechanism in the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway in DR. In conclusion, CPSF1 may be associated with the development of DR, and upregulated CPSF1 alleviates apoptosis and migration via MAPK/ERK pathway.
Collapse
Affiliation(s)
- Jingyi Zhang
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xi Zhang
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yuanyuan Zou
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fengmei Han
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
40
|
Inoue K, Yamada S, Hoshino S, Watanabe M, Kimura K, Kamijo-Ikemori A. Glucagon-like peptide-1 receptor agonist, liraglutide, attenuated retinal thickening in spontaneously diabetic Torii fatty rats. BMC Ophthalmol 2022; 22:206. [PMID: 35524186 PMCID: PMC9074190 DOI: 10.1186/s12886-022-02413-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/20/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND This study aims to investigate the effect of the glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-1RA) liraglutide on retinal pathological findings as compared with insulin and hydralazine using an animal model of type 2 diabetes with obesity, hypertension, and hyperlipidemia. METHODS Male spontaneously diabetic Torii (SDT) fatty rats at 8 weeks of age were randomly assigned to three groups: the liraglutide group (SDT-lira, n = 6) received a subcutaneous injection of liraglutide from the age of 8 to 16 weeks, the SDT-ins-hyd group (n = 6) was provided both insulin against hyperglycemia and hydralazine against hypertension to match levels of both blood glucose and blood pressure to those of the liraglutide group, and the control group of SDT fatty rats (SDT-vehicle, n = 7) and a nondiabetic control group of Sprague-Dawley rats (SD, n = 7) were injected with vehicle only. Both eyeballs of all groups were collected at the age of 16 weeks. RESULTS Retinal thickness, which was found in the SDT-vehicle group, was significantly prevented to similar levels in both the SDT-lira and SDT-ins-hyd groups. Immunohistological analysis revealed that GLP-1 receptor was not expressed in the retina of all rats. The ocular protein expression of monocyte chemoattractant protein-1, which causes a proinflammatory situation, was significantly upregulated in all SDT fatty rats as compared to SD rats, but the expression levels were similar between all SDT fatty rats. With regard to neovascularization in the eyes, there were no significant differences in protein expressions of vascular endothelial growth factor, CD31, or endothelial nitric oxide synthase in all rats. CONCLUSIONS The present study indicates that liraglutide prevents retinal thickening, dependent on blood glucose and blood pressure levels in SDT fatty rats without ocular neovascularization. However, the effects did not improve the ocular proinflammatory state.
Collapse
Affiliation(s)
- Kazuho Inoue
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, 216-8511, Kanagawa, Japan
| | - Shohei Yamada
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, 216-8511, Kanagawa, Japan
| | - Seiko Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, 216-8511, Kanagawa, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | | | - Atsuko Kamijo-Ikemori
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, 216-8511, Kanagawa, Japan.
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, 216-8511, Kanagawa, Japan.
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
41
|
Polymer-Based Delivery of Peptide Drugs to Treat Diabetes: Normalizing Hyperglycemia and Preventing Diabetic Complications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00057-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
43
|
Simó R, Simó-Servat O, Bogdanov P, Hernández C. Diabetic Retinopathy: Role of Neurodegeneration and Therapeutic Perspectives. Asia Pac J Ophthalmol (Phila) 2022; 11:160-167. [PMID: 35533335 DOI: 10.1097/apo.0000000000000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Retinal neurodegeneration plays a significant role in the pathogenesis of diabetic retinopathy, the leading cause of preventable blindness. The hallmarks of diabetes-induced neurodegeneration are neural cell apoptosis and glial activation, which seem even before vascular lesions can be detected by ophthalmoscopic examination. The molecular mediators of retinal neurodegeneration include proinflamma- tory cytokines, oxidative stress, mitochondrial dysfunction, and the molecular pathways closely related to chronic hyperglycemia. In this article, an overview of the main components of neurodegeneration, its key underlying mechanisms, and the more useful experimental models for investigative purposes will be given. In addition, the results of most relevant treatments based on neuroprotection, and the research gaps that should be filled will be critically reviewed.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| |
Collapse
|
44
|
Li X, Zhu J, Zhong Y, Liu C, Yao M, Sun Y, Yao W, Ni X, Zhou F, Yao J, Jiang Q. Targeting long noncoding RNA-AQP4-AS1 for the treatment of retinal neurovascular dysfunction in diabetes mellitus. EBioMedicine 2022; 77:103857. [PMID: 35172268 PMCID: PMC8850682 DOI: 10.1016/j.ebiom.2022.103857] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a leading cause of blindness in the working-age population, which is characterized by retinal neurodegeneration and vascular dysfunction. Long non-coding RNAs (LncRNAs) have emerged as critical regulators in several biological processes and disease progression. Here we investigated the role of lncRNA AQP4-AS1 in retinal neurovascular dysfunction induced by diabetes. Methods Quantitative RT-PCR was used to detect the AQP4-AS1 expression pattern upon diabetes mellitus-related stresses. Visual electrophysiology examination, TUNEL staining, Evans blue staining, retinal trypsin digestion and immunofluorescent staining were conducted to detect the role of AQP4-AS1 in retinal neurovascular dysfunction in vivo. MTT assays, TUNEL staining, PI/Calcein-AM staining, EdU incorporation assay transwell assay and tube formation were conducted to detect the role of AQP4-AS1 in