1
|
Bartuzel MM, Consejo A, Stremplewski P, Sylwestrzak M, Szkulmowski M, Gorczynska I. In vivo identification of the retinal layer containing photopigments in OCT images through correlation with two-photon psychophysics. Sci Rep 2024; 14:15459. [PMID: 38965299 PMCID: PMC11224378 DOI: 10.1038/s41598-024-65234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Two-photon vision enables near-infrared light perception in humans. We investigate the possibility to utilize this phenomenon as an indicator of the location of the outer segments of photoreceptor cells in the OCT images. Since two-photon vision is independent on OCT imaging, it could provide external to OCT reference relative to which positions of retinal layers visible in OCT imaging could be measured. We show coincidence between OCT imaging of outer retinal layers and two-photon light perception. The experiment utilizes an intrinsic nonlinear process in the retina, two-photon absorption of light by visual photopigments, which triggers perception of near-infrared light. By shifting the focus of the imaging/stimulus beam, we link the peak efficiency of two-photon vision with the visibility of outer segments of photoreceptor cells, which can be seen as in vivo identification of a retinal layer containing visual photopigments in OCT images. Determination of the in-focus retinal layer is achieved by analysis of en face OCT image contrast. We discuss experimental methods and experimental factors that may influence two-photon light perception and the accuracy of the results. The limits of resolution are discussed in analysis of the one-photon and two-photon point spread functions.
Collapse
Affiliation(s)
- Maciej M Bartuzel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland.
| | - Alejandra Consejo
- Aragon Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Patrycjusz Stremplewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Marcin Sylwestrzak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Iwona Gorczynska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
2
|
Erb C, Erb C, Kazakov A, Umetalieva M, Weisser B. Influence of Diabetes Mellitus on Glaucoma-Relevant Examination Results in Primary Open-Angle Glaucoma. Klin Monbl Augenheilkd 2024; 241:177-185. [PMID: 37643738 DOI: 10.1055/a-2105-0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Primary open-angle glaucoma (POAG) is no longer considered an isolated eye pressure-dependent optic neuropathy, but a neurodegenerative disease in which oxidative stress and neuroinflammation are prominent. These processes may be exacerbated by additional systemic diseases. The most common are arterial hypertension, dyslipidemia, and diabetes mellitus. Using diabetes mellitus as an example, it will be shown how far-reaching the influence of such a systemic disease can be on both the functional and the structural diagnostic methods for POAG. This knowledge is essential, since these interferences can lead to misinterpretations of POAG, which can also affect therapeutic decisions.
Collapse
Affiliation(s)
- Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| | | | - Avaz Kazakov
- Department of External Relations and Development, Salymbekov University, Bishkek, Kyrgyzstan
| | - Maana Umetalieva
- Medical Faculty of Medicine, Salymbekov University, Bishkek, Kyrgyzstan
| | | |
Collapse
|
3
|
Li D, Wang J. Semiconductor/Carbon Quantum Dot-based Hue Recognition Strategy for Point of Need Testing: A Review. ChemistryOpen 2023; 12:e202200165. [PMID: 36891621 PMCID: PMC10068770 DOI: 10.1002/open.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
The requirement to establish novel methods for visual detection is attracting attention in many application fields of analytical chemistry, such as, healthcare, environment, agriculture, and food. The research around subjects like "point-of-need", "hue recognition", "paper-based sensor", "fluorescent sensor", etc. has been always aimed at the opportunity to manufacture convenient and fast-response devices to be used by non-specialists. It is possible to achieve economic rationality and technical simplicity for optical sensing toward target analytes through introduction of fluorescent semiconductor/carbon quantum dot (QD) and paper-based substrates. In this Review, the mechanisms of anthropic visual recognition and fluorescent visual assays, characteristics of semiconductor/carbon QDs and ratiometric fluorescence test paper, and strategies of semiconductor/carbon QD-based hue recognition are described. We cover latest progress in the development and application of point-of-need sensors for visual detection, which is based on a semiconductor/carbon quantum dot-based hue recognition strategy generated by ratiometric fluorescence technology.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Widjaja-Adhi MAK, Kolesnikov AV, Vasudevan S, Park PSH, Kefalov VJ, Golczak M. