1
|
Lim JC, Jiang L, Lust NG, Donaldson PJ. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel) 2024; 13:1193. [PMID: 39456447 PMCID: PMC11505578 DOI: 10.3390/antiox13101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress plays a major role in the formation of the cataract that is the result of advancing age, diabetes or which follows vitrectomy surgery. Glutathione (GSH) is the principal antioxidant in the lens, and so supplementation with GSH would seem like an intuitive strategy to counteract oxidative stress there. However, the delivery of glutathione to the lens is fraught with difficulties, including the limited bioavailability of GSH caused by its rapid degradation, anatomical barriers of the anterior eye that result in insufficient delivery of GSH to the lens, and intracellular barriers within the lens that limit delivery of GSH to its different regions. Hence, more attention should be focused on alternative methods by which to enhance GSH levels in the lens. In this review, we focus on the following three strategies, which utilize the natural molecular machinery of the lens to enhance GSH and/or antioxidant potential in its different regions: the NRF2 pathway, which regulates the transcription of genes involved in GSH homeostasis; the use of lipid permeable cysteine-based analogues to increase the availability of cysteine for GSH synthesis; and the upregulation of the lens's internal microcirculation system, which is a circulating current of Na+ ions that drives water transport in the lens and with it the potential delivery of cysteine or GSH. The first two strategies have the potential to restore GSH levels in the epithelium and cortex, while the ability to harness the lens's internal microcirculation system offers the exciting potential to deliver and elevate antioxidant levels in its nucleus. This is an important distinction, as the damage phenotypes for age-related (nuclear) and diabetic (cortical) cataract indicate that antioxidant delivery must be targeted to different regions of the lens in order to alleviate oxidative stress. Given our increasing aging and diabetic populations it has become increasingly important to consider how the natural machinery of the lens can be utilized to restore GSH levels in its different regions and to afford protection from cataract.
Collapse
Affiliation(s)
- Julie C. Lim
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Lanpeng Jiang
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Natasha G. Lust
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
2
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Xia CH, Lin W, Li R, Xing X, Shang GJ, Zhang H, Gong X. Altered Cell Clusters and Upregulated Aqp1 in Connexin 50 Knockout Lens Epithelium. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39287589 PMCID: PMC11412383 DOI: 10.1167/iovs.65.11.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses. Methods Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed. Differentially expressed genes were identified, and selected DEGs were further studied by quantitative real-time PCR (RT-qPCR) analysis and Western blot analysis. Results The expression profiles of several thousand genes were identified by scRNA-seq data analysis. In comparison to the WT control, many DEGs were identified in the Cx50KO lens epithelial cells, including growth regulating transcriptional factors and genes encoding water channels. Significantly upregulated aquaporin 1 (Aqp1) gene expression was confirmed by RT-qPCR, and upregulated AQP1 protein expression was confirmed by Western blot analysis and immunostaining both in vivo and in vitro. Conclusions Lens epithelial cells exhibit an intrinsic heterogeneity of different cell clusters in regulating lens homeostasis and lens growth. Upregulated Aqp1 in Cx50KO lens epithelial cells suggests that both connexin 50 and AQP1 likely play important roles in regulating water homeostasis in lens epithelial cells.
Collapse
Affiliation(s)
- Chun-Hong Xia
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - William Lin
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Rachel Li
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xinfang Xing
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Guangdu Jack Shang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Haiwei Zhang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xiaohua Gong
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
4
|
Jiang L, Dai C, Wei Y, Zhao B, Li Q, Wu Z, Zou L, Ye Z, Yang Z, Huang L, Shi Y. Identification of LRRC46 as a novel candidate gene for high myopia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1941-1956. [PMID: 38874710 DOI: 10.1007/s11427-024-2583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
High myopia (HM) is the primary cause of blindness, with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues. In a previously reported myopic linkage region, MYP5 (17q21-22), a potential candidate gene, LRRC46 (c.C235T, p.Q79X), was identified in a large Han Chinese pedigree. LRRC46 is expressed in various eye tissues in humans and mice, including the retina, cornea, and sclera. In subsequent cell experiments, the mutation (c.C235T) decreased the expression of LRRC46 protein in human corneal epithelial cells (HCE-T). Further investigation revealed that Lrrc46-/- mice (KO) exhibited a classical myopia phenotype. The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age, the activity of limbal stem cells decreased, and microstructural changes were observed in the fibroblasts of the sclera and cornea. We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type (WT) mice, which indicated a significant downregulation of the collagen synthesis-related pathway (extracellular matrix, ECM) in KO mice. Subsequent in vitro studies further indicated that LRRC46, a member of the important LRR protein family, primarily affected the formation of collagens. This study suggested that LRRC46 is a novel candidate gene for HM, influencing collagen protein VIII (Col8a1) formation in the eye and gradually altering the biomechanical structure of the cornea and sclera, thereby promoting the occurrence and development of HM.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yao Wei
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Bo Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhengzheng Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zimeng Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Medicine, University of Sydney, Sydney, 2050, Australia
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
- Jinfeng Laboratory, Chongging, 40000, China.
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
5
|
Thorne CA, Grey AC, Lim JC, Donaldson PJ. The Synergistic Effects of Polyol Pathway-Induced Oxidative and Osmotic Stress in the Aetiology of Diabetic Cataracts. Int J Mol Sci 2024; 25:9042. [PMID: 39201727 PMCID: PMC11354722 DOI: 10.3390/ijms25169042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cataracts are the world's leading cause of blindness, and diabetes is the second leading risk factor for cataracts after old age. Despite this, no preventative treatment exists for cataracts. The altered metabolism of excess glucose during hyperglycaemia is known to be the underlying cause of diabetic cataractogenesis, resulting in localised disruptions to fibre cell morphology and cell swelling in the outer cortex of the lens. In rat models of diabetic cataracts, this damage has been shown to result from osmotic stress and oxidative stress due to the accumulation of intracellular sorbitol, the depletion of NADPH which is used to regenerate glutathione, and the generation of fructose metabolites via the polyol pathway. However, differences in lens physiology and the metabolism of glucose in the lenses of different species have prevented the translation of successful treatments in animal models into effective treatments in humans. Here, we review the stresses that arise from hyperglycaemic glucose metabolism and link these to the regionally distinct metabolic and physiological adaptations in the lens that are vulnerable to these stressors, highlighting the evidence that chronic oxidative stress together with osmotic stress underlies the aetiology of human diabetic cortical cataracts. With this information, we also highlight fundamental gaps in the knowledge that could help to inform new avenues of research if effective anti-diabetic cataract therapies are to be developed in the future.
Collapse
Affiliation(s)
- Courtney A. Thorne
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Angus C. Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Julie C. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
6
|
Freites JA, Tobias DJ. Molecular Dynamics Simulations of the Eye Lens Water Channel Aquaporin 0 from Fish. J Phys Chem B 2024; 128:7577-7585. [PMID: 39052430 PMCID: PMC11317983 DOI: 10.1021/acs.jpcb.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Aquaporin 0 (AQP0) plays a key role in water circulation in the eye lens through a variety of functions. In contrast to mammalian genomes, zebrafish contains two aqp0 genes leading to a separation of AQP0 multiple functions between the two gene products, Aqp0a and Aqp0b. A notable feature of the zebrafish AQP0 paralogs is the increased water permeability of Aqp0b relative to Aqp0a as well as a severa lfold increase relative to mammalian AQP0. Here, we report equilibrium molecular dynamics (MD) simulations on the microsecond timescale to identify the structural basis underlying the differences in water permeability between zebrafish AQP0 paralogs and between AQP0 mammalian and fish orthologs. Our simulations are able to reproduce the experimental trends in water permeability. Our results suggest that a substitution of a key Y23 residue in mammalian AQP0 for F23 in fish AQP0 orthologs introduces significant changes in the conformational dynamics of the CS-I structural motif, which, in conjunction with different levels of hydration of the channel vestibule, can account for the differences in permeabilities between fish and mammalian AQP0 orthologs and between zebrafish AQP0 paralogs.
