1
|
Guo Y, Tian Y, Xia P, Zhou X, Hu X, Guo Z, Ji P, Yuan X, Fu D, Yin K, Shen R, Wang D. Exploring the Function of OPTN From Multiple Dimensions. Cell Biochem Funct 2024; 42:e70029. [PMID: 39670654 DOI: 10.1002/cbf.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is an essential intracellular degradation system responsible for delivering cytoplasmic components to lysosomes. Within this intricate process, optineurin (OPTN), an autophagy receptor, has attracted extensive attention due to its multifaceted roles in the autophagy process. OPTN is regulated by various posttranslational modifications and actively participates in numerous signaling pathways and cellular processes. By exploring the regulatory mechanism of OPTN posttranslational modification, we can further understand the critical role of protein posttranslational modification in biological progress, such as autophagy. Additionally, OPTN is implicated in many human diseases, including rheumatoid arthritis, osteoporosis, and infectious diseases. And we delve into the inflammatory pathways regulated by OPTN and clarify how it regulates inflammatory diseases and cancer. We aim to enhance the understanding of OPTN's multifaceted functions in cellular processes and its implications in the pathogenesis of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyue Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Daosen Fu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Su CC, Liu C, Adi V, Chan KC, Tseng HC. Age-related effects of optineurin deficiency in the mouse eye. Vision Res 2024; 224:108463. [PMID: 39208752 DOI: 10.1016/j.visres.2024.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Optineurin (OPTN) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (Optn-/-) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN's role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2-3 months) or aged (12 months) mice. When retinal layers were quantitated, young Optn-/- mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in Optn-/- mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by Optn deletion, more dopaminergic amacrine cells were observed in aged Optn-/- mice. Taken together, our findings showed that complete loss of Optn resulted in mild retinal changes and less visual function impairment, supporting the possibility that OPTN-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these Optn mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.
Collapse
Affiliation(s)
- Chien-Chia Su
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Crystal Liu
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Vishnu Adi
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Kevin C Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: Genetic underpinnings, pathogenesis, and therapeutic horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Pan Y, Iwata T. Molecular genetics of inherited normal tension glaucoma. Indian J Ophthalmol 2024; 72:S335-S344. [PMID: 38389252 PMCID: PMC467016 DOI: 10.4103/ijo.ijo_3204_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Normal tension glaucoma (NTG) is a complex optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, despite normal intraocular pressure (IOP). This condition poses a unique clinical challenge due to the absence of elevated IOP, a major risk factor in typical glaucoma. Recent research indicates that up to 21% of NTG patients have a family history of glaucoma, suggesting a genetic predisposition. In this comprehensive review using PubMed studies from January 1990 to December 2023, our focus delves into the genetic basis of autosomal dominant NTG, the only known form of inheritance for glaucoma. Specifically exploring optineurin ( OPTN ), TANK binding kinase 1 ( TBK1 ), methyltransferase-like 23 ( METTL23 ), and myocilin ( MYOC ) mutations, we summarize their clinical manifestations, mutant protein behaviors, relevant animal models, and potential therapeutic pathways. This exploration aims to illuminate the intricate pathogenesis of NTG, unraveling the contribution of these genetic components to its complex development.
Collapse
Affiliation(s)
- Yang Pan
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| |
Collapse
|
5
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
6
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, Torre AL, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587832. [PMID: 38617277 PMCID: PMC11014509 DOI: 10.1101/2024.04.02.587832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hannah C. Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA; USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA; USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA; USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Loo Y, Chan ASY, Khor CC, Aung T, Wang Z. Rodent genetically modified models of glaucoma. Mol Aspects Med 2024; 95:101229. [PMID: 38039744 DOI: 10.1016/j.mam.2023.101229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.
Collapse
Affiliation(s)
- Yunhua Loo
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anita Sook Yee Chan
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
8
|
Nishiji T, Hoshino A, Uchio Y, Matoba S. Generation of inducible mitophagy mice. Genes Cells 2024; 29:159-168. [PMID: 38131500 DOI: 10.1111/gtc.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Mitophagy is programmed selective autophagy of mitochondria and is important for mitochondrial quality control and cellular homeostasis. Mitochondrial dysfunction and impaired mitophagy are closely associated with various diseases, including heart failure and diabetes. To better understand the pathophysiological role of mitophagy, we generated doxycycline-inducible mitophagy mice using a synthetic mitophagy adaptor protein consisting of an outer mitochondrial membrane targeting sequence and an engineered LIR. To evaluate the activation of mitophagy upon doxycycline treatment, we also generated mitophagy reporter mito-QC mice in which mitochondria tandemly express mCherry and GFP, and only GFP signals are lost in acidic lysosomes subjected to mitophagy. With the ROSA26 promoter-driven rtTA, mitophagy was observed at least in heart, liver, and skeletal muscle. We investigated the relationship between mitophagy activation and pressure overload heart failure or high fat diet-induced obesity. Unexpectedly, we were unable to confirm the protective effect of mitophagy in these two pathological models. Further titration of the level of mitophagy induction is required to demonstrate the potency of the protective effects of mitophagy in disease models.