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina. FASEB J 2022; 36:e22390. [PMID: 35665537 DOI: 10.1096/fj.202101855rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The daylight and color vision of diurnal vertebrates depends on cone photoreceptors. The capability of cones to operate and respond to changes in light brightness even under high illumination is attributed to their fast rate of recovery to the ground photosensitive state. This process requires the rapid replenishing of photoisomerized visual chromophore (11-cis-retinal) to regenerate cone visual pigments. Recently, several gene candidates have been proposed to contribute to the cone-specific retinoid metabolism, including acyl-CoA wax alcohol acyltransferase 2 (AWAT2, aka MFAT). Here, we evaluated the role of AWAT2 in the regeneration of visual chromophore by the phenotypic characterization of Awat2-/- mice. The global absence of AWAT2 enzymatic activity did not affect gross retinal morphology or the rate of visual chromophore regeneration by the canonical RPE65-dependent visual cycle. Analysis of Awat2 expression indicated the presence of the enzyme throughout the murine retina, including the retinal pigment epithelium (RPE) and Müller cells. Electrophysiological recordings revealed reduced maximal rod and cone dark-adapted responses in AWAT2-deficient mice compared to control mice. While rod dark adaptation was not affected by the lack of AWAT2, M-cone dark adaptation both in isolated retina and in vivo was significantly suppressed. Altogether, these results indicate that while AWAT2 is not required for the normal operation of the canonical visual cycle, it is a functional component of the cone-specific visual chromophore regenerative pathway.
Collapse
Affiliation(s)
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA
| | - Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA.,Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Hsieh CL, Yao Y, Gurevich VV, Chen J. Arrestin Facilitates Rhodopsin Dephosphorylation in Vivo. J Neurosci 2022; 42:3537-3545. [PMID: 35332081 PMCID: PMC9053844 DOI: 10.1523/jneurosci.0141-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023] Open
Abstract
Deactivation of G-protein-coupled receptors (GPCRs) involves multiple phosphorylations followed by arrestin binding, which uncouples the GPCR from G-protein activation. Some GPCRs, such as rhodopsin, are reused many times. Arrestin dissociation and GPCR dephosphorylation are key steps in the recycling process. In vitro evidence suggests that visual arrestin (ARR1) binding to light-activated, phosphorylated rhodopsin hinders dephosphorylation. Whether ARR1 binding also affects rhodopsin dephosphorylation in vivo is not known. We investigated this using both male and female mice lacking ARR1. Mice were exposed to bright light and placed in darkness for different periods of time, and differently phosphorylated species of rhodopsin were assayed by isoelectric focusing. For WT mice, rhodopsin dephosphorylation was nearly complete by 1 h in darkness. Surprisingly, we observed that, in the Arr1 KO rods, rhodopsin remained phosphorylated even after 3 h. Delayed dephosphorylation in Arr1 KO rods cannot be explained by cell stress induced by persistent signaling, since it is not prevented by the removal of transducin, the visual G-protein, nor can it be explained by downregulation of protein phosphatase 2A, the putative rhodopsin phosphatase. We further show that cone arrestin (ARR4), which binds light-activated, phosphorylated rhodopsin poorly, had little effect in enhancing rhodopsin dephosphorylation, whereas mice expressing binding-competent mutant ARR1-3A showed a similar time course of rhodopsin dephosphorylation as WT. Together, these results reveal a novel role of ARR1 in facilitating rhodopsin dephosphorylation in vivoSIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are transmembrane proteins used by cells to receive and respond to a broad range of extracellular signals that include neurotransmitters, hormones, odorants, and light (photons). GPCR signaling is terminated by two sequential steps: phosphorylation and arrestin binding. Both steps must be reversed when GPCRs are recycled and reused. Dephosphorylation, which is required for recycling, is an understudied process. Using rhodopsin as a prototypical GPCR, we discovered that arrestin facilitated rhodopsin dephosphorylation in living mice.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Yun Yao
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jeannie Chen
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
7
|
Radhakrishnan R, Dronamraju VR, Leung M, Gruesen A, Solanki AK, Walterhouse S, Roehrich H, Song G, da Costa Monsanto R, Cureoglu S, Martin R, Kondkar AA, van Kuijk FJ, Montezuma SR, Knöelker HJ, Hufnagel RB, Lobo GP. The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genet 2022; 43:285-300. [PMID: 35470760 DOI: 10.1080/13816810.2022.2062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Collapse
Affiliation(s)
- Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Venkateshwara R Dronamraju
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashish K Solanki
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Stephen Walterhouse
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Grace Song
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebahattin Cureoglu
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Altaf A Kondkar
- Department of Ophthalmology.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Frederik J van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA.,Department of Ophthalmology, Medical University of South Carolina, South Carolina, USA
| |
Collapse
|
8
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Fasick JI, Algrain H, Samuels C, Mahadevan P, Schweikert LE, Naffaa ZJ, Robinson PR. Spectral tuning and deactivation kinetics of marine mammal melanopsins. PLoS One 2021; 16:e0257436. [PMID: 34653198 PMCID: PMC8519484 DOI: 10.1371/journal.pone.0257436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.