Collapse
Affiliation(s)
- J. Alfredo Freites
- Department of Chemistry, University
of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Douglas J. Tobias
- Department of Chemistry, University
of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| |
Collapse
|
7
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
8
|
Greiling TM, Clark JM, Clark JI. The significance of growth shells in development of symmetry, transparency, and refraction of the human lens. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1434327. [PMID: 39100140 PMCID: PMC11294239 DOI: 10.3389/fopht.2024.1434327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Human visual function depends on the biological lens, a biconvex optical element formed by coordinated, synchronous generation of growth shells produced from ordered cells at the lens equator, the distal edge of the epithelium. Growth shells are comprised of straight (St) and S-shaped (SSh) lens fibers organized in highly symmetric, sinusoidal pattern which optimizes both the refractile, transparent structure and the unique microcirculation that regulates hydration and nutrition over the lifetime of an individual. The fiber cells are characterized by diversity in composition and age. All fiber cells remain interconnected in their growth shells throughout the life of the adult lens. As an optical element, cellular differentiation is constrained by the physical properties of light and its special development accounts for its characteristic symmetry, gradient of refractive index (GRIN), short range transparent order (SRO), and functional longevity. The complex sinusoidal structure is the basis for the lens microcirculation required for the establishment and maintenance of image formation.
Collapse
Affiliation(s)
- Teri M. Greiling
- Department of Dermatology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Judy M. Clark
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - John I. Clark
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- Department of Biological Structure & Ophthalmology, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Pan X, Muir ER, Sellitto C, Jiang Z, Donaldson PJ, White TW. Connexin 50 Influences the Physiological Optics of the In Vivo Mouse Lens. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38984874 PMCID: PMC11238879 DOI: 10.1167/iovs.65.8.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Purpose The purpose of this study was to utilize multi-parametric magnetic resonance imaging (MRI) to investigate in vivo age-related changes in the physiology and optics of mouse lenses where Connexin 50 has been deleted (Cx50KO) or replaced by Connexin 46 (Cx50KI46). Methods The lenses of transgenic Cx50KO and Cx50KI46 mice were imaged between 3 weeks and 6 months of age using a 7T MRI. Measurements of lens geometry, the T2 (water-bound protein ratios), the refractive index (n), and T1 (free water content) values were calculated by processing the acquired images. The lens power was calculated from an optical model that combined the geometry and the n. All transgenic mice were compared with control mice at the same age. Results Cx50KO and Cx50KI46 mice developed smaller lenses compared with control mice. The lens thickness, volume, and surface radii of curvatures all increased with age but were limited to the size of the lenses. Cx50KO lenses exhibited higher lens power than Cx50KI46 lenses at all ages, and this was correlated with significantly lower water content in these lenses, which was probably modulated by the gap junction coupling. The refractive power tended to a steady state with age, similar to the control mice. Conclusions The modification of Cx50 gap junctions significantly impacted lens growth and physiological optics as the mouse aged. The lenses showed delayed development growth, and altered optics governed by different lens physiology. This research provides new insights into how gap junctions regulate the development of the lens's physiological optics.
Collapse
Affiliation(s)
- Xingzheng Pan
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Eric R Muir
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Caterina Sellitto
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Zhao Jiang
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Thomas W White
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| |
Collapse
|
10
|
Donaldson PJ, Petrova RS, Nair N, Chen Y, Schey KL. Regulation of water flow in the ocular lens: new roles for aquaporins. J Physiol 2024; 602:3041-3056. [PMID: 37843390 PMCID: PMC11018719 DOI: 10.1113/jp284102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
The ocular lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. The lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the transparency and refractive properties of the lens. This flow of water generates a substantial hydrostatic pressure gradient which is regulated by a dual feedback system that uses the mechanosensitive channels TRPV1 and TRPV4 to sense decreases and increases, respectively, in the pressure gradient. This regulation of water flow (pressure) and hence overall lens water content, sets the two key parameters, lens geometry and the gradient of refractive index, which determine the refractive properties of the lens. Here we focus on the roles played by the aquaporin family of water channels in mediating lens water fluxes, with a specific focus on AQP5 as a regulated water channel in the lens. We show that in addition to regulating the activity of ion transporters, which generate local osmotic gradients that drive lens water flow, the TRPV1/4-mediated dual feedback system also modulates the membrane trafficking of AQP5 in the anterior influx pathway and equatorial efflux zone of the lens. Since both lens pressure and AQP5-mediated water permeability (P H 2 O ${P_{{{\mathrm{H}}_{\mathrm{2}}}{\mathrm{O}}}}$ ) can be altered by changes in the tension applied to the lens surface via modulating ciliary muscle contraction we propose extrinsic modulation of lens water flow as a potential mechanism to alter the refractive properties of the lens to ensure light remains focused on the retina throughout life.
Collapse
Affiliation(s)
- Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, University of Auckland, Auckland, New Zealand
| | - Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, University of Auckland, Auckland, New Zealand
| | - Nikhil Nair
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, University of Auckland, Auckland, New Zealand
| | - Yadi Chen
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, University of Auckland, Auckland, New Zealand
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Tong Y, Wang G, Riquelme MA, Du Y, Quan Y, Fu J, Gu S, Jiang JX. Mechano-activated connexin hemichannels and glutathione transport protect lens fiber cells against oxidative insults. Redox Biol 2024; 73:103216. [PMID: 38820983 PMCID: PMC11170479 DOI: 10.1016/j.redox.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.
Collapse
Affiliation(s)
- Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jialing Fu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
12
|
Shiels A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes (Basel) 2024; 15:785. [PMID: 38927721 PMCID: PMC11202810 DOI: 10.3390/genes15060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait-often with an early or pediatric onset-with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes-including those for lens crystallins, connexins, and transcription factors-recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged-providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Shibata T, Seki Y, Seida Y, Yoshita T, Tsuchiya S, Sasaki H, Kubo E. Progressive hyperopic refractive changes after posterior capsule tear following blunt ocular trauma. Am J Ophthalmol Case Rep 2024; 34:102032. [PMID: 38464501 PMCID: PMC10921238 DOI: 10.1016/j.ajoc.2024.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose To describe the mechanism of progressive hyperopia and its management in the long-term course of traumatic cataract with a posterior capsule tear (PCT) following blunt ocular trauma. Observation A 37-year-old woman presented with blurry vision and photophobia after being hit in the right eye by a slipper. She was found to have PCT with the formation of a traumatic cataract with emmetropia (0 diopters [D]). Three years after the injury, a broader hyperopic change of +8.0 D was found in the patient at her first visit to our clinic. Optical coherence tomography (OCT) analysis of the anterior segment of the eye revealed damage to the posterior capsule and cataracts due to disorganization of the lens fibers and liquefaction of the lens. Femtosecond laser-associated cataract surgery was performed for anterior capsulotomy and segmentation of the nucleus without further enlargement of the PCT, facilitating the placement of a capsular tension ring segment and a multifocal intra ocular lens (IOL) in the capsular bag. At 1-month post-operation, her uncorrected visual acuity was 20/20 in the right eye, with a well-centered IOL. Conclusions and Importance Isolated PCT due to blunt trauma is rare, and there have been no reports of progressive hyperopia after three years of follow-up. In such cases, the lens may liquefy, resulting in decreased refraction and significant hyperopia.
Collapse
Affiliation(s)
- Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Yusuke Seki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Yukiya Seida
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | | | - Shunsuke Tsuchiya
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
14
|
Mi Y, Zhu Q, Zheng X, Wan M. The protective role of water intake in age-related eye diseases: insights from a Mendelian randomization study. Food Funct 2024; 15:5147-5157. [PMID: 38682722 DOI: 10.1039/d4fo01559b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Age-related eye diseases (AREDs), including age-related cataracts (ARCs), age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are a leading cause of visual loss globally. This study aimed to explore the effects of dietary water intake on AREDs using Mendelian randomization. In the European population, genome-wide association study (GWAS) summary statistics of water intake and AREDs were obtained from the UK Biobank database and the FinnGen Consortium, respectively. The causal associations between water intake and ARED risks were explored by univariable and multivariable MR analyses, followed by sensitivity analyses to test the robustness of the results and detect potential pleiotropy bias. Water intake was associated with reduced risks of ARCs (odds ratio [OR]: 0.61; 95% confidence interval [CI]: 0.46-0.83; P = 1.44 × 10-3) and DR (OR: 0.52; 95% CI: 0.36-0.76; P = 5.47 × 10-4), and a suggestive reduced risk of AMD (OR: 0.42; 95% CI: 0.20-0.88; P = 2.18 × 10-2). Water intake had no effect on glaucoma (OR: 1.16; 95% CI: 0.72-1.88; P = 0.549). After adjusting confounders, the causal effects of water intake on ARCs and DR persisted. Our study provides evidence of the preventive role of water intake in ARCs and DR from a genetic perspective.