Collapse
Affiliation(s)
- Toshiyuki Nishiji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Uchio
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB, Joachim SC. Glaucoma Animal Models beyond Chronic IOP Increase. Int J Mol Sci 2024; 25:906. [PMID: 38255979 PMCID: PMC10815097 DOI: 10.3390/ijms25020906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (T.T.); (S.R.); (L.D.); (N.K.); (H.B.D.)
| |
Collapse
|
10
|
Zhao S, Chen R, Gao Y, Lu Y, Bai X, Zhang J. Fundamental roles of the Optineurin gene in the molecular pathology of Amyotrophic Lateral Sclerosis. Front Neurosci 2023; 17:1319706. [PMID: 38178841 PMCID: PMC10764443 DOI: 10.3389/fnins.2023.1319706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of motor neurons (MNs) in the brain and spinal cord. It is caused by multiple factors, including mutations in any one of several specific genes. Optineurin (OPTN) mutation is an essential cause of some familial and sporadic ALS. Besides, as a multifunctional protein, OPTN is highly expressed and conserved in the central nervous system. OPTN exerts its functions by interacting with various proteins, often acting as an adaptor to provide a link between two or more core proteins related to autophagy and inflammation, etc. OPTN mutation mainly results in its function deficiency, which alters these interactions, leading to functional impairment in many processes. Meanwhile, OPTN immunopositive inclusions are also confirmed in the cases of ALS due to C9ORF72, FUS, TARDBP, and SOD1 mutations. Therefore, OPTN gene may play fundamental roles in the molecular pathology of ALS in addition to OPTN mutation. In this review, we summarize the recent advances in the ALS pathology of OPTN defect, such as mitophagy disorder, neuroinflammation, neuronal axonal degeneration, vesicular transport dysfunction, etc., which will provide a reference for research on the pathogenesis and treatment of ALS.
Collapse
Affiliation(s)
- Shumin Zhao
- Department of Neurology, Medical Research Center, Chifeng Municipal Hospital, Chifeng, China
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Ranran Chen
- Department of Neurology, Medical Research Center, Chifeng Municipal Hospital, Chifeng, China
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Ying Gao
- Department of Neurology, Medical Research Center, Chifeng Municipal Hospital, Chifeng, China
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Yanchao Lu
- Department of Neurology, Medical Research Center, Chifeng Municipal Hospital, Chifeng, China
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Xue Bai
- Department of Neurology, Medical Research Center, Chifeng Municipal Hospital, Chifeng, China
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Jingjing Zhang
- Department of Neurology, Medical Research Center, Chifeng Municipal Hospital, Chifeng, China
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| |
Collapse
|
11
|
Tirendi S, Domenicotti C, Bassi AM, Vernazza S. Genetics and Glaucoma: the state of the art. Front Med (Lausanne) 2023; 10:1289952. [PMID: 38152303 PMCID: PMC10751926 DOI: 10.3389/fmed.2023.1289952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Although genetic background contributes differently to rare early-onset glaucoma (before age 40) or common adult-onset glaucoma, it is now considered an important factor in all major forms of the disease. Genetic and genomic studies, including GWAS, are contributing to identifying novel loci associated with glaucoma or to endophenotypes across ancestries to enrich the knowledge about glaucoma genetic susceptibility. Moreover, new high-throughput functional genomics contributes to defining the relevance of genetic results in the biological pathways and processes involved in glaucoma pathogenesis. Such studies are expected to advance significantly our understanding of glaucoma's genetic basis and provide new druggable targets to treat glaucoma. This review gives an overview of the role of genetics in the pathogenesis or risk of glaucoma.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
12
|
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, Zapata-Muñoz J, Villarejo-Zori B, Gómez-Sintes R, Boya P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205. [PMID: 37454969 DOI: 10.1016/j.preteyeres.2023.101205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Rocío Benítez-Fernández
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
13
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
15
|
Sikiric P, Kokot A, Kralj T, Zlatar M, Masnec S, Lazic R, Loncaric K, Oroz K, Sablic M, Boljesic M, Antunovic M, Sikiric S, Strbe S, Stambolija V, Beketic Oreskovic L, Kavelj I, Novosel L, Zubcic S, Krezic I, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S, Staresinic M. Stable Gastric Pentadecapeptide BPC 157-Possible Novel Therapy of Glaucoma and Other Ocular Conditions. Pharmaceuticals (Basel) 2023; 16:1052. [PMID: 37513963 PMCID: PMC10385428 DOI: 10.3390/ph16071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, stable gastric pentadecapeptide BPC 157 therapy by activation of collateral pathways counteracted various occlusion/occlusion-like syndromes, vascular, and multiorgan failure, and blood pressure disturbances in rats with permanent major vessel occlusion and similar procedures disabling endothelium function. Thereby, we revealed BPC 157 cytoprotective therapy with strong vascular rescuing capabilities in glaucoma therapy. With these capabilities, BPC 157 therapy can recover glaucomatous rats, normalize intraocular pressure, maintain retinal integrity, recover pupil function, recover retinal ischemia, and corneal injuries (i.e., maintained transparency after complete corneal abrasion, corneal ulceration, and counteracted dry eye after lacrimal gland removal or corneal insensitivity). The most important point is that in glaucomatous rats (three of four episcleral veins cauterized) with high intraocular pressure, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, nor- mal retinal and choroidal blood vessel presentation, and normal optic nerve presentation. The one episcleral vein rapidly upgraded to accomplish all functions in glaucomatous rats may correspond with occlusion/occlusion-like syndromes of the activated rescuing collateral pathway (azygos vein direct blood flow delivery). Normalized intraocular pressure in glaucomatous rats corresponded to the counteracted intra-cranial (superior sagittal sinus), portal, and caval hypertension, and aortal hypotension in occlusion/occlusion-like syndromes, were all attenuated/eliminated by BPC 157 therapy. Furthermore, given in other eye disturbances (i.e., retinal ischemia), BPC 157 instantly breaks a noxious chain of events, both at an early stage and an already advanced stage. Thus, we further advocate BPC 157 as a therapeutic agent in ocular disease.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Kralj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mirna Zlatar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Masnec
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ratimir Lazic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sablic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marta Boljesic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Jeong Y, Davis CHO, Muscarella AM, Deshpande V, Kim KY, Ellisman MH, Marsh-Armstrong N. Glaucoma-associated Optineurin mutations increase transmitophagy in a vertebrate optic nerve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542507. [PMID: 37398269 PMCID: PMC10312487 DOI: 10.1101/2023.05.26.542507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large-effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging of Xenopus laevis optic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons. These extra-axonal mitochondria are degraded by astrocytes. Our studies support the view that in RGC axons under baseline conditions there are low levels of mitophagy, but that glaucoma-associated perturbations in OPTN result in increased axonal mitophagy involving the shedding and astrocytic degradation of the mitochondria.