retinal cells function in vitro. qRT-PCR, western blot and in vivo studies were conducted to reveal the mechanism of AQP4-AS1-mediated retinal neurovascular dysfunction. Findings AQP4-AS1 was significantly increased in the clinical samples of diabetic retinopathy patients, high glucose-treated Müller cells, and diabetic retinas of a murine model. AQP4-AS1 silencing in vivo alleviated retinal neurodegeneration and vascular dysfunction as shown by improved retinal capillary degeneration, decreased reactive gliosis, and reduced RGC loss. AQP4-AS1 directly regulated Müller cell function and indirectly affected endothelial cell and RGC function in vitro. Mechanistically, AQP4-AS1 regulated retinal neurovascular dysfunction through affecting AQP4 levels. Interpretation This study reveals AQP4-AS1 is involved in retinal neurovascular dysfunction and expected to become a promising target for the treatment of neurovascular dysfunction in DR. Funding This work was generously supported by the grants from the National Natural Science Foundation of China (Grant No. 81800858, 82070983, 81870679 and 81970823), grants from the Medical Science and Technology Development Project Fund of Nanjing (Grant No ZKX17053 and YKK19158), grants from Innovation Team Project Fund of Jiangsu Province (No. CXTDB2017010), and the Science and Technology Development Plan Project Fund of Nanjing (Grant No 201716007, 201805007 and 201803058).
Collapse
Affiliation(s)
- Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Junya Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yuling Zhong
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Mudi Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yanan Sun
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Wen Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xisen Ni
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Fen Zhou
- Eye Hospital and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Thagaard MS, Vergmann AS, Grauslund J. Topical treatment of diabetic retinopathy: a systematic review. Acta Ophthalmol 2022; 100:136-147. [PMID: 34096180 DOI: 10.1111/aos.14912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/16/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication in diabetes and may cause severe visual impairment. Until late stages of DR, treatment options are limited. The aim of the present review was to investigate whether changes of DR might be influenced by topical treatment with eye drops. This systematic review included both randomized and non-randomized human clinical studies on the subject. A systematic search of PubMed Medline, Embase and Scopus databases yielded 710 studies. No inclusion criteria regarding classification of DR were defined. Reference lists as well as first authors were screened for the inclusion of additional studies. Potential bias of the randomized studies was assessed using the Cochrane Risk of Bias tool. Nineteen studies suitable for inclusion were identified. Seven studies were randomized trials. These examined 11 different pharmacological groups of drugs in DR. A favourable effect of corticosteroid eye drops in diabetic macular oedema (DMO) was reported in four studies, and another study reported a positive trend. Eye drops with non-steroidal anti-inflammatory drugs were also reported to have a favourable effect in DMO, but not in non-center involving DMO. Application of neuroprotective agents was found effective in patients with pre-existing neurodegeneration in three studies. The remaining studies of DMO and DR were heterogeneous in both designs and results. Studies on treatment of DR with topical eye drops vary with regards to patient population, interventional drugs, study design, and outcome measures. Treatment of DR with eye drops was found effective in the aforementioned cases, but there is still a need for further investigations of long-term, randomized controlled trials in any of the reported pharmacological group.
Collapse
Affiliation(s)
- Mikkel S. Thagaard
- Department of Ophthalmology Odense University Hospital Odense Denmark
- Department of Ophthalmology Hospital Sønderjylland Sønderborg Denmark
| | - Anna S. Vergmann
- Research Unit of Ophthalmology Department of Clinical Research Faculty of Health Sciences University of Southern Denmark Odense Denmark
| | - Jakob Grauslund
- Department of Ophthalmology Odense University Hospital Odense Denmark
- Research Unit of Ophthalmology Department of Clinical Research Faculty of Health Sciences University of Southern Denmark Odense Denmark
- Steno Diabetes Center Odense Odense Denmark
| |
Collapse
|
46
|
Bogdanov P, Ramos H, Valeri M, Deàs-Just A, Huerta J, Simó R, Hernández C. Minimum Effective Dose of DPP-4 Inhibitors for Treating Early Stages of Diabetic Retinopathy in an Experimental Model. Biomedicines 2022; 10:biomedicines10020465. [PMID: 35203674 PMCID: PMC8962353 DOI: 10.3390/biomedicines10020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
The neurovascular unit (NVU) plays an essential role in the development of diabetic retinopathy (DR). We previously reported that the topical administration (eye drops) of sitagliptin and saxagliptin, two dipeptidyl peptidase-4 inhibitors (DPP-4i), prevents retinal neurodegeneration and vascular leakage in db/db mice. The aim of the present study is to evaluate the minimum effective dose of the topical administration of these DPP-4i. For this purpose, sitagliptin and saxagliptin were tested at different concentrations (sitagliptin: 1 mg/mL, 5 and 10 mg/mL, twice per day; saxagliptin: 1 and 10 mg/mL, once or twice per day) in db/db mice. As end points of efficacy, the hallmarks of NVU impairment were evaluated: reactive gliosis, neural apoptosis, and vascular leakage. These parameters were assessed by immunohistochemistry, cell counting, and the Evans blue method, respectively. Our results demonstrated that the minimum effective dose is 5 mg/mL twice per day for sitagliptin, and 10 mg/mL twice per day for saxagliptin. In conclusion, this study provides useful results for the design of future preclinical regulatory studies and for planning clinical trials.