Collapse
Affiliation(s)
- Yuze Mi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinnan Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinni Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Minghui Wan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
15
|
Petrova RS, Francis N, Schey KL, Donaldson PJ. Verification of the gene and protein expression of the aquaglyceroporin AQP3 in the mammalian lens. Exp Eye Res 2024; 240:109828. [PMID: 38354944 DOI: 10.1016/j.exer.2024.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and H2O2. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens. Western blotting showed AQP3 in the lens exists as 25 kDa non-glycosylated and 37 kDa glycosylated monomeric forms in all lens species. To identify the regions in the lens where AQP3 is expressed Western blotting was repeated using epithelial, outer cortical and inner cortical/core fractions isolated from the mouse lens. AQP3 was found in all lens regions, with the highest signal of non-glycosylated AQP3 being found in the epithelium. While in the inner cortex/core region AQP3 signal was not only lower but was predominately from the glycosylated form of AQP3. Immunolabelling of lens sections with AQP3 antibodies confirmed that AQP3 is found in all regions of the adult mouse, and also revealed that the subcellular distribution of AQP3 changes as a function of fiber cell differentiation. In epithelial and peripheral fiber cells of the outer cortex AQP3 labelling was predominately associated with membrane vesicles in the cytoplasm, but in the deeper regions of the lens AQP3 labelling was associated with the plasma membranes of fiber cells located in the inner cortex and core of the lens. To determine how this adult pattern of AQP3 subcellular distribution was established, immunolabelling for AQP3 was performed on embryonic and postnatal lenses. AQP3 expression was first detected on embryonic day (E) 11 in the membranes of primary fiber cells that have started to elongate and fill the lumen of the lens vesicle, while later at E16 the AQP3 labelling in the primary fiber cells had shifted to a predominately cytoplasmic location. In the following postnatal (P) stages of lens growth at P3 and P6, AQP3 labelling remained cytoplasmic across all regions of the lens and it was not until P15 when the pattern of localisation of AQP3 changed to an adult distribution with cytoplasmic labelling detected in the outer cortex and membrane localisation detected in the inner cortex and core of the lens. Comparison of the AQP3 labelling pattern to those obtained previously for AQP0 and AQP5 showed that the subcellular distribution was more similar to AQP5 than AQP0, but there were still significant differences that suggest AQP3 may have unique roles in the maintenance of lens transparency.
Collapse
Affiliation(s)
- Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nishanth Francis
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Centre, Vanderbilt University, Nashville, 37232, TN, USA
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
17
|
Zhou Y, Bennett TM, Ruzycki PA, Guo Z, Cao YQ, Shahidullah M, Delamere NA, Shiels A. A Cataract-Causing Mutation in the TRPM3 Cation Channel Disrupts Calcium Dynamics in the Lens. Cells 2024; 13:257. [PMID: 38334649 PMCID: PMC10854584 DOI: 10.3390/cells13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Nicholas A. Delamere
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
McDonald H, Gardner-Russell J, Alarcon-Martinez L. Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication. Results Probl Cell Differ 2024; 73:229-247. [PMID: 39242382 DOI: 10.1007/978-3-031-62036-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Collapse
Affiliation(s)
- Hannah McDonald
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Melbourne, VIC, Australia.
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Francis JM, Mowat FM, Ludwig A, Hicks JM, Pumphrey SA. Quantifying refractive error in companion dogs with and without nuclear sclerosis: 229 eyes from 118 dogs. Vet Ophthalmol 2024; 27:70-78. [PMID: 37986551 PMCID: PMC10842750 DOI: 10.1111/vop.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To evaluate the relationship between nuclear sclerosis (NS) and refractive error in companion dogs. ANIMALS STUDIED One hundred and eighteen companion dogs. PROCEDURES Dogs were examined and found to be free of significant ocular abnormalities aside from NS. NS was graded from 0 (absent) to 3 (severe) using a scale developed by the investigators. Manual refraction was performed. The effect of NS grade on refractive error was measured using a linear mixed effects analysis adjusted for age. The proportion of eyes with >1.5 D myopia in each NS grade was evaluated using a chi-square test. Visual impairment score (VIS) was obtained for a subset of dogs and compared against age, refractive error, and NS grade. RESULTS Age was strongly correlated with NS grade (p < .0001). Age-adjusted analysis of NS grade relative to refraction showed a mild but not statistically significant increase in myopia with increasing NS grade, with eyes with grade 3 NS averaging 0.58-0.88 D greater myopia than eyes without NS. However, the myopia of >1.5 D was documented in 4/58 (6.9%) eyes with grade 0 NS, 12/91 (13.2%) eyes with grade 1 NS, 13/57 (22.8%) eyes with grade 2 NS, and 7/23 (30.4%) eyes with grade 3 NS. Risk of myopia >1.5 D was significantly associated with increasing NS grade (p = .02). VIS was associated weakly with refractive error, moderately with age, and significantly with NS grade. CONCLUSIONS NS is associated with visual deficits in some dogs but is only weakly associated with myopia. More work is needed to characterize vision in aging dogs.
Collapse
Affiliation(s)
- Jenelle M Francis
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Freya M Mowat
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Allison Ludwig
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacqueline M Hicks
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, USA
- Dr. Francis's current address is Animal Eye Clinic, Matthews, North Carolina, USA
| | - Stephanie A Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
20
|
He JC. Refractive Index Measurement of the Crystalline Lens in Vivo. Optom Vis Sci 2023; 100:823-832. [PMID: 37890121 PMCID: PMC10841399 DOI: 10.1097/opx.0000000000002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
SIGNIFICANCE This study provides a new method to measure the refractive index of crystalline lens in the human eye in vivo . PURPOSE Accessing the refractive index of crystalline lenses in the human eye in vivo has long been a challenge. This study aimed to measure the refractive index of a lens in vivo using an anterior segment optical coherence tomography (AS-OCT) system combined with a Scheimpflug imaging system. METHOD A ray-traceable Scheimpflug imaging was developed and integrated into an AS-OCT system. A theoretical study revealed that the combination of these two systems provides a unique solution for simultaneously measuring the refractive index and the thickness of the lens. The average lens refractive index along the ray pathway ( Nav ) and lens shape were measured for seven subjects. RESULTS The lens Nav along the central ray varies from 1.383 to 1.419 between subjects. The lens refractive index function across the lens diameter varies from subject to subject. The lens Nav increases for accommodated eyes. The thicknesses and profiles of the lenses are also determined. CONCLUSIONS The lens refractive index varies substantially from individual eye to individual eye, not only along the central ray pathway but also for the lens refractive index function across the lens diameter. Ray-traceable Scheimpflug imaging-equipped AS-OCT is useful for testing the refractive index of lenses in the human eye in vivo .
Collapse
|
21
|
Petrova RS, Nair N, Bavana N, Chen Y, Schey KL, Donaldson PJ. Modulation of Membrane Trafficking of AQP5 in the Lens in Response to Changes in Zonular Tension Is Mediated by the Mechanosensitive Channel TRPV1. Int J Mol Sci 2023; 24:9080. [PMID: 37240426 PMCID: PMC10219244 DOI: 10.3390/ijms24109080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In mice, the contraction of the ciliary muscle via the administration of pilocarpine reduces the zonular tension applied to the lens and activates the TRPV1-mediated arm of a dual feedback system that regulates the lens' hydrostatic pressure gradient. In the rat lens, this pilocarpine-induced reduction in zonular tension also causes the water channel AQP5 to be removed from the membranes of fiber cells located in the anterior influx and equatorial efflux zones. Here, we determined whether this pilocarpine-induced membrane trafficking of AQP5 is also regulated by the activation of TRPV1. Using microelectrode-based methods to measure surface pressure, we found that pilocarpine also increased pressure in the rat lenses via the activation of TRPV1, while pilocarpine-induced removal of AQP5 from the membrane observed using immunolabelling was abolished by pre-incubation of the lenses with a TRPV1 inhibitor. In contrast, mimicking the actions of pilocarpine by blocking TRPV4 and then activating TRPV1 resulted in sustained increase in pressure and the removal of AQP5 from the anterior influx and equatorial efflux zones. These results show that the removal of AQP5 in response to a decrease in zonular tension is mediated by TRPV1 and suggest that regional changes to PH2O contribute to lens hydrostatic pressure gradient regulation.