Collapse
Affiliation(s)
- Jeffry I. Fasick
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Haya Algrain
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Courtland Samuels
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Zaid J. Naffaa
- Department of Biological Sciences, Kean University, Union, New Jersey, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
González Bardeci N, Lagorio MG. A mathematical approach to assess the ability of light filters to improve color discriminability of color vision deficient persons. Heliyon 2021; 7:e08058. [PMID: 34622063 PMCID: PMC8482439 DOI: 10.1016/j.heliyon.2021.e08058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/26/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Color vision deficiency (CVD) is a frequent condition that alters color perception to such an extent that many people encounter serious difficulties on their everyday lives. In this work, we present a strategy to analyze the effectiveness of light filters aimed to improve color discriminability of persons with CVD. The calculations are based on a simple model of color discrimination which has been successfully applied to several animal species. We first tested the calculations on three well-known commercial lenses designed for persons with CVD. In agreement with results of clinical studies, the calculations show that the highly colored lenses (VINO® and X-Chrom®) enhance chromaticity contrasts between problematic colors, whereas the more neutral Enchroma® do not provide any benefit. Also, we predict that two light filters proposed in recent works for novel lenses would not improve the performance of the commercial ones. Since the mathematical approach presented in this work enables predictive filter assessment, it opens the door to future research on the design of more effective lenses to improve color discriminability of persons with CVD. The calculations allow for large-scale screening of numerous light filters and different colored stimuli, CVD conditions, light sources, etc.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- CONICET, Universidad de Buenos Aires, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria. Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina
| | - María Gabriela Lagorio
- CONICET, Universidad de Buenos Aires, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria. Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
11
|
Tomida S, Kitagawa S, Kandori H, Furutani Y. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. J Phys Chem B 2021; 125:8331-8341. [PMID: 34292728 DOI: 10.1021/acs.jpcb.1c01907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heliorhodopsin (HeR) is a new class of the rhodopsin family discovered in 2018 through functional metagenomic analysis (named 48C12). Similar to typical microbial rhodopsins, HeR possesses seven transmembrane (TM) α-helices and an all-trans-retinal covalently bonded to the lysine residue on TM7 via a protonated Schiff base. Remarkably, the HeR membrane topology is inverted compared with that of typical microbial rhodopsins. The X-ray crystal structure of HeR 48C12 was elucidated after the first report on a HeR variant from Thermoplasmatales archaeon SG8-52-1, which revealed the water-mediated hydrogen-bonding network connected to the Schiff base region in the cytoplasmic side. Herein, low-temperature light-induced FTIR spectroscopic analyses of HeR 48C12 and 15N isotopically labeled proteins were used to elucidate the structural changes during retinal photoisomerization. N-D stretching vibrations of the protonated retinal Schiff base (PRSB) at 2286 and 2302 cm-1 in the dark state, and 2239 and 2252 cm-1 in the K intermediate were observed. The frequency changes indicated that the hydrogen bond of PRSB strengthens upon photoisomerization in HeR. Moreover, O-D stretching vibration frequencies of the internal water molecules indicate that the hydrogen-bonding strength decreases concomitantly. Therefore, the PRSB hydrogen bond responds to photoisomerization in an opposite way to the hydrogen-bonding network involving water molecules. No frequency changes of the indole N-H or N-D stretching vibrations of tryptophan residues were observed upon photoisomerization, suggesting that all tryptophan residues in the HeR 48C12 maintained the hydrogen-bonding strengths in the K intermediate. These results provide insights into the molecular mechanism of the energy storage and propagation upon retinal photoisomerization in HeR.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
12
|
Hickey DG, Davies WIL, Hughes S, Rodgers J, Thavanesan N, MacLaren RE, Hankins MW. Chimeric human opsins as optogenetic light sensitisers. J Exp Biol 2021; 224:270919. [PMID: 34151984 PMCID: PMC8325934 DOI: 10.1242/jeb.240580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/08/2021] [Indexed: 12/03/2022]
Abstract