Collapse
Affiliation(s)
- Yaeram Jeong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | | - Aaron M. Muscarella
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Viraj Deshpande
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Lead contact
| |
Collapse
|
18
|
Surma M, Anbarasu K, Dutta S, Olivera Perez LJ, Huang KC, Meyer JS, Das A. Enhanced mitochondrial biogenesis promotes neuroprotection in human pluripotent stem cell derived retinal ganglion cells. Commun Biol 2023; 6:218. [PMID: 36828933 PMCID: PMC9957998 DOI: 10.1038/s42003-023-04576-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Mitochondrial dysfunctions are widely afflicted in central nervous system (CNS) disorders with minimal understanding on how to improve mitochondrial homeostasis to promote neuroprotection. Here we have used human stem cell differentiated retinal ganglion cells (hRGCs) of the CNS, which are highly sensitive towards mitochondrial dysfunctions due to their unique structure and function, to identify mechanisms for improving mitochondrial quality control (MQC). We show that hRGCs are efficient in maintaining mitochondrial homeostasis through rapid degradation and biogenesis of mitochondria under acute damage. Using a glaucomatous Optineurin mutant (E50K) stem cell line, we show that at basal level mutant hRGCs possess less mitochondrial mass and suffer mitochondrial swelling due to excess ATP production load. Activation of mitochondrial biogenesis through pharmacological inhibition of the Tank binding kinase 1 (TBK1) restores energy homeostasis, mitigates mitochondrial swelling with neuroprotection against acute mitochondrial damage for glaucomatous E50K hRGCs, revealing a novel neuroprotection mechanism.
Collapse
Affiliation(s)
- Michelle Surma
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, 46202, USA
| | - Kavitha Anbarasu
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Sayanta Dutta
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, 46202, USA
| | | | - Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University, Indianapolis, IN, 46202, USA
| | - Jason S Meyer
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA
| | - Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Moharir SC, Sirohi K, Swarup G. Regulation of transferrin receptor trafficking by optineurin and its disease-associated mutants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:67-78. [PMID: 36631201 DOI: 10.1016/bs.pmbts.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transferrin receptor (TFRC) is a transmembrane protein that plays a crucial role in mediating homeostasis of iron in the cell. The binding of transferrin (that is bound to iron) to TFRC at the cell membrane generally starts endocytosis of TFRC-transferrin complex, which leads to formation of vesicles that are positive for TFRC. These vesicles travel to the early endosomes and later to the endocytic recycling compartment. Release of iron occurs in the early endosomes because of acidic pH. Major fraction of the transferrin and TFRC is transported back to the cell membrane; however, a minor fraction of it is transported to lysosomes through the process of autophagy. Optineurin (OPTN) is a multi-functional adaptor protein that plays a pivotal role in the control of TFRC trafficking, recycling and autophagy dependent degradation. Optineurin also plays a role in cargo-selective and non-selective autophagy. Here, we review our understanding of the function of OPTN in regulating TFRC trafficking, recycling and autophagy dependent degradation. We also discuss the mechanisms by which certain disease-associated mutations of OPTN alter these processes.
Collapse
Affiliation(s)
- Shivranjani C Moharir
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Kapil Sirohi
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India.
| |
Collapse
|
20
|
Abstract
Purpose: Retinal ganglion cell death occurs during the glaucoma pathological process, and it is significant because of the poor regeneration capacity of retinal ganglion cells. With a constantly increasing understanding of retinal cell death mechanisms, we now know that simply blocking a specific mechanism of cell death might not prevent retinal ganglion cell death. This review aimed to summarize the mechanisms of retinal cell death in glaucoma models and discuss the caveats in restoring visual function in these studies.Methods: A literature search was done on PubMed using key words including glaucoma, ocular hypertension, retinal ganglion cell, cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagic cell death, and parthanatos. The literature was reviewed to summarize the information about the lethal pathways of retinal ganglion cell in the glaucoma-like animal models.Results: Based on the purpose, 100 studies were selected and discussed in this review.Conclusions: The damage to ganglion cells in glaucoma-like animals can occur via multiple lethal pathways and the molecular mechanisms are still incompletely understood. Further investigations on the crosstalk between different cell death pathways and the common upstream regulators could augment the development of novel targeting agents for the curative treatment of glaucoma.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Silicone Oil-Induced Glaucomatous Neurodegeneration in Rhesus Macaques. Int J Mol Sci 2022; 23:ijms232415896. [PMID: 36555536 PMCID: PMC9781764 DOI: 10.3390/ijms232415896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Previously, we developed a simple procedure of intracameral injection of silicone oil (SO) into mouse eyes and established the mouse SOHU (SO-induced ocular hypertension under-detected) glaucoma model with reversible intraocular pressure (IOP) elevation and significant glaucomatous neurodegeneration. Because the anatomy of the non-human primate (NHP) visual system closely resembles that of humans, it is the most likely to predict human responses to diseases and therapies. Here we tried to replicate the mouse SOHU glaucoma model in rhesus macaque monkeys. All six animals that we tested showed significant retinal ganglion cell (RGC) death, optic nerve (ON) degeneration, and visual functional deficits at both 3 and 6 months. In contrast to the mouse SOHU model, however, IOP changed dynamically in these animals, probably due to individual differences in ciliary body tolerance capability. Further optimization of this model is needed to achieve consistent IOP elevation without permanent damage of the ciliary body. The current form of the NHP SOHU model recapitulates the severe degeneration of acute human glaucoma, and is therefore suitable for assessing experimental therapies for neuroprotection and regeneration, and therefore for translating relevant findings into novel and effective treatments for patients with glaucoma and other neurodegenerations.