Collapse
Affiliation(s)
- Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Nikhil Nair
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Nandini Bavana
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Yadi Chen
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Kevin L. Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Center, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
22
|
Pan Y, Liu Z, Zhang H. Research progress of lens zonules. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:80-85. [PMID: 37846380 PMCID: PMC10577871 DOI: 10.1016/j.aopr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 10/18/2023]
Abstract
Background The lens zonule, a circumferential system of fibres connecting the ciliary body to the lens, is responsible for centration of the lens. The structural, functional, and positional abnormalities of the zonular apparatus can lead to the abnormality of the intraocular structure, presenting a significant challenge to cataract surgery. Main text The lens zonule is the elaborate system of extracellular fibers, which not only centers the lens in the eye but also plays an important role in accommodation and lens immunity, maintains the shape of the lens, and corrects spherical aberration. The zonules may directly participate in the formation of cataract via the immune mechanism. Abnormal zonular fibers that affect the position and shape of the lens may play an important role in the pathogenesis of angle closure disease and increase the complexity of the surgery. Capsular tension rings and related endocapsular devices are used to provide sufficient capsular bag stabilization and ensure the safety of cataract surgery procedures. Better preoperative and intraoperative evaluation methods for zonules are needed for clinicians. Conclusions The microstructure, biomechanical properties, and physiological functions of the lens zonules help us to better understand the pathogenesis of cataract and glaucoma, facilitating the development of safer surgical procedures for cataract. Further studies are needed to carefully analyze the structure-function relationship of the zonular apparatus to explore new treatment strategies for cataract and glaucoma.
Collapse
Affiliation(s)
- Yingying Pan
- Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Zhaoqiang Liu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Han Zhang
- Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
23
|
Pan X, Muir ER, Sellitto C, Wang K, Cheng C, Pierscionek B, Donaldson PJ, White TW. Age-Dependent Changes in the Water Content and Optical Power of the In Vivo Mouse Lens Revealed by Multi-Parametric MRI and Optical Modeling. Invest Ophthalmol Vis Sci 2023; 64:24. [PMID: 37079314 PMCID: PMC10132318 DOI: 10.1167/iovs.64.4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose The purpose of this study was to utilize in vivo magnetic resonance imaging (MRI) and optical modeling to investigate how changes in water transport, lens curvature, and gradient refractive index (GRIN) alter the power of the mouse lens as a function of age. Methods Lenses of male C57BL/6 wild-type mice aged between 3 weeks and 12 months (N = 4 mice per age group) were imaged using a 7T MRI scanner. Measurements of lens shape and the distribution of T2 (water-bound protein ratios) and T1 (free water content) values were extracted from MRI images. T2 values were converted into the refractive index (n) using an age-corrected calibration equation to calculate the GRIN at different ages. GRIN maps and shape parameters were inputted into an optical model to determine ageing effects on lens power and spherical aberration. Results The mouse lens showed two growth phases. From 3 weeks to 3 months, T2 decreased, GRIN increased, and T1 decreased. This was accompanied by increased lens thickness, volume, and surface radii of curvatures. The refractive power of the lens also increased significantly, and a negative spherical aberration was developed and maintained. Between 6 and 12 months of age, all physiological, geometrical, and optical parameters remained constant, although the lens continued to grow. Conclusions In the first 3 months, the mouse lens power increased as a result of changes in shape and in the GRIN, the latter driven by the decreased water content of the lens nucleus. Further research into the mechanisms regulating this decrease in mouse lens water could improve our understanding of how lens power changes during emmetropization in the developing human lens.
Collapse
Affiliation(s)
- Xingzheng Pan
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Eric R. Muir
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Caterina Sellitto
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Kehao Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, Indiana, United States
| | - Barbara Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, United Kingdom
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Thomas W. White
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States
| |
Collapse
|
24
|
Zhou Y, Bennett TM, White TW, Shiels A. Charged multivesicular body protein 4b forms complexes with gap junction proteins during lens fiber cell differentiation. FASEB J 2023; 37:e22801. [PMID: 36880430 PMCID: PMC10101236 DOI: 10.1096/fj.202201368rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
Charged multivesicular body protein 4b (CHMP4B) is a core sub-unit of the endosomal sorting complex required for transport III (ESCRT-III) machinery that serves myriad remodeling and scission processes of biological membranes. Mutation of the human CHMP4B gene underlies rare forms of early-onset lens opacities or cataracts, and CHMP4B is required for lens growth and differentiation in mice. Here, we determine the sub-cellular distribution of CHMP4B in the lens and uncover a novel association with gap junction alpha-3 protein (GJA3) or connexin 46 (Cx46) and GJA8 or Cx50. Immunofluorescence confocal microscopy revealed that CHMP4B localized to cell membranes of elongated fiber cells in the outer cortex of the lens-where large gap junction plaques begin to form-particularly, on the broad faces of these flattened hexagon-like cells in cross-section. Dual immunofluorescence imaging showed that CHMP4B co-localized with gap junction plaques containing Cx46 and/or Cx50. When combined with the in situ proximity ligation assay, immunofluorescence confocal imaging indicated that CHMP4B lay in close physical proximity to Cx46 and Cx50. In Cx46-knockout (Cx46-KO) lenses, CHMP4B-membrane distribution was similar to that of wild-type, whereas, in Cx50-KO lenses, CHMP4B localization to fiber cell membranes was lost. Immunoprecipitation and immunoblotting analyses revealed that CHMP4B formed complexes with Cx46 and Cx50 in vitro. Collectively, our data suggest that CHMP4B forms plasma membrane complexes, either directly and/or indirectly, with gap junction proteins Cx46 and Cx50 that are often associated with "ball-and-socket" double-membrane junctions during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas W. White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
25
|
Jia WN, Wang QY, Niu LL, Chen ZX, Jiang YX. Morphometric assessment of the ciliary body in patients with Marfan syndrome and ectopia lentis: A quantitative study using ultrasound biomicroscopy: Ciliary body morphology in Marfan syndrome and ectopia lentis. Am J Ophthalmol 2023; 251:24-31. [PMID: 36948371 DOI: 10.1016/j.ajo.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE To explore the biometric characteristics of the ciliary body in patients with Marfan syndrome (MFS) and ectopia lentis (EL). DESIGN Cross-sectional study. METHODS Seventy-two consecutive MFS patients with EL and 72 non-disease controls were recruited. Ciliary body biometric parameters such as ciliary muscle cross-sectional area at 2000 μm from the scleral spur (CMA2000), ciliary muscle thickness at 1000 μm from the scleral spur (CMT1000), and maximum ciliary body thickness (CBTmax) were measured from multiple directions with ultrasound biomicroscopy (UBM). The relationship between ciliary body parameters and other ocular characteristics was also evaluated. RESULTS Average CMA2000, CMT1000, and CBTmax were 0.692 ± 0.015 mm2, 0.405 ± 0.010 mm, and 0.855±0.023 mm in MFS eyes, respectively, and were significantly smaller than controls (all p < 0.001). The prevalence of ciliary body thinning was 22.2% in the MFS group versus 0 in controls (p < 0.001); eyes with more severe EL had smaller CMA2000 (p = 0.050), thinner CMT1000 (p = 0.022) and shorter CBTmax (p = 0.015). Patients with microspherophakia (MSP) had even smaller CMA2000 (p = 0.033) and CMT1000 (p = 0.044) than those without MSP. The most common subluxation direction was in the superonasal quadrant (25, 39.7%), which probably correlates with the thinnest CMT1000 in the inferotemporal quadrant (p = 0.005). CONCLUSIONS MFS patients with EL had thinner ciliary muscles, shorter ciliary processes, and a higher prevalence of ciliary body thinning, especially those with MSP. Both the extent and direction of subluxation were associated with ciliary body biometry.
Collapse
Affiliation(s)
- Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Qian-Yi Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Ling-Ling Niu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| |
Collapse
|
26
|
Cicinelli MV, Buchan JC, Nicholson M, Varadaraj V, Khanna RC. Cataracts. Lancet 2023; 401:377-389. [PMID: 36565712 DOI: 10.1016/s0140-6736(22)01839-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022]
Abstract
94 million people are blind or visually impaired globally, and cataract is the most common cause of blindness worldwide. However, most cases of blindness are avoidable. Cataract is associated with decreased quality of life and reduced life expectancy. Most cases of cataract occur after birth and share ageing and oxidative stress as primary causes, although several non-modifiable and modifiable risk factors can accelerate cataract formation. In most patients, phacoemulsification with intraocular lens implantation is the preferred treatment and is highly cost-effective. There has been an increase in the use of comprehensive cataract surgical services, including diagnoses, treatment referrals, and rehabilitation. However, global inequity in surgical service quality is still a limitation. Implementation of preoperative risk assessment, risk reduction strategies, and new surgical technologies have made cataract surgery possible at an earlier stage of cataract severity with the expectation of good refractive outcomes. The main challenge is making the service that is currently available to some patients accessible to all by use of universal health coverage.