Human opsin-based photopigments have great potential as light-sensitisers, but their requirement for phototransduction cascade-specific second messenger proteins may restrict their functionality in non-native cell types. In this study, eight chimeric human opsins were generated consisting of a backbone of either a rhodopsin (RHO) or long-wavelength-sensitive (LWS) opsin and intracellular domains from Gq/11-coupled human melanopsin. Rhodopsin/melanopsin chimeric opsins coupled to both Gi and Gq/11 pathways. Greater substitution of the intracellular surface with corresponding melanopsin domains generally showed greater Gq/11 activity with a decrease in Gi activation. Unlike melanopsin, rhodopsin and rhodopsin/melanopsin chimeras were dependent upon exogenous chromophore to function. By contrast, wild-type LWS opsin and LWS opsin/melanopsin chimeras showed only weak Gi activation in response to light, whilst Gq/11 pathway activation was not detected. Immunocytochemistry (ICC) demonstrated that chimeric opsins with more intracellular domains of melanopsin were less likely to be trafficked to the plasma membrane. This study demonstrates the importance of Gα coupling efficiency to the speed of cellular responses and created human opsins with a unique combination of properties to expand the range of customised optogenetic biotools for basic research and translational therapies. Summary: Combining different domains of human visual opsins and melanopsin creates functionally unique chimeric opsins with potential optogenetic applications.
Collapse
Affiliation(s)
- Doron G Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,The Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - Wayne I L Davies
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Umeå Centre for Molecular Medicine, Umeå University, Umeå, S-90187, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, OX1 3QU, UK
| | - Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, OX1 3QU, UK.,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PT, UK
| | | | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust and Oxford NIHR Biomedical Research Centre, Oxford, OX3 9DU,UK
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
13
|
Aghasi A, Heshmat B, Wei L, Tian M. Optimal allocation of quantized human eye depth perception for multi-focal 3D display design. OPTICS EXPRESS 2021; 29:9878-9896. [PMID: 33820153 DOI: 10.1364/oe.412373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Creating immersive 3D stereoscopic, autostereoscopic, and lightfield experiences are becoming the center point of optical design of future head mounted displays and lightfield displays. However, despite the advancement in 3D and light field displays, there is no consensus on what are the necessary quantized depth levels for such emerging displays at stereoscopic or monocular modalities. Here we start from psychophysical theories and work toward defining and prioritizing quantized levels of depth that would saturate the human depth perception. We propose a general optimization framework, which locates the depth levels in a globally optimal way for band limited displays. While the original problem is computationally intractable, we manage to find a tractable reformulation as maximally covering a region of interest with a selection of hypographs corresponding to the monocular depth of field profiles. The results indicate that on average 1731 stereoscopic and 7 monocular depth levels (distributed optimally from 25 cm to infinity) would saturate the visual depth perception. Such that adding further depth levels adds negligible improvement. Also the first 3 depth levels should be allocated at (148), then (83, 170), then (53, 90, 170) distances respectively from the face plane to minimize the monocular error in the entire population. The study further discusses the 3D spatial profile of the quantized stereoscopic and monocular depth levels. The study provides fundamental guidelines for designing optimal near eye displays, light-field monitors, and 3D screens.
Collapse
|
14
|
|
15
|
Abstract
Heliorhodopsin (HeR), a recently discovered new rhodopsin family, has an inverted membrane topology compared to animal and microbial rhodopsins, and no ion-transport activity. The slow photocycle of HeRs suggests a light-sensor function, although the function remains unknown. HeRs exhibit no specific binding of monovalent cations or anions. Despite this, ATR-FTIR spectroscopy in the present study demonstrates binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR). The biding of Zn2+ to 0.2 mM Kd is accompanied by helical structural perturbations without altering its color. Even though ion-specific FTIR spectra were observed for many divalent cations, only helical structural perturbations were observed for Zn2+-binding. Similar results were obtained for HeR 48C12. These findings suggest a possible modification of HeR function by Zn2+.