Collapse
Affiliation(s)
- Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (P.B.); (H.R.); (A.D.-J.); (J.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (P.B.); (H.R.); (A.D.-J.); (J.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Marta Valeri
- Unit of High Technology, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Anna Deàs-Just
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (P.B.); (H.R.); (A.D.-J.); (J.H.)
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (P.B.); (H.R.); (A.D.-J.); (J.H.)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (P.B.); (H.R.); (A.D.-J.); (J.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (R.S.); (C.H.); Tel.: +34-934-894-172 (C.H.)
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (P.B.); (H.R.); (A.D.-J.); (J.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (R.S.); (C.H.); Tel.: +34-934-894-172 (C.H.)
| |
Collapse
|
47
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
48
|
It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog Retin Eye Res 2022; 90:101051. [DOI: 10.1016/j.preteyeres.2022.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
|
49
|
Myricitrin exerts protective effect on retina in diabetic retinopathy via modulating oxidative stress expression of VEGF and apoptosis in experimental rats: a docking confirmation study. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Pedersen FN, Stokholm L, Pouwer F, Hass Rubin K, Peto T, Frydkjær-Olsen U, Thykjær AS, Andersen N, Andresen J, Bek T, La Cour M, Heegaard S, Højlund K, Kawasaki R, Hajari JN, Ohm Kyvik K, Laugesen CS, Schielke KC, Simó R, Grauslund J. Diabetic Retinopathy Predicts Risk of Alzheimer’s Disease: A Danish Registry-Based Nationwide Cohort Study. J Alzheimers Dis 2022; 86:451-460. [PMID: 35068460 PMCID: PMC9028615 DOI: 10.3233/jad-215313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Retinal neurodegeneration is evident in early diabetic retinopathy (DR) which may be associated with other neurodegenerative diseases like Alzheimer's disease (AD). Objective: To investigate diabetes and DR as a risk marker of present and incident AD. Methods: A register-based cohort study was performed. We included 134,327 persons with diabetes above 60 years of age, who had attended DR screening, and 651,936 age- and gender-matched persons without diabetes. Results: At baseline, the prevalence of AD was 0.7% and 1.3% among patients with and without diabetes, respectively. In a multivariable regression model, patients with diabetes were less likely to have AD at baseline (adjusted OR 0.63, 95% CI 0.59–0.68). During follow-up, incident AD was registered for 1473 (0.35%) and 6,899 (0.34%) persons with and without diabetes, respectively. Compared to persons without diabetes, persons with diabetes and no DR had a lower risk to develop AD (adjusted HR 0.87, 95% CI 0.81–0.93), while persons with diabetes and DR had higher risk of AD (adjusted HR 1.24, 95% CI 1.08–1.43). When persons with diabetes and no DR were used as references, a higher risk of incident AD was observed in persons with DR (adjusted HR 1.34, 95% CI 1.18–1.53). Conclusion: Individuals with diabetes without DR were less likely to develop AD compared to persons without diabetes. However, individuals with DR had a 34% higher risk of incident AD, which raise the question whether screening for cognitive impairment should be done among individuals with DR.
Collapse
Affiliation(s)
- Frederik Nørregaard Pedersen
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lonny Stokholm
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Frans Pouwer
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | - Katrine Hass Rubin
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Tunde Peto
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast, Northern Ireland, UK
| | | | - Anne Suhr Thykjær
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Nis Andersen
- Organization of Danish Practicing Ophthalmologists, Copenhagen, Denmark
| | - Jens Andresen
- Organization of Danish Practicing Ophthalmologists, Copenhagen, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten La Cour
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Ryo Kawasaki
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Vision Informatics, University of Osaka, Osaka, Japan
| | - Javad Nouri Hajari
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Kirsten Ohm Kyvik
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Rafael Simó
- Department of Endocrinology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institut (VHIR) and CIBERDEM (ISCIII), Barcelona, Spain
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| |
Collapse
|