Collapse
Affiliation(s)
- Maria Vittoria Cicinelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - John C Buchan
- International Centre for Eye Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Maneck Nicholson
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | | | - Rohit C Khanna
- Allen Foster Community Eye Health Research Centre, Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, Hyderabad, India; Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India; School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
27
|
Abstract
Purpose: Presbyopia-the progressive loss of near focus with age-is primarily a result of changes in lens biomechanics. In particular, the shape of the ocular lens in the absence of zonular tension changes significantly throughout adulthood. Contributors to this change in shape are changes in lens biomechanical properties, continuous volumetric growth lens, and possibly remodeling of the lens capsule. Knowledge in this area is growing rapidly, so the purpose of this mini-review was to summarize and synthesize these gains.Methods: We review the recent literature in this field.Results: The mechanisms governing age-related changes in biomechanical properties remains unknown. We have recently shown that lens growth may be driven by zonular tension. The same mechanobiological mechanism driving lens growth may also lead to remodeling of the capsule, though this remains to be demonstrated.Conclusions: This mini-review focuses on identifying mechanisms which cause these age-related changes, suggesting future work which may elucidate these mechanisms, and briefly discusses ongoing efforts to develop a non-surgical approach for therapeutic management of presbyopia. We also propose a simple model linking lens growth and biomechanical properties.
Collapse
Affiliation(s)
- Wade Rich
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Matthew A Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology & Visual Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Ngah NF, Muhamad NA, Aziz RAA, Hussein E, Salowi MA, Kamarudin Z, Abdullah NH, Aris T. Evaluating Cataract Surgical Rate through Smart Partnership between Ministry of Health, Malaysia and Federal Territory Islamic Religious Council. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10010012. [PMID: 36662496 PMCID: PMC9860600 DOI: 10.3390/medicines10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cataract is the leading cause of blindness. About 90% of cataract blindness occurs in low- and middle-income countries. The prevalence of blindness and low vision in any country depends on the socioeconomic status, the availability of medical and healthcare facilities, and the literacy of the population. AIM This paper aims to estimate the cataract surgery rate (CSR) at Pusat Pembedahan Katarak, MAIWP-Hospital Selayang (Cataract Operation Centre), and provide descriptive assessments of the patients who received eye treatments in the center. METHODS The data were retrieved from the clinical database from 2013 to 2016. Information on the patient's sociodemographic and clinical and treatment history was collected. RESULTS The cataract surgery rate for 2013 was about 27 and increased to 37.3 in 2014. However, it declined to 25 in 2015 before it resumed to 36 in 2016. For female patients who received eye treatments at Pusat Pembedahan Katarak, MAIWP-Hospital Selayang, the rate was higher (53.7%) compared to male patients (46.3%). The mean duration of cataract surgery from 2013 to 2016 was 21.25 ± 11.071 min. CONCLUSION The increased cataract surgery rate for MAIWP-HS through smart partnerships for day care cataract surgery proved that better accessibility makes the short- and long-term strategies for the reduction and prevention of blindness in Malaysia possible to achieve.
Collapse
Affiliation(s)
- Nor Fariza Ngah
- Institutes for Clinical Research, Ministry of Health, Shah Alam 40170, Malaysia
- Department of Ophthalmology, Shah Alam Hospital, Shah Alam 40000, Malaysia
| | - Nor Asiah Muhamad
- Sector for Evidence-Based Healthcare, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia
- Correspondence:
| | | | - Elias Hussein
- Department of Ophthalmology, Kuala Lumpur Hospital, Kuala Lumpur 50586, Malaysia
| | | | - Zabri Kamarudin
- Department of Ophthalmology, Selayang Hospital, Shah Alam 68100, Malaysia
| | - Noor Hisham Abdullah
- Office of Director General of Health, Ministry of Health, Putrajaya 62590, Malaysia
| | - Tahir Aris
- National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia
| |
Collapse
|
29
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
30
|
Pakhomova NA, Borisenko TE, Roshchin SV, Bursov AI, Kravchik MV, Novikov IA, Avetisov SE. [Features of accumulation of chemical elements in the volume of the lens in senile cataract]. Vestn Oftalmol 2023; 139:35-45. [PMID: 36924513 DOI: 10.17116/oftalma202313901135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE This study provides a detailed analysis of the bioinorganic chemical composition of lens substance in patients with senile cataract using classical and spatial statistics methods. MATERIAL AND METHODS The study included 30 isolated human lenses. The light scattering ability (LSA) of the lens substance was evaluated using an original method. Additionally, distribution of chemical elements in the lens substance was analyzed using a scanning electron microscope with energy dispersive spectrometer (SEM/EDS). Measurements by all methods were carried out in a single coordinate space, which made it possible to compare the spatial correlation of different parameters. RESULTS Small-angle light scattering of the lens substance has been quantitatively characterized for the first time. In contrast to the conventional norm, in senile cataract the accumulation fields of the majority of ion-forming elements (including Na, P, K, Cl) are distributed along the lines repeating the geometry of the lens capsule. At the same time, the light scattering ability of certain areas of the lens is significantly correlated with changes in the concentrations of Na, P, K, Ca in these areas. In particular, one ion-forming element can be distinguished - Na: spatial change of its concentration in senile cataract is strongly associated with a local change in LSA of the lens with opacities clustering of any degree. Thus, a change in the nature of the Na accumulation in the lens volume can be considered the main marker of senile cataract formation. CONCLUSION The distribution pattern of ion-forming elements indicates that the loss of barrier properties in the capsule plays a significant role in the development of senile cataract.
Collapse
Affiliation(s)
- N A Pakhomova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - T E Borisenko
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - S V Roshchin
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A I Bursov
- Ivannikov Institute for System Programming, Moscow, Russia
| | - M V Kravchik
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - I A Novikov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - S E Avetisov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
31
|
Regulation of lens water content: Effects on the physiological optics of the lens. Prog Retin Eye Res 2022:101152. [DOI: 10.1016/j.preteyeres.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022]
|
32
|
Beyer EC, Berthoud VM, Lim JC, Donaldson PJ. Editorial: Ion channels, pumps, and transporters in lens physiology and disease. Front Physiol 2022; 13:1071215. [PMID: 36406990 PMCID: PMC9670118 DOI: 10.3389/fphys.2022.1071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Julie C Lim
- Department of Physiology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
34
|
Shahidullah M, Rosales JL, Delamere N. Activation of Piezo1 Increases Na,K-ATPase-Mediated Ion Transport in Mouse Lens. Int J Mol Sci 2022; 23:12870. [PMID: 36361659 PMCID: PMC9656371 DOI: 10.3390/ijms232112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2023] Open
Abstract
Lens ion homeostasis depends on Na,K-ATPase and NKCC1. TRPV4 and TRPV1 channels, which are mechanosensitive, play important roles in mechanisms that regulate the activity of these transporters. Here, we examined another mechanosensitive channel, piezo1, which is also expressed in the lens. The purpose of the study was to examine piezo1 function. Recognizing that activation of TRPV4 and TRPV1 causes changes in lens ion transport mechanisms, we carried out studies to determine whether piezo1 activation changes either Na,K-ATPase-mediated or NKCC1-mediated ion transport. We also examined channel function of piezo1 by measuring calcium entry. Rb uptake was measured as an index of inwardly directed potassium transport by intact mouse lenses. Intracellular calcium concentration was measured in Fura-2 loaded cells by a ratiometric imaging technique. Piezo1 immunolocalization was most evident in the lens epithelium. Potassium (Rb) uptake was increased in intact lenses as well as in cultured lens epithelium exposed to Yoda1, a piezo1 agonist. The majority of Rb uptake is Na,K-ATPase-dependent, although there also is a significant NKCC-dependent component. In the presence of ouabain, an Na,K-ATPase inhibitor, Yoda1 did not increase Rb uptake. In contrast, Yoda1 increased Rb uptake to a similar degree in the presence or absence of 1 µM bumetanide, an NKCC inhibitor. The Rb uptake response to Yoda1 was inhibited by the selective piezo1 antagonist GsMTx4, and also by the nonselective antagonists ruthenium red and gadolinium. In parallel studies, Yoda1 was observed to increase cytoplasmic calcium concentration in cells loaded with Fura-2. The calcium response to Yoda1 was abolished by gadolinium or ruthenium red. The calcium and Rb uptake responses to Yoda1 were absent in calcium-free bathing solution, consistent with calcium entry when piezo1 is activated. Taken together, these findings point to stimulation of Na,K-ATPase, but not NKCC, when piezo1 is activated. Na,K-ATPase is the principal mechanism responsible for ion and water homeostasis in the lens. The functional role of lens piezo1 is a topic for further study.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
- Department of Ophthalmology and Vision Science, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Joaquin Lopez Rosales
- Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Nicholas Delamere
- Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
- Department of Ophthalmology and Vision Science, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
35
|
Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases. Nat Commun 2022; 13:4413. [PMID: 35906209 PMCID: PMC9338259 DOI: 10.1038/s41467-022-31946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.