Collapse
|
22
|
Pan Y, Suga A, Kimura I, Kimura C, Minegishi Y, Nakayama M, Yoshitake K, Iejima D, Minematsu N, Yamamoto M, Mabuchi F, Takamoto M, Shiga Y, Araie M, Kashiwagi K, Aihara M, Nakazawa T, Iwata T. METTL23 mutation alters histone H3R17 methylation in normal-tension glaucoma. J Clin Invest 2022; 132:e153589. [PMID: 36099048 PMCID: PMC9621137 DOI: 10.1172/jci153589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Normal-tension glaucoma (NTG) is a heterogeneous disease characterized by retinal ganglion cell (RGC) death leading to cupping of the optic nerve head and visual field loss at normal intraocular pressure (IOP). The pathogenesis of NTG remains unclear. Here, we describe a single nucleotide mutation in exon 2 of the methyltransferase-like 23 (METTL23) gene identified in 3 generations of a Japanese family with NTG. This mutation caused METTL23 mRNA aberrant splicing, which abolished normal protein production and altered subcellular localization. Mettl23-knock-in (Mettl23+/G and Mettl23G/G) and -knockout (Mettl23+/- and Mettl23-/-) mice developed a glaucoma phenotype without elevated IOP. METTL23 is a histone arginine methyltransferase expressed in murine and macaque RGCs. However, the novel mutation reduced METTL23 expression in RGCs of Mettl23G/G mice, which recapitulated both clinical and biological phenotypes. Moreover, our findings demonstrated that METTL23 catalyzed the dimethylation of H3R17 in the retina and was required for the transcription of pS2, an estrogen receptor α target gene that was critical for RGC homeostasis through the negative regulation of NF-κB-mediated TNF-α and IL-1β feedback. These findings suggest an etiologic role of METTL23 in NTG with tissue-specific pathology.
Collapse
Affiliation(s)
- Yang Pan
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Akiko Suga
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Itaru Kimura
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Department of Ophthalmology, Tokai University Hachioji Hospital, Tokyo, Japan
| | | | - Yuriko Minegishi
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mao Nakayama
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazutoshi Yoshitake
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Daisuke Iejima
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoko Minematsu
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Megumi Yamamoto
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- JAC Ltd., Tokyo, Japan
| | - Fumihiko Mabuchi
- Department of Ophthalmology, University of Yamanashi, Yamanashi, Japan
| | | | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Araie
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan
- Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, University of Yamanashi, Yamanashi, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
23
|
Das A, Imanishi Y. Drug Discovery Strategies for Inherited Retinal Degenerations. BIOLOGY 2022; 11:1338. [PMID: 36138817 PMCID: PMC9495580 DOI: 10.3390/biology11091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Iwata T. Japan to Global Eye Genetics Consortium: Extending Research Collaboration for Inherited Eye Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:360-368. [PMID: 35904986 DOI: 10.1097/apo.0000000000000535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Japan Eye Genetics Consortium (JEGC) was established in 2011 to migrate research system to all-Japan structure for collecting phenotype-genotype information for inherited retinal diseases and other retinal diseases including hereditary optic neuropathy and hereditary glaucoma. Diagnostic team was assembled to maintain quality of diagnostic and to collect phenotype information to database in Tokyo Medical Center (TMC). Over the past 10 years, 1538 pedigree [2788 deoxyribonucleic acid (DNA) samples] was collected from 38 ophthalmology departments and eye hospitals. Whole exome analysis has improved diagnostic rate from ~17% in 2011 to 53% in 2021, with 27% of known variants, 18% of novel variants in known gene, 8% of potential novel disease-causing genes, and 47% of pedigree with unknown cause. Approximately 70% of Japanese patients were affected by novel mutation or by unknown cause. In 2014, Asian Eye Genetics Consortium (AEGC) was established by researchers from Hong Kong, India, Japan, and the US, later renamed to Global Eye Genetics Consortium (GEGC) to expand the idea of collaborative research on rare genetic eye diseases in Asia, Middle East, Africa, and South America. GEGC phenotype-genotype database, GenEye, was constructed to collect and catalog genetic eye diseases at global scale. Over 200 members from 30 countries, GEGC now has 200 members from 30 continents, performing scientific programs, young investigator visiting program, and GEGC organized session at the meetings of the Asia-Pacific Academy of Ophthalmology (APAO), The Association for Research in Vision and Ophthalmology (ARVO), All India Ophthalmological Society (AIOS), World Ophthalmology Congress (WOC), and International Society for Eye Research (ISER).
Collapse
Affiliation(s)
- Takeshi Iwata
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
25
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
26
|
Grinage E, Shukla D. Optineurin in ocular herpes infection. Exp Eye Res 2022; 219:109059. [PMID: 35390332 DOI: 10.1016/j.exer.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Herpes Simplex Virus-1 (HSV-1) is a neurotropic virus that can infect humans in the eye and travel to the trigeminal ganglion to establish latency. HSV-1 causes various disease states in both the primary and secondary sites of infection including the eye and the nervous system. This DNA virus exploits various adaptive measures to infect host cells, hijack host cell proteins, evade host immune response and spread from cell-to-cell to avoid immune detection. Recent data suggest that Optineurin (OPTN), a host protein, is a key restriction factor that prevents cell-to-cell spread of HSV-1 and guards against serious damage to the nervous system during infection. In recent years OPTN has gained increased attention because of its involvement in cellular mechanisms that promote homeostasis and prevent neurodegeneration. At the center of it all is the role OPTN plays as a receptor for selective autophagy. This review summarizes our latest understanding of the viral lifecycle, disease pathologies, and OPTN-mediated protective mechanisms during HSV-1 infection of the eye and the nervous system. We specifically highlight recent discoveries that implicate OPTN as crucial in the prevention of ocular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Earon Grinage
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
27
|
Hou M, Shao Z, Zhang S, Liu X, Fan P, Jiang M, Zhao Y, Xiao R, Yuan H. Age-related visual impairments and retinal ganglion cells axonal degeneration in a mouse model harboring OPTN (E50K) mutation. Cell Death Dis 2022; 13:362. [PMID: 35436991 PMCID: PMC9016082 DOI: 10.1038/s41419-022-04836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Retinal ganglion cells (RGCs) axons are the signal carriers of visual information between retina and brain. Therefore, they play one of the important roles affected in many optic neurodegenerative diseases like glaucoma. Among the genetic risks associated with glaucoma, the E50K mutation in the Optineurin (OPTN) gene are known to result in glaucoma in the absence of increased intraocular pressure (IOP), whereas the relevant pathological mechanism and neurological issues remain to be further investigated. In this study, the OPTN (E50K) mutant mouse model was established through CRISPR/Cas9-mediated genome editing, and aging-related RGCs loss and the visual dysfunction were identified. In E50K mice 16 months old, the axonal transport decreased comparing to wild-type (WT) mice at the same age. Furthermore, results of electron microscopy demonstrated significant morphological anomaly of mitochondria in RGCs axons of young E50K mice 3 months old, and these changes were aggravated with age. These indicated that the damaged mitochondria-associated dysfunction of RGCs axon should play an etiological role in glaucoma as an age-related outcome of OPTN (E50K) mutation. The findings of this study have potential implications for the targeted prevention and treatment of NTG.