Collapse
Affiliation(s)
- Masanori Hashimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
16
|
Abstract
The visual phototransduction cascade begins with a cis-trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
Collapse
|
17
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, Sander CL, Hoang TV, Handa JT, Blackshaw S, Palczewska G, Kiser PD, Palczewski K. Photic generation of 11- cis-retinal in bovine retinal pigment epithelium. J Biol Chem 2019; 294:19137-19154. [PMID: 31694912 DOI: 10.1074/jbc.ra119.011169] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Photoisomerization of the 11-cis-retinal chromophore of rod and cone visual pigments to an all-trans-configuration is the initiating event for vision in vertebrates. The regeneration of 11-cis-retinal, necessary for sustained visual function, is an endergonic process normally conducted by specialized enzyme systems. However, 11-cis-retinal also can be formed through reverse photoisomerization from all-trans-retinal. A nonvisual opsin known as retinal pigment epithelium (RPE)-retinal G-protein-coupled receptor (RGR) was previously shown to mediate visual chromophore regeneration in photic conditions, but conflicting results have cast doubt on its role as a photoisomerase. Here, we describe high-level production of 11-cis-retinal from RPE membranes stimulated by illumination at a narrow band of wavelengths. This activity was associated with RGR and enhanced by cellular retinaldehyde-binding protein (CRALBP), which binds the 11-cis-retinal produced by RGR and prevents its re-isomerization to all-trans-retinal. The activity was recapitulated with cells heterologously expressing RGR and with purified recombinant RGR. Using an RGR variant, K255A, we confirmed that a Schiff base linkage at Lys-255 is critical for substrate binding and isomerization. Single-cell RNA-Seq analysis of the retina and RPE tissue confirmed that RGR is expressed in human and bovine RPE and Müller glia, whereas mouse RGR is expressed in RPE but not in Müller glia. These results provide key insights into the mechanisms of physiological retinoid photoisomerization and suggest a novel mechanism by which RGR, in concert with CRALBP, regenerates the visual chromophore in the RPE under sustained light conditions.
Collapse
Affiliation(s)
- Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Aleksander Tworak
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Christopher L Sander
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - James T Handa
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California 92697.,Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| |
Collapse
|
19
|
Kahremany S, Sander CL, Tochtrop GP, Kubas A, Palczewski K. Z-isomerization of retinoids through combination of monochromatic photoisomerization and metal catalysis. Org Biomol Chem 2019; 17:8125-8139. [PMID: 31455964 DOI: 10.1039/c9ob01645g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Catalytic Z-isomerization of retinoids to their thermodynamically less stable Z-isomer remains a challenge. In this report, we present a photochemical approach for the catalytic Z-isomerization of retinoids using monochromatic wavelength UV irradiation treatment. We have developed a straightforward approach for the synthesis of Z-retinoids in high yield, overcoming common obstacles normally associated with their synthesis. Calculations based on density functional theory (DFT) have allowed us to correlate the experimentally observed Z-isomer distribution of retinoids with the energies of chemically important intermediates, which include ground- and excited-state potential energy surfaces. We also demonstrate the application of the current method by synthesizing gram-scale quantities of 9-cis-retinyl acetate 9Z-a. Operational simplicity and gram-scale ability make this chemistry a very practical solution to the problem of Z-isomer retinoid synthesis.
Collapse
Affiliation(s)
- Shirin Kahremany
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697, USA.
| | - Christopher Lane Sander
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697, USA. and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697, USA.