Collapse
|
36
|
Liu S, He X, Wang J, Du L, Xie H, Yang J, Liu K, Zou H, Xu X, Chen J. Association between axial length elongation and spherical equivalent progression in Chinese children and adolescents. Ophthalmic Physiol Opt 2022; 42:1133-1140. [PMID: 35766199 DOI: 10.1111/opo.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND It is generally believed that a 1-mm axial length (AL) elongation of the eye corresponds to a -3.00 D spherical equivalent (SE) progression, but this is disputed. PURPOSE To investigate the association between AL elongation and SE progression among children and adolescents. METHODS A prospective cohort study of 710 children and adolescents aged 6-16 years was included. Ophthalmic examinations, including cycloplegic SE, AL and corneal curvature, were performed at baseline and 1-year follow-up. The ratio of SE change (ΔSE) to AL change (ΔAL) (ΔSE/ΔAL) was calculated, and its association with age and refractive status was explored using a general linear model. RESULTS Among all participants, 396 (55.77%) were male, with 265 (37.32%) myopes at baseline. The average 1-year ΔSE and ΔAL were 0.61 ± 0.40 D and 0.33 ± 0.22 mm, respectively. Both ΔSE and ΔAL gradually decreased with age (p < 0.001). In the general linear model analyses, age and refractive status were independently associated with ΔSE/ΔAL after adjustment for covariates (age: β ̂ $$ \hat{\beta} $$ = 0.04, p < 0.05; myopia vs nonmyopia: β ̂ $$ \hat{\beta} $$ = 0.28, p < 0.05). Based on the developed formula ΔSE/ΔAL = 1.74 + 0.05*age (for myopes), mean ΔSE/ΔAL in myopes increased from 2.06 D/mm in the 6-year-olds to 2.59 D/mm in the 16-year-olds. In nonmyopes, ΔSE/ΔAL = 1.33 + 0.05*age, and the ratio increased from 1.65 D/mm in the 6-year-olds to 2.18 D/mm in the 16-year-olds. CONCLUSIONS The ratio of ΔSE/ΔAL varied with age and refractive status in children and adolescents. The age-specific ΔSE/ΔAL could be used to estimate SE progression through the actual AL change.
Collapse
Affiliation(s)
- Shang Liu
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiangui He
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingjing Wang
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China
| | - Linlin Du
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China
| | - Hui Xie
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China
| | - Jinliuxing Yang
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Haidong Zou
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xun Xu
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jun Chen
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center & Shanghai Children Myopia Institute, Shanghai, China
| |
Collapse
|
37
|
Zahraei A, Guo G, Varnava KG, Demarais NJ, Donaldson PJ, Grey AC. Mapping Glucose Uptake, Transport and Metabolism in the Bovine Lens Cortex. Front Physiol 2022; 13:901407. [PMID: 35711316 PMCID: PMC9194507 DOI: 10.3389/fphys.2022.901407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To spatially correlate the pattern of glucose uptake to glucose transporter distributions in cultured lenses and map glucose metabolism in different lens regions. Methods: Ex vivo bovine lenses were incubated in artificial aqueous humour containing normoglycaemic stable isotopically-labelled (SIL) glucose (5 mM) for 5 min-20 h. Following incubations, lenses were frozen for subsequent matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) analysis using high resolution mass spectrometry. Manually dissected, SIL-incubated lenses were subjected to gas chromatography-mass spectrometry (GC-MS) to verify the identity of metabolites detected by MALDI-IMS. Normal, unincubated lenses were manually dissected into epithelium flat mounts and fibre cell fractions and then subjected to either gel-based proteomic analysis (Gel-LC/MS) to detect facilitative glucose transporters (GLUTs) by liquid chromatography tandem mass spectrometry (LC-MS/MS). Indirect immunofluorescence and confocal microscopy of axial lens sections from unincubated fixed lenses labelled with primary antibodies specific for GLUT 1 or GLUT 3 were utilised for protein localisation. Results: SIL glucose uptake at 5 min was concentrated in the equatorial region of the lens. At later timepoints, glucose gradually distributed throughout the epithelium and the cortical lens fibres, and eventually the deeper lens nucleus. SIL glucose metabolites found in glycolysis, the sorbitol pathway, the pentose phosphate pathway, and UDP-glucose formation were mapped to specific lens regions, with distinct regional signal changes up to 20 h of incubation. Spatial proteomic analysis of the lens epithelium detected GLUT1 and GLUT3. GLUT3 was in higher abundance than GLUT1 throughout the epithelium, while GLUT1 was more abundant in lens fibre cells. Immunohistochemical mapping localised GLUT1 to epithelial and cortical fibre cell membranes. Conclusion: The major uptake site of glucose in the bovine lens has been mapped to the lens equator. SIL glucose is rapidly metabolised in epithelial and fibre cells to many metabolites, which are most abundant in the metabolically more active cortical fibre cells in comparison to central fibres, with low levels of metabolic activity observed in the nucleus.
Collapse
Affiliation(s)
- Ali Zahraei
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand
| | - George Guo
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand.,Mass Spectrometry Hub, Auckland, New Zealand
| | - Kyriakos G Varnava
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand.,Mass Spectrometry Hub, Auckland, New Zealand
| | - Nicholas J Demarais
- Mass Spectrometry Hub, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand.,Mass Spectrometry Hub, Auckland, New Zealand
| |
Collapse
|
38
|
Jin A, Zhao Q, Liu S, Jin ZB, Li S, Xiang M, Zeng M, Jin K. Identification of a New Mutation p.P88L in Connexin 50 Associated with Dominant Congenital Cataract. Front Cell Dev Biol 2022; 10:794837. [PMID: 35531093 PMCID: PMC9068895 DOI: 10.3389/fcell.2022.794837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital hereditary cataract is genetically heterogeneous and the leading cause of visual impairment in children. Identification of hereditary causes is critical to genetic counselling and family planning. Here, we examined a four-generation Chinese pedigree with congenital dominant cataract and identified a new mutation in GJA8 via targeted exome sequencing. A heterozygous missense mutation c.263C > T, leading to a proline-to-Leucine conversion at the conserved residue 88 in the second transmembrane domain of human connexin 50 (Cx50), was identified in all patients but not in unaffected family members. Functional analyses of the mutation revealed that it disrupted the stability of Cx50 and had a deleterious effect on protein function. Indeed, the mutation compromised normal membrane permeability and gating of ions, and impeded cell migration when overexpressed. Together, our results expand the pathogenic mutation spectrum of Cx50 underlying congenital cataract and lend more support to clinical diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Aixia Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingqing Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zi-bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Shuyan Li
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- *Correspondence: Kangxin Jin, ; Mengqing Xiang, ; Mingbing Zeng,
| | - Mingbing Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Hainan Eye Hospital, Hainan Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
- *Correspondence: Kangxin Jin, ; Mengqing Xiang, ; Mingbing Zeng,
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
- *Correspondence: Kangxin Jin, ; Mengqing Xiang, ; Mingbing Zeng,
| |
Collapse
|
39
|
Schey KL, Gletten RB, O’Neale CVT, Wang Z, Petrova RS, Donaldson PJ. Lens Aquaporins in Health and Disease: Location is Everything! Front Physiol 2022; 13:882550. [PMID: 35514349 PMCID: PMC9062079 DOI: 10.3389/fphys.2022.882550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023] Open
Abstract
Cataract and presbyopia are the leading cause of vision loss and impaired vision, respectively, worldwide. Changes in lens biochemistry and physiology with age are responsible for vision impairment, yet the specific molecular changes that underpin such changes are not entirely understood. In order to preserve transparency over decades of life, the lens establishes and maintains a microcirculation system (MCS) that, through spatially localized ion pumps, induces circulation of water and nutrients into (influx) and metabolites out of (outflow and efflux) the lens. Aquaporins (AQPs) are predicted to play important roles in the establishment and maintenance of local and global water flow throughout the lens. This review discusses the structure and function of lens AQPs and, importantly, their spatial localization that is likely key to proper water flow through the MCS. Moreover, age-related changes are detailed and their predicted effects on the MCS are discussed leading to an updated MCS model. Lastly, the potential therapeutic targeting of AQPs for prevention or treatment of cataract and presbyopia is discussed.