Collapse
|
28
|
Ozgen S, Krigman J, Zhang R, Sun N. Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regen Res 2022; 17:741-747. [PMID: 34472459 PMCID: PMC8530128 DOI: 10.4103/1673-5374.322429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a multidimensional role in the function and the vitality of the neurological system. From the generation of neural stem cells to the maintenance of neurons and their ultimate demise, mitochondria play a critical role in regulating our neural pathways' homeostasis, a task that is critical to our cognitive health and neurological well-being. Mitochondria provide energy via oxidative phosphorylation for the neurotransmission and generation of an action potential along the neuron's axon. This paper will first review and examine the molecular subtleties of the mitochondria's role in neurogenesis and neuron vitality, as well as outlining the impact of defective mitochondria in neural aging. The authors will then summarize neurodegenerative diseases related to either neurogenesis or homeostatic dysfunction. Because of the significant detriment neurodegenerative diseases have on the quality of life, it is essential to understand their etiology and ongoing molecular mechanics. The mitochondrial role in neurogenesis and neuron vitality is essential. Dissecting and understanding this organelle's role in the genesis and homeostasis of neurons should assist in finding pharmaceutical targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Serra Ozgen
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- College of Medicine, Graduate Research in the Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Judith Krigman
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ruohan Zhang
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- College of Pharmacy, Department of Graduate Research, The Ohio State University, Columbus, OH, USA
| | - Nuo Sun
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
29
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
30
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
31
|
Sirt5-mediated desuccinylation of OPTN protects retinal ganglion cells from autophagic flux blockade in diabetic retinopathy. Cell Death Dis 2022; 8:63. [PMID: 35165261 PMCID: PMC8844082 DOI: 10.1038/s41420-022-00861-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023]
Abstract
Retinal neurodegeneration develops early in the course of diabetic retinopathy (DR), and our previous research showed that succinate accumulation results in retinal ganglion cells (RGCs) dysfunction in the retinas of rats with DR. Succinate can enhance lysine succinylation, but the succinylation of DR is not well understood. In this study, we investigated the role of the succinylome in DR and identified the key factor in this process. TMT labeling and LC–MS/MS analysis were combined to quantify the differentially succinylated proteins between vitreous humor (VH) samples from DR and non-DR patients. A total of 74 sites in 35 proteins were differentially succinylated between DR and non-DR vitreous humor samples, among which succinylation of the K108 site of optineurin (OPTN K108su) in the defense response was enriched by GO analysis based on the biological process category. Then, using a streptozotocin (STZ)-induced diabetic rat model, R28 cells and primary rat RGCs (rRGCs), we demonstrated that OPTN underwent lysine succinylation in the retinas of rats with DR and that OPTN K108su mediated autophagic flux blockade under high-glucose (HG) conditions. Sirt5 can desuccinylate OPTN K108su, thus protecting RGCs function from high glucose-induced RGCs autophagic flux blockade in the diabetic retina. Overall, desuccinylation of OPTN is an essential adaptive mechanism for ameliorating autophagic flux blockade in RGCs under DR conditions, and targeting the Sirt5-desuccK108-OPTN axis may thus open an avenue for therapeutic intervention in RCGs dysfunction. ![]()
Collapse
|
32
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
33
|
Stable Gastric Pentadecapeptide BPC 157 Therapy of Rat Glaucoma. Biomedicines 2021; 10:biomedicines10010089. [PMID: 35052769 PMCID: PMC8773185 DOI: 10.3390/biomedicines10010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cauterization of three episcleral veins (open-angle glaucoma model) induces venous congestion and increases intraocular pressure in rats. If not upgraded, one episcleral vein is regularly unable to acquire and take over the whole function, and glaucoma-like features persist. Recently, the rapid upgrading of the collateral pathways by a stable gastric pentadecapeptide BPC 157 has cured many severe syndromes induced by permanent occlusion of major vessels, veins and/or arteries, peripherally and centrally. In a six-week study, medication was given prophylactically (immediately before glaucoma surgery, i.e., three episcleral veins cauterization) or as curative treatment (starting at 24 h after glaucoma surgery). The daily regimen of BPC 157 (0.4 µg/eye, 0.4 ng/eye; 10 µg/kg, 10 ng/kg) was administered locally as drops in each eye, intraperitoneally (last application at 24 h before sacrifice) or per-orally in drinking water (0.16 µg/mL, 0.16 ng/mL, 12 mL/rat until the sacrifice, first application being intragastric). Consequently, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, normal retinal and choroidal blood vessel presentation and normal optic nerve presentation. As leading symptoms, increased intraocular pressure and mydriasis, as well as degeneration of retinal ganglion cells, optic nerve head excavation and reduction in optic nerve thickness, generalized severe irregularity of retinal vessels, faint presentation of choroidal vessels and severe optic nerve disc atrophy were all counteracted. In conclusion, we claim that the reversal of the episcleral veins cauterization glaucoma appeared as a consequence of the BPC 157 therapy of the vessel occlusion-induced perilous syndrome.