| |
Collapse
|
20
|
Kahremany S, Kubas A, Tochtrop GP, Palczewski K. Catalytic synthesis of 9-cis-retinoids: mechanistic insights. Dalton Trans 2019; 48:10581-10595. [PMID: 31218312 PMCID: PMC7004310 DOI: 10.1039/c9dt02189b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regioselective Z-isomerization of thermodynamically stable all-trans retinoids remains challenging, and ultimately limits the availability of much needed therapeutics for the treatment of human diseases. We present here a novel, straightforward approach for the catalytic Z-isomerization of retinoids using conventional heat treatment or microwave irradiation. A screen of 20 transition metal-based catalysts identified an optimal approach for the regioselective production of Z-retinoids. The most effective catalytic system was comprised of a palladium complex with labile ligands. Several mechanistic studies, including isotopic H/D exchange and state-of-the-art quantum chemical calculations using coupled cluster methods indicate that the isomerization is initiated by catalyst dimerization followed by the formation of a cyclic, six-membered chloropalladate catalyst-substrate adduct, which eventually opens to produce the desired Z-isomer. The synthetic development described here, combined with thorough mechanistic analysis of the underlying chemistry, highlights the use of readily available transition metal-based catalysts in straightforward formats for gram-scale drug synthesis.
Collapse
Affiliation(s)
- Shirin Kahremany
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697, USA. and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697, USA. and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Katayama K, Nakamura S, Sasaki T, Imai H, Kandori H. Role of Gln114 in Spectral Tuning of a Long-Wavelength Sensitive Visual Pigment. Biochemistry 2019; 58:2944-2952. [DOI: 10.1021/acs.biochem.9b00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Takuma Sasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
22
|
Lampkin BJ, Monteiro C, Powers ET, Bouc PM, Kelly JW, VanVeller B. A designed protein binding-pocket to control excited-state intramolecular proton transfer fluorescence. Org Biomol Chem 2019; 17:1076-1080. [PMID: 30534794 PMCID: PMC6549506 DOI: 10.1039/c8ob02673d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Excited-state intramolecular proton transfer involves a photochemical isomerization and creates the opportunity for the emission of two distinct wavelengths of light from a single fluorophore. The selectivity between these two wavelengths of emission is dependent on the environment around the fluorophore and suggests the possibility for ratiometric monitoring of protein microenvironments. Unfortunately, nonspecific binding of ESIPT fluorophores does not often lead to dramatic changes in the ratio between the two wavelengths of emission. A protein binding pocket was designed to selectively discriminate between the two channels of emission available to an ESIPT fluorophore. This work is significant because it demonstrates that specific interactions between the protein and the fluorophore are essential to realize strong ratiometric differences between the two possible wavelengths of emission. The design strategies proposed here lead to an ESIPT fluorophore that can discern subtle differences in the interface between two proteins.
Collapse
Affiliation(s)
- Bryan J Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Cecilia Monteiro
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T Powers
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paige M Bouc
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Jeffery W Kelly
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
23
|
Structural biology of 11- cis-retinaldehyde production in the classical visual cycle. Biochem J 2018; 475:3171-3188. [PMID: 30352831 DOI: 10.1042/bcj20180193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.
Collapse
|
24
|
Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype-Phenotype Correlations, and Inheritance Models. Genes (Basel) 2018; 9:genes9040215. [PMID: 29659558 PMCID: PMC5924557 DOI: 10.3390/genes9040215] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs) are genetically and clinically heterogeneous disorders.[...].
Collapse
|
25
|
Effect of Altered Retinal Cones/Opsins on Refractive Development under Monochromatic Lights in Guinea Pigs. J Ophthalmol 2018; 2018:9197631. [PMID: 29675275 PMCID: PMC5838468 DOI: 10.1155/2018/9197631] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To analyze the changes of refraction and metabolism of the retinal cones under monochromatic lights in guinea pigs. Methods Sixty guinea pigs were randomly divided into a short-wavelength light (SL) group, a middle-wavelength light (ML) group, and a white light (WL) group. Refraction and axial length were measured before and after 10-week illumination. The densities of S-cones and M-cones were determined by retinal cone immunocytochemistry, and the expressions of S-opsins and M-opsins were determined by real-time PCR and Western blot. Results After 10-week illumination, the guinea pigs developed relative hyperopia in the SL group and relative myopia in the ML group. Compared with the WL group, the density of S-cones and S-opsins increased while M-cones and M-opsins decreased in the SL group (all, p < 0.05); conversely, the density of S-cones and S-opsins decreased while M-cones and M-opsins increased in the ML group (all, p < 0.05). Increased S-cones/opsins and decreased M-cones/opsins were induced by short-wavelength lights. Decreased S-cones/opsins and increased M-cones/opsins were induced by middle-wavelength lights. Conclusions Altered retinal cones/opsins induced by monochromatic lights might be involved in the refractive development in guinea pigs.