Collapse
Affiliation(s)
- Kevin L. Schey
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States,*Correspondence: Kevin L. Schey,
| | - Romell B. Gletten
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Carla V. T. O’Neale
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Affiliation(s)
- Roy Quinlan
- Biomedical Sciences, Department of Biosciences, The University of Durham, Upper Mountjoy Science Site, Durham, DH1 3LE, UK.
| | - Frank Giblin
- Biomedical Sciences Emeritus, Eye Research Institute, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
41
|
Vorontsova I, Vallmitjana A, Torrado B, Schilling TF, Hall JE, Gratton E, Malacrida L. In vivo macromolecular crowding is differentially modulated by aquaporin 0 in zebrafish lens: Insights from a nanoenvironment sensor and spectral imaging. SCIENCE ADVANCES 2022; 8:eabj4833. [PMID: 35171678 PMCID: PMC8849302 DOI: 10.1126/sciadv.abj4833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 05/14/2023]
Abstract
Macromolecular crowding is crucial for cellular homeostasis. In vivo studies of macromolecular crowding and water dynamics are needed to understand their roles in cellular physiology and fate determination. Macromolecular crowding in the lens is essential for normal optics, and an understanding of its regulation will help prevent cataract and presbyopia. Here, we combine the use of the nanoenvironmental sensor [6-acetyl-2-dimethylaminonaphthalene (ACDAN)] to visualize lens macromolecular crowding with in vivo studies of aquaporin 0 zebrafish mutants that disrupt its regulation. Spectral phasor analysis of ACDAN fluorescence reveals water dipolar relaxation and demonstrates that mutations in two zebrafish aquaporin 0s, Aqp0a and Aqp0b, alter water state and macromolecular crowding in living lenses. Our results provide in vivo evidence that Aqp0a promotes fluid influx in the deeper lens cortex, whereas Aqp0b facilitates fluid efflux. This evidence reveals previously unidentified spatial regulation of macromolecular crowding and spatially distinct roles for Aqp0 in the lens.
Collapse
Affiliation(s)
- Irene Vorontsova
- Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | | | - Belén Torrado
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Thomas F. Schilling
- Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - James E. Hall
- Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Enrico Gratton
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
42
|
Chen Y, Petrova RS, Qiu C, Donaldson PJ. -Intracellular hydrostatic pressure regulation in the bovine lens: a role in the regulation of lens optics? Am J Physiol Regul Integr Comp Physiol 2022; 322:R263-R279. [PMID: 35107027 DOI: 10.1152/ajpregu.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The optical properties of the bovine lens have been shown to be actively maintained by an internal microcirculation system. In the mouse lens, this water transport through gap junction channels generates an intracellular hydrostatic pressure gradient, which is subjected to a dual feedback regulation that is mediated by the reciprocal modulation of the transient receptor potential vanilloid channels, TRPV1 and TRPV4. Here we test whether a similar feedback regulation of pressure exists in the bovine lens, and whether it regulates overall lens optics. Lens pressure was measured using a microelectrode/pico-injector-based pressure measurement system, and lens optics were monitored in organ cultured lenses using a laser ray tracing system. Like the mouse, the bovine lenses exhibited a similar pressure gradient (0 to 340 mmHg). Activation of TRPV1 with capsaicin caused a biphasic increase in surface pressure, while activation of TRPV4 with GSK1016790A caused a biphasic decrease in pressure. These biphasic responses were abolished if lenses were pre-incubated with either the TRPV1 inhibitor A-889425, or the TRPV4 inhibitor HC-067047. While modulation of lens pressure by TRPV1 and TRPV4 had minimal effects on lens power and overall vision quality, the changes in lens pressure did induce opposing changes to lens geometry and GRIN that effectively kept lens power constant. Hence, our results suggest that the TRPV1/4 mediated feedback control of lens hydrostatic pressure operates to ensure that any fluctuations in lens water transport, and consequently water content, do not result in changes in lens power and therefore overall vision quality.
Collapse
Affiliation(s)
- Yadi Chen
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Chen Qiu
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
43
|
Ebihara L, Acharya P, Tong JJ. Mechanical Stress Modulates Calcium-Activated-Chloride Currents in Differentiating Lens Cells. Front Physiol 2022; 13:814651. [PMID: 35173630 PMCID: PMC8842795 DOI: 10.3389/fphys.2022.814651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
During accommodation, the lens changes focus by altering its shape following contraction and relaxation of the ciliary muscle. At the cellular level, these changes in shape may be accompanied by fluid flow in and out of individual lens cells. We tested the hypothesis that some of this flow might be directly modulated by pressure-activated channels. In particular, we used the whole cell patch clamp technique to test whether calcium-activated-chloride channels (CaCCs) expressed in differentiating lens cells are activated by mechanical stimulation. Our results show that mechanical stress, produced by focally perfusing the lens cell at a constant rate, caused a significant increase in a chloride current that could be fully reversed by stopping perfusion. The time course of activation and recovery from activation of the flow-induced current occurred rapidly over a time frame similar to that of accommodation. The flow-induced current could be inhibited by the TMEM16A specific CaCC blocker, Ani9, suggesting that the affected current was predominantly due to TMEM16A chloride channels. The mechanism of action of mechanical stress did not appear to involve calcium influx through other mechanosensitive ion channels since removal of calcium from the bath solution failed to block the flow-induced chloride current. In conclusion, our results suggest that CaCCs in the lens can be rapidly and reversibly modulated by mechanical stress, consistent with their participation in regulation of volume in this organ.
Collapse
Affiliation(s)
- Lisa Ebihara
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Lisa Ebihara,
| | - Pooja Acharya
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jun-Jie Tong
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
44
|
Delamere NA, Shahidullah M. Ion Transport Regulation by TRPV4 and TRPV1 in Lens and Ciliary Epithelium. Front Physiol 2022; 12:834916. [PMID: 35173627 PMCID: PMC8841554 DOI: 10.3389/fphys.2021.834916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Aside from a monolayer of epithelium at the anterior surface, the lens is formed by tightly compressed multilayers of fiber cells, most of which are highly differentiated and have a limited capacity for ion transport. Only the anterior monolayer of epithelial cells has high Na, K-ATPase activity. Because the cells are extensively coupled, the lens resembles a syncytium and sodium-potassium homeostasis of the entire structure is largely dependent on ion transport by the epithelium. Here we describe recent studies that suggest TRPV4 and TRPV1 ion channels activate signaling pathways that play an important role in matching epithelial ion transport activity with needs of the lens cell mass. A TRPV4 feedback loop senses swelling in the fiber mass and increases Na, K-ATPase activity to compensate. TRPV4 channel activation in the epithelium triggers opening of connexin hemichannels, allowing the release of ATP that stimulates purinergic receptors in the epithelium and results in the activation of Src family tyrosine kinases (SFKs) and SFK-dependent increase of Na, K-ATPase activity. A separate TRPV1 feedback loop senses shrinkage in the fiber mass and increases NKCC1 activity to compensate. TRPV1 activation causes calcium-dependent activation of a signaling cascade in the lens epithelium that involves PI3 kinase, ERK, Akt and WNK. TRPV4 and TRPV1 channels are also evident in the ciliary body where Na, K-ATPase is localized on one side of a bilayer in which two different cell types, non-pigmented and pigmented ciliary epithelium, function in a coordinated manner to secrete aqueous humor. TRPV4 and TRPV1 may have a role in maintenance of cell volume homeostasis as ions and water move through the bilayer.