Collapse
|
34
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
35
|
Neuroprotective effects of bone marrow Sca-1 + cells against age-related retinal degeneration in OPTN E50K mice. Cell Death Dis 2021; 12:613. [PMID: 34127652 PMCID: PMC8203676 DOI: 10.1038/s41419-021-03851-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1- chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1- cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1- chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1- cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.
Collapse
|
36
|
Sayyad Z, Vishwakarma S, Dave TV, Naik MN, Radha V, Kaur I, Swarup G. Human primary retinal cells as an in-vitro model for investigating defective signalling caused by OPTN mutants associated with glaucoma. Neurochem Int 2021; 148:105075. [PMID: 34023378 DOI: 10.1016/j.neuint.2021.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Studies carried out on the pathogenesis of glaucoma using murine cell lines and animal models require to be validated in human cells. Therefore, we explored the possibility of using human primary retinal cells (hPRCs) in culture as a model for molecular studies and testing of potential therapeutic drugs. For this purpose, central retinal tissue, obtained from the enucleated eyes of patients with anterior staphyloma, was digested with trypsin and grown in a medium containing supplements (basic fibroblast growth factor and fetal bovine serum). hPRCs at passage 1 and 2, show expression of either GFAP, a glial cell marker, or β-III tubulin, a retinal ganglion cell (RGC)-specific marker. But at passages 3-5 nearly all of hPRCs express several RGC-specific markers (Brn3 proteins, Thy-1, β-III tubulin, RBPMS and NeuN) but not GFAP. Expression of these markers indicated that these cells may have functional properties of RGCs. As RGCs are sensitive to glaucoma-associated mutants of OPTN, we analysed the survival of hPRCs upon overexpression of OPTN mutants. Glaucoma-associated mutants, E50K-OPTN and M98K-OPTN, induced significantly higher cell death in hPRCs compared to WT-OPTN, whereas an amyotrophic lateral sclerosis-associated mutant, E478G-OPTN, did not. TBK1 inhibitor Amlexanox protected hPRCs from E50K-OPTN and M98K-OPTN induced cell death. M98K-OPTN induced cell death was suppressed by inhibitors of CaMKKβ and AMPK in hPRCs as well as in 661W, a mouse cell line that expresses several markers of RGCs and RGC precursor cells. Our results suggest that hPRCs under appropriate culture condition show RGC-like properties. These cells can be used to explore the molecular mechanisms of cell death relevant for glaucoma pathogenesis and for testing of cytoprotective compounds.
Collapse
Affiliation(s)
- Zuberwasim Sayyad
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Sushma Vishwakarma
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Tarjani Vivek Dave
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Milind N Naik
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Vegesna Radha
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Inderjeet Kaur
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India.
| | - Ghanshyam Swarup
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
37
|
Kitamura A, Numazawa R, Kinjo M. Conformational stabilization of optineurin by the dynamic interaction of linear polyubiquitin. Biochem Biophys Res Commun 2021; 559:203-209. [PMID: 33951500 DOI: 10.1016/j.bbrc.2021.04.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Optineurin produces intracellular multi-functions involving autophagy, vesicular trafficking, and negative regulation of inflammation signaling through interaction with various proteins such as ATG8/LC3, Rab8, and polyubiquitin. Optineurin is a component of cytoplasmic inclusion bodies (IBs) in motor neurons from amyotrophic lateral sclerosis (ALS), and its mutation E478G, has been identified in patients with ALS. However, the mechanism by which polyubiquitin binding modulates the interaction partners of OPTN and ALS-associated IB formation is still unclear. To address this issue, we analyzed the interaction of Optineurin with Rab8 and LC3 in the absence and presence of linear polyubiquitin chains using fluorescence cross-correlation spectroscopy and IB formation efficiency of the E478G mutant of Optineurin during Rab8 depletion using fluorescence microscopy. Here, we hypothesize that linear polyubiquitin binding to Optineurin dynamically induces LC3 association and Rab8 dissociation, likely through a conformational change of Optineurin, and the dynamic conformational change may prevent the aggregate formation of mutant Optineurin.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Rika Numazawa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
38
|
Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021; 157:944-962. [PMID: 33349931 PMCID: PMC8248322 DOI: 10.1111/jnc.15280] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Alicia Dubinski
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Christine Vande Velde
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| |
Collapse
|
39
|
Han X, Hewitt AW, MacGregor S. Predicting the Future of Genetic Risk Profiling of Glaucoma: A Narrative Review. JAMA Ophthalmol 2021; 139:224-231. [PMID: 33331888 DOI: 10.1001/jamaophthalmol.2020.5404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Glaucoma is the world's leading cause of irreversible blindness. Primary open-angle glaucoma (POAG) is typically asymptomatic early in the disease process, and unfortunately, many are diagnosed too late to prevent vision loss. Observations Genome-wide association studies, which evaluate the association between genetic variants and phenotype across the genome, have mapped many genes for POAG. As well as uncovering new biology, genetic information can be combined into a polygenic risk score (PRS), which aggregates an individual's disease risk over many genetic variants. In this nonsystematic review, performed from June 21, 2019, to October 1, 2020, we address a series of questions to explain the challenges and opportunities in translating genetic discoveries in POAG. We summarize what is known about POAG genetics and how its endophenotypes, such as intraocular pressure or cup-disc ratio, can help with prediction. We discuss the sample sizes available and how increases in the future may have an effect on the utility of prediction approaches. We explore particular scenarios, such as the use of PRS in risk stratification, and applications for individuals who are particularly high risk for POAG as a result of them carrying both a high penetrance mutation and an unfavorable PRS. Finally, we discuss the issue of equity in applying these tests and the prospects for prediction for people from various ancestry groups. The cost-effectiveness evaluation of glaucoma PRS in direct-to-consumer genetic testing and across different ancestry groups is warranted in future research. Conclusions and Relevance Advances in glaucoma genetics have opened the door for risk stratification based on genetic risk predictions. The PRS approach has shown good promise in predicting who will be at highest risk of POAG, which could improve outcomes if these predictions can be acted on to result in improved clinical outcomes.