Collapse
|
26
|
Woods KN, Pfeffer J, Klein-Seetharaman J. Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways. Front Mol Biosci 2017; 4:85. [PMID: 29312953 PMCID: PMC5733091 DOI: 10.3389/fmolb.2017.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs.
Collapse
Affiliation(s)
- Kristina N. Woods
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, München, Germany
- *Correspondence: Kristina N. Woods
| | - Jürgen Pfeffer
- Bavarian School of Public Policy, Technical University of Munich, München, Germany
| | | |
Collapse
|
27
|
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res 2017; 60:101-119. [DOI: 10.1016/j.preteyeres.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
28
|
Alexander NS, Katayama K, Sun W, Salom D, Gulati S, Zhang J, Mogi M, Palczewski K, Jastrzebska B. Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue. J Biol Chem 2017; 292:10983-10997. [PMID: 28487362 DOI: 10.1074/jbc.m117.780478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Indexed: 01/09/2023] Open
Abstract
Phototransduction is initiated when the absorption of light converts the 11-cis-retinal chromophore to its all-trans configuration in both rod and cone vertebrate photoreceptors. To sustain vision, 11-cis-retinal is continuously regenerated from its all-trans conformation through a series of enzymatic steps comprising the "visual or retinoid" cycle. Abnormalities in this cycle can compromise vision because of the diminished supply of 11-cis-retinal and the accumulation of toxic, constitutively active opsin. As shown previously for rod cells, attenuation of constitutively active opsin can be achieved with the unbleachable analogue, 11-cis-6-membered ring (11-cis-6mr)-retinal, which has therapeutic effects against certain degenerative retinal diseases. However, to discern the molecular mechanisms responsible for this action, pigment regeneration with this locked retinal analogue requires delineation also in cone cells. Here, we compared the regenerative properties of rod and green cone opsins with 11-cis-6mr-retinal and demonstrated that this retinal analogue could regenerate rod pigment but not green cone pigment. Based on structural modeling suggesting that Pro-205 in green cone opsin could prevent entry and binding of 11-cis-6mr-retinal, we initially mutated this residue to Ile, the corresponding residue in rhodopsin. However, this substitution did not enable green cone opsin to regenerate with 11-cis-6mr-retinal. Interestingly, deletion of 16 N-terminal amino acids in green cone opsin partially restored the binding of 11-cis-6mr-retinal. These results and our structural modeling indicate that a more complex binding pathway determines the regeneration of mammalian green cone opsin with chromophore analogues such as 11-cis-6mr-retinal.
Collapse
Affiliation(s)
| | - Kota Katayama
- From the Department of Pharmacology, School of Medicine and
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106, and
| | - David Salom
- From the Department of Pharmacology, School of Medicine and
| | - Sahil Gulati
- From the Department of Pharmacology, School of Medicine and
| | - Jianye Zhang
- From the Department of Pharmacology, School of Medicine and
| | - Muneto Mogi
- the Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts 02139
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine and .,Polgenix Inc., Cleveland, Ohio 44106, and.,the Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Beata Jastrzebska
- From the Department of Pharmacology, School of Medicine and .,the Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
29
|
Hofrnann L, Alexander NS, Sun W, Zhang J, Orban T, Palczewski K. Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors. Biochemistry 2017; 56:2338-2348. [PMID: 28402104 PMCID: PMC5501310 DOI: 10.1021/acs.biochem.7b00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Opsins comprise the protein component of light sensitive G protein-coupled receptors (GPCRs) in the retina of the eye that are responsible for the transduction of light into a biochemical signal. Here, we used hydrogen/deuterium (H/D) exchange coupled with mass spectrometry to map conformational changes in green cone opsin upon light activation. We then compared these findings with those reported for rhodopsin. The extent of H/D exchange in green cone opsin was greater than in rhodopsin in the dark and bleached states, suggesting a higher structural heterogeneity for green cone opsin. Further analysis revealed that green cone opsin exists as a dimer in both dark (inactive) and bleached (active) states, and that the predicted glycosylation sites at N32 and N34 are indeed glycosylated. Comparison of deuterium uptake between inactive and active states of green cone opsin also disclosed a reduced solvent accessibility of the extracellular N-terminal region and an increased accessibility of the chromophore binding site. Increased H/D exchange at the extracellular side of transmembrane helix four (TM4) combined with an analysis of sequence alignments revealed a conserved Pro-Pro motif in extracellular loop 2 (EL2) of monostable visual GPCRs. These data present new insights into the locus of chromophore release at the extracellular side of TM4 and TM5 and provide a foundation for future functional evaluation.
Collapse
Affiliation(s)
- Lukas Hofrnann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathan S. Alexander
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Wenyu Sun
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Jianye Zhang
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Tivadar Orban
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
30
|
Arne JM, Widjaja-Adhi MAK, Hughes T, Huynh KW, Silvaroli JA, Chelstowska S, Moiseenkova-Bell VY, Golczak M. Allosteric modulation of the substrate specificity of acyl-CoA wax alcohol acyltransferase 2. J Lipid Res 2017; 58:719-730. [PMID: 28096191 DOI: 10.1194/jlr.m073692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Indexed: 01/30/2023] Open
Abstract
The esterification of alcohols with fatty acids is a universal mechanism to form inert storage forms of sterols, di- and triacylglycerols, and retinoids. In ocular tissues, formation of retinyl esters is an essential step in the enzymatic regeneration of the visual chromophore (11-cis-retinal). Acyl-CoA wax alcohol acyltransferase 2 (AWAT2), also known as multifunctional O-acyltransferase (MFAT), is an integral membrane enzyme with a broad substrate specificity that has been shown to preferentially esterify 11-cis-retinol and thus contribute to formation of a readily available pool of cis retinoids in the eye. However, the mechanism by which this promiscuous enzyme can gain substrate specificity is unknown. Here, we provide evidence for an allosteric modulation of the enzymatic activity by 11-cis retinoids. This regulation is independent from cellular retinaldehyde-binding protein (CRALBP), the major cis-retinoid binding protein. This positive-feedback regulation leads to decreased esterification rates for 9-cis, 13-cis, or all-trans retinols and thus enables preferential synthesis of 11-cis-retinyl esters. Finally, electron microscopy analyses of the purified enzyme indicate that this allosteric effect does not result from formation of functional oligomers. Altogether, these data provide the experimental basis for understanding regulation of AWAT2 substrate specificity.
Collapse
Affiliation(s)
- Jason M Arne
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Taylor Hughes
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Kevin W Huynh
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Josie A Silvaroli
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sylwia Chelstowska
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Marcin Golczak
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and.
| |
Collapse
|
31
|
Jastrzebska B, Comar WD, Kaliszewski MJ, Skinner KC, Torcasio MH, Esway AS, Jin H, Palczewski K, Smith AW. A G Protein-Coupled Receptor Dimerization Interface in Human Cone Opsins. Biochemistry 2017; 56:61-72. [PMID: 28045251 PMCID: PMC5274527 DOI: 10.1021/acs.biochem.6b00877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) detect a wide variety of physical and chemical signals and transmit that information across the cellular plasma membrane. Dimerization is a proposed modulator of GPCR signaling, but the structure and stability of class A GPCR dimerization have been difficult to establish. Here we investigated the dimerization affinity and binding interface of human cone opsins, which initiate and sustain daytime color vision. Using a time-resolved fluorescence approach, we found that human red cone opsin exhibits a strong propensity for dimerization, whereas the green and blue cone opsins do not. Through mutagenesis experiments, we identified a dimerization interface in the fifth transmembrane helix of human red cone opsin involving amino acids I230, A233, and M236. Insights into this dimerization interface of red cone opsin should aid ongoing investigations of the structure and function of GPCR quaternary interactions in cell signaling. Finally, we demonstrated that the same residues needed for dimerization are also partially responsible for the spectral tuning of red cone opsin. This last observation has the potential to open up new lines of inquiry regarding the functional role of dimerization for red cone opsin.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - William D. Comar
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Megan J. Kaliszewski
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Kevin C. Skinner
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Morgan H. Torcasio
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Anthony S. Esway
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| | - Hui Jin
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adam W. Smith
- Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, Ohio 44325, United States
| |
Collapse
|
32
|
Fasick JI, Robinson PR. Adaptations of Cetacean Retinal Pigments to Aquatic Environments. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|