Collapse
Affiliation(s)
- Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.,Centre for Eye Research Australia, University of Melbourne, Australia
| | | |
Collapse
|
40
|
Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response. Exp Mol Med 2021; 53:667-680. [PMID: 33864025 PMCID: PMC8102640 DOI: 10.1038/s12276-021-00596-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Abnormally increased resorption contributes to bone degenerative diseases such as Paget's disease of bone (PDB) through unclear mechanisms. Recently, the optineurin (OPTN) gene has been implicated in PDB, and global OPTN knockout mice (Optn-/-) were shown to exhibit increased formation of osteoclasts (osteoclastogenesis). Growing evidence, including our own, has demonstrated that intracellular reactive oxygen species (ROS) stimulated by receptor activator of nuclear factor kappa-B ligand (RANKL) can act as signaling molecules to promote osteoclastogenesis. Here, we report that OPTN interacts with nuclear factor erythroid-derived factor 2-related factor 2 (NRF2), the master regulator of the antioxidant response, defining a pathway through which RANKL-induced ROS could be regulated for osteoclastogenesis. In this study, monocytes from Optn-/- and wild-type (Optn+/+) mice were utilized to differentiate into osteoclasts, and both qRT-PCR and tartrate-resistant acid phosphatase (TRAP) staining showed that the Optn-/- monocytes exhibited enhanced osteoclastogenesis compared to the Optn+/+ cells. CellROX® staining, qRT-PCR, and Western blotting indicated that OPTN deficiency reduced the basal expression of Nrf2, inhibited the expression of NRF2-responsive antioxidants, and increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclastogenesis. Coimmunoprecipitation (co-IP) showed direct interaction, and immunofluorescence staining showed perinuclear colocalization of the OPTN-NRF2 granular structures during differentiation. Finally, curcumin and the other NRF2 activators attenuated the hyperactive osteoclastogenesis induced by OPTN deficiency. Collectively, our findings reveal a novel OPTN-mediated mechanism for regulating the NRF2-mediated antioxidant response in osteoclasts and extend the therapeutic potential of OPTN in the aging process resulting from ROS-triggered oxidative stress, which is associated with PDB and many other degenerative diseases.
Collapse
|
41
|
Liu X, Wang Q, Shao Z, Zhang S, Hou M, Jiang M, Du M, Li J, Yuan H. Proteomic analysis of aged and OPTN E50K retina in the development of normal tension glaucoma. Hum Mol Genet 2021; 30:1030-1044. [PMID: 33856034 DOI: 10.1093/hmg/ddab099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Progressive degeneration of retinal ganglion cells (RGCs) is a major characteristic of glaucoma, whose underlying mechanisms are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal tension glaucoma (NTG), directly affecting RGCs without high intraocular pressure and causing severe glaucomatous symptoms in clinical settings. A systematic analysis of the NTG mouse model is crucial for better understanding of the underlying pathological mechanisms for glaucoma. To elucidate proteomic and biochemical pathway alterations during NTG development, we established an OPTN E50K mutant mouse model through CRISPR/Cas9. Retinal proteins from resulting mice exhibiting glaucomatous phenotypes were subject to tandem mass tag-labeled quantitative proteomics and then analyzed through bioinformatics methods to characterize the molecular and functional signatures of NTG. We identified 6364 quantitative proteins in our proteomic analysis. Bioinformatics analysis revealed that OPTN E50K mice experienced protein synthesis dysregulation, age-dependent energy defects and autophagy-lysosome pathway dysfunction. Certain biological features, including amyloid deposition, RNA splicing, microglia activation and reduction of crystallin production, were similar to Alzheimer's disease. Our study is the first to describe proteomic and biochemical pathway alterations in NTG pathogenesis during disease advancement. Several proteomic signatures overlapped with retinal changes found in the ad mice model, suggesting the presence of common mechanisms between age-related degenerative disorders, as well as prospective new targets for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xinna Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Zhengbo Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shiqi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Mingying Hou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Menglu Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mengxian Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing Li
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
42
|
Zhang S, Shao Z, Liu X, Hou M, Cheng F, Lei D, Yuan H. The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro. Cell Death Dis 2021; 7:49. [PMID: 33723228 PMCID: PMC7960725 DOI: 10.1038/s41420-021-00432-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/23/2021] [Accepted: 02/13/2021] [Indexed: 01/31/2023]
Abstract
The glaucoma-associated E50K mutation in optineurin (OPTN) is known to affect autophagy and cause the apoptosis of retinal ganglion cells (RGCs), but the pathogenic mechanism remains unclear. In this study, we investigated whether the OPTN (E50K) mutation caused TDP-43 aggregation by disrupting autophagy in vivo and in vitro. OPTN (E50K) mutant mice were generated and analysed for genotype and phenotype. Adeno-associated virus type 2 vectors containing either GFP only, GFP-tagged wild-type OPTN or GFP-tagged E50K-mutated OPTN were used to transfect R28 cells. Loss of RGCs decreased retinal thickness and visual impairment were observed in OPTN (E50K) mice compared with WT mice. Moreover, overexpression of E50K OPTN induced R28 cell apoptosis. Increased p62/SQSTM1 and LC3-II levels indicated that autophagic flux was inhibited and contributed to TDP-43 aggregation in vivo and in vitro. We found that rapamycin effectively reduced the aggregation of TDP-43 in OPTN (E50K) mice and decreased the protein levels of p62/SQSTM1 and the autophagic marker LC3-II. Moreover, rapamycin increased the RGC number and visual function of E50K mice. In addition, we also observed increased cytoplasmic TDP-43 in the spinal cord and motor dysfunction in 24-month-old OPTN (E50K) mice, indicating that TDP-43 accumulation may be the common pathological mechanism of glaucoma and amyotrophic lateral sclerosis (ALS). In conclusion, the disruption of autophagy by OPTN (E50K) affected the degradation of TDP-43 and may play an important role in OPTN (E50K)-mediated glaucomatous retinal neurodegeneration.
Collapse
Affiliation(s)
- Shiqi Zhang
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Zhengbo Shao
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinna Liu
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Mingying Hou
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Fang Cheng
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Lei
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huiping Yuan
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66:693-713. [PMID: 33582161 DOI: 10.1016/j.survophthal.2021.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is an optic neuropathy characterized by well-defined optic disc morphological changes (i.e., cup enlargement, neuroretinal border thinning, and notching, papillary vessel modifications) consequent to retinal ganglion cell loss, axonal degeneration, and lamina cribrosa remodeling. These modifications tend to be progressive and are the main cause of functional damage in glaucoma. Despite the latest findings about the pathophysiology of the disease, the exact trigger mechanisms and the mechanism of degeneration of retinal ganglion cells and their axons have not been completely elucidated. Neuroinflammation may play a role in both the development and the progression of the disease as a result of its effects on retinal environment and retinal ganglion cells. We summarize the latest findings about neuroinflammation in glaucoma and examine the connection between risk factors, neuroinflammation, and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- Luciano Quaranta
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Carlo Bruttini
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Eleonora Micheletti
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anastasios G P Konstas
- 1st and 3rd University Departments of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | | | - Giovanni De Angelis
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
44
|
Medchalmi S, Tare P, Sayyad Z, Swarup G. A glaucoma- and ALS-associated mutant of OPTN induces neuronal cell death dependent on Tbk1 activity, autophagy and ER stress. FEBS J 2021; 288:4576-4595. [PMID: 33548116 DOI: 10.1111/febs.15752] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Mutations in OPTN are associated with glaucoma, an eye disease, and also with amyotrophic lateral sclerosis (ALS), a motor neuron disease. A 2-bp insertion in OPTN (691_692insAG or 2bpIns-OPTN) is associated with both glaucoma and ALS. This mutation results in frame shift after 127 amino acids, giving rise to a protein with C-terminal aberrant sequence. We have explored the mechanism of induction of cell death by this mutant in a motor neuron cell line, NSC-34, and also in a retinal cell line, 661W. Compared to wild-type OPTN, this mutant induced more cell death in NSC-34 and 661W cells. This mutant localizes predominantly in the nucleus whereas normal OPTN localizes in the cytoplasm. Deletion analysis of 2bpIns-OPTN showed that the aberrant sequence was not essential for cell death induction. This mutant interacts with TANK-binding kinase 1 (Tbk1) but not with OPTN and activates Tbk1. This mutant induced ER stress in NSC-34 cells as seen by induction of C/EBP homologous protein (CHOP) and some other genes. Induction of CHOP, autophagosomal protein LC3-II and cell death by this mutant were abrogated by Tbk1 knockdown and also by 4-phenylbutyric acid, that inhibits ER stress. Induction of CHOP and cell death by 2bpIns-OPTN was autophagy dependent as shown by the effect of Atg5 knockdown. This mutant caused increased formation of LC3-positive aggregates. Treatment of cells with autophagy inducer rapamycin reduced LC3-positive aggregates, CHOP and cell death induced by 2bpIns-OPTN. These results suggest that constitutive activation of Tbk1 by 2bpIns-OPTN leads to impaired autophagy that results in ER stress and cell death.
Collapse
Affiliation(s)
- Swetha Medchalmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Priyanka Tare
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
45
|
Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020; 108:822-842. [PMID: 32931756 PMCID: PMC7736125 DOI: 10.1016/j.neuron.2020.08.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by the loss of motor neurons from the brain and spinal cord. The ALS community has made remarkable strides over three decades by identifying novel familial mutations, generating animal models, elucidating molecular mechanisms, and ultimately developing promising new therapeutic approaches. Some of these approaches reduce the expression of mutant genes and are in human clinical trials, highlighting the need to carefully consider the normal functions of these genes and potential contribution of gene loss-of-function to ALS. Here, we highlight known loss-of-function mechanisms underlying ALS, potential consequences of lowering levels of gene products, and the need to consider both gain and loss of function to develop safe and effective therapeutic strategies.
Collapse
Affiliation(s)
- Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Tassoni-Tsuchida
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
47
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
48
|
Abstract
This review focuses on recent progress in understanding the role of mitochondrial markers in the context of mitochondrial dysfunction in glaucoma and discussing new therapeutic approaches to modulate mitochondrial function and potentially lead to improved outcomes in glaucoma.
Collapse
|
49
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
50
|
Guo Q, Wang J, Weng Q. The diverse role of optineurin in pathogenesis of disease. Biochem Pharmacol 2020; 180:114157. [PMID: 32687832 DOI: 10.1016/j.bcp.2020.114157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Optineurin is a widely expressed protein that possesses multiple functions. Growing evidence suggests that mutation or dysregulation of optineurin can cause several neurodegenerative diseases, including amyotrophic lateral sclerosis, primary open-angle glaucoma, and Huntington's disease, as well as inflammatory digestive disorders such as Crohn's disease. Optineurin engages in vesicular trafficking, receptor regulation, immune reactions, autophagy, and distinct signaling pathways including nuclear factor kappa beta, by which optineurin contributes to cellular death and related diseases, indicating its potential as a therapeutic target. In this review, we discuss the major functions and signaling pathways of optineurin. Furthermore, we illustrate the influence of optineurin mutation or dysregulation to region-specific pathogenesis as well as potential applications of optineurin in therapeutic strategies.
Collapse
Affiliation(s)
- Qingyi Guo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|