Collapse
|
45
|
Giannone AA, Li L, Sellitto C, White TW. Physiological Mechanisms Regulating Lens Transport. Front Physiol 2022; 12:818649. [PMID: 35002784 PMCID: PMC8735835 DOI: 10.3389/fphys.2021.818649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
The transparency and refractive properties of the lens are maintained by the cellular physiology provided by an internal microcirculation system that utilizes spatial differences in ion channels, transporters and gap junctions to establish standing electrochemical and hydrostatic pressure gradients that drive the transport of ions, water and nutrients through this avascular tissue. Aging has negative effects on lens transport, degrading ion and water homeostasis, and producing changes in lens water content. This alters the properties of the lens, causing changes in optical quality and accommodative amplitude that initially result in presbyopia in middle age and ultimately manifest as cataract in the elderly. Recent advances have highlighted that the lens hydrostatic pressure gradient responds to tension transmitted to the lens through the Zonules of Zinn through a mechanism utilizing mechanosensitive channels, multiple sodium transporters respond to changes in hydrostatic pressure to restore equilibrium, and that connexin hemichannels and diverse intracellular signaling cascades play a critical role in these responses. The mechanistic insight gained from these studies has advanced our understanding of lens transport and how it responds and adapts to different inputs both from within the lens, and from surrounding ocular structures.
Collapse
Affiliation(s)
- Adrienne A Giannone
- Master of Science Program, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Leping Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Caterina Sellitto
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Thomas W White
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
46
|
Regulation of the Membrane Trafficking of the Mechanosensitive Ion Channels TRPV1 and TRPV4 by Zonular Tension, Osmotic Stress and Activators in the Mouse Lens. Int J Mol Sci 2021; 22:ijms222312658. [PMID: 34884463 PMCID: PMC8657824 DOI: 10.3390/ijms222312658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
Lens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy. Decreases in zonular tension caused the removal of TRPV4 from the membrane of peripheral fiber cells. Hypotonic challenge had no effect on TRPV1, but increased the membrane localization of TRPV4. Hypertonic challenge caused the insertion of TRPV1 and the removal of TRPV4 from the membranes of peripheral fiber cells. Capsaicin caused an increase in TRPV4 membrane localization, but had no effect on TRPV1; while GSK101 decreased the membrane localization of TRPV4 and increased the membrane localization of TRPV1. These reciprocal changes in TRPV1/4 membrane localization are consistent with the channels acting as mechanosensitive transducers of a dual-feedback pathway that regulates lens water transport.
Collapse
|
47
|
Wu W, Lois N, Prescott AR, Brown AP, Van Gerwen V, Tassignon MJ, Richards SA, Saunter CD, Jarrin M, Quinlan RA. The importance of the epithelial fibre cell interface to lens regeneration in an in vivo rat model and in a human bag-in-the-lens (BiL) sample. Exp Eye Res 2021; 213:108808. [PMID: 34762932 DOI: 10.1016/j.exer.2021.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Human lens regeneration and the Bag-in-the-Lens (BIL) surgical treatment for cataract both depend upon lens capsule closure for their success. Our studies suggest that the first three days after surgery are critical to their long-term outcomes. Using a rat model of lens regeneration, we evidenced lens epithelial cell (LEC) proliferation increased some 50 fold in the first day before rapidly declining to rates observed in the germinative zone of the contra-lateral, un-operated lens. Cell multi-layering at the lens equator occurred on days 1 and 2, but then reorganised into two discrete layers by day 3. E- and N-cadherin expression preceded cell polarity being re-established during the first week. Aquaporin 0 (AQP0) was first detected in the elongated cells at the lens equator at day 7. Cells at the capsulotomy site, however, behaved very differently expressing the epithelial mesenchymal transition (EMT) markers fibronectin and alpha-smooth muscle actin (SMA) from day 3 onwards. The physical interaction between the apical surfaces of the anterior and posterior LECs from day 3 after surgery preceded cell elongation. In the human BIL sample fibre cell formation was confirmed by both histological and proteome analyses, but the cellular response is less ordered and variable culminating in Soemmerring's ring (SR) formation and sometimes Elschnig's pearls. This we evidence for lenses from a single patient. No bow region or recognisable epithelial-fibre cell interface (EFI) was evident and consequently the fibre cells were disorganised. We conclude that lens cells require spatial and cellular cues to initiate, sustain and produce an optically functional tissue in addition to capsule integrity and the EFI.
Collapse
Affiliation(s)
- Weiju Wu
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Alan R Prescott
- Dundee Imaging Facility & Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Adrian P Brown
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Veerle Van Gerwen
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart TAS, Australia
| | | | - Miguel Jarrin
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Roy A Quinlan
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK.
| |
Collapse
|
48
|
Lim JC, Grey AC, Vaghefi E, Nye-Wood MG, Donaldson PJ. Hyperbaric oxygen as a model of lens aging in the bovine lens: The effects on lens biochemistry, physiology and optics. Exp Eye Res 2021; 212:108790. [PMID: 34648773 DOI: 10.1016/j.exer.2021.108790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Age related nuclear (ARN) cataracts in humans take years to form and so experimental models have been developed to mimic the process in animals as a means of better understanding the etiology of nuclear cataracts in humans. A major limitation with these animal models is that many of the biochemical and physiological changes are not typical of that seen in human ARN cataract. In this review, we highlight the work of Frank Giblin and colleagues who established an in vivo animal model that replicates many of the changes observed in human ARN cataract. This model involves exposing aged guinea pigs to hyperbaric oxygen (HBO), which by causing the depletion of the antioxidant glutathione (GSH) specifically in the lens nucleus, produces oxidative changes to nuclear proteins, nuclear light scattering and a myopic shift in lens power that mimics the change that often precedes cataract development in humans. However, this model involves multiple HBO treatments per week, with sometimes up to a total of 100 treatments, spanning up to eight months, which is both costly and time consuming. To address these issues, Giblin developed an in vitro model that used rabbit lenses exposed to HBO for several hours which was subsequently shown to replicate many of the changes observed in human ARN cataract. These experiments suggest that HBO treatment of in vitro animal lenses may serve as a more economical and efficient model to study the development of cataract. Inspired by these experiments, we investigated whether exposure of young bovine lenses to HBO for 15 h could also serve as a suitable acute model of ARN cataract. We found that while this model is able to exhibit some of the biochemical and physiological changes associated with ARN cataract, the decrease in lens power we observed was more characteristic of the hyperopic shift in refraction associated with ageing. Future work will investigate whether HBO treatment to age the bovine lens in combination with an oxidative stressor such as UV light will induce refractive changes more closely associated with human ARN cataract. This will be important as developing an animal model that replicates the changes to lens biochemistry, physiology and optics observed in human ARN cataracts is urgently required to facilitate the identification and testing of anti-cataract therapies that are effective in humans.
Collapse
Affiliation(s)
- Julie C Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ehsan Vaghefi
- School of Optometry, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Mitchell G Nye-Wood
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Drechsler J, Wei L, Mohammed T, Levin MR, Alexander JL. Spontaneous absorption of congenital cataract in trisomy 21. J AAPOS 2021; 25:312-314. [PMID: 34582956 PMCID: PMC8665104 DOI: 10.1016/j.jaapos.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 10/20/2022]
Abstract
We report a case of spontaneous cataract absorption over a period of 19 weeks in a 5-week-old boy with trisomy 21. Ultrasound biomicroscopy images at 5 and 24 weeks of age showed that 71% of the initial lens thickness was absorbed during this period. At surgery, the lens thickness was 0.92 mm in the right eye and 0.91 mm in the left eye. Uncomplicated cataract extraction was performed. Trypan blue staining revealed an area of possible lens leakage through the anterior lens capsule in the left eye, suggesting a mechanism for cataract absorption.
Collapse
Affiliation(s)
- Jennifer Drechsler
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Libby Wei
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Taariq Mohammed
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Moran R Levin
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Janet L Alexander
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
50
|
Mutation of the EPHA2 Tyrosine-Kinase Domain Dysregulates Cell Pattern Formation and Cytoskeletal Gene Expression in the Lens. Cells 2021; 10:cells10102606. [PMID: 34685586 PMCID: PMC8534143 DOI: 10.3390/cells10102606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variations in ephrin type-A receptor 2 (EPHA2) have been associated with inherited and age-related forms of cataract in humans. Here, we have characterized the eye lens phenotype and transcript profile of germline Epha2 knock-in mutant mice homozygous for either a missense variant associated with age-related cataract in humans (Epha2-Q722) or a novel insertion-deletion mutation (Epha2-indel722) that were both located within the tyrosine-kinase domain of EPHA2. Confocal imaging of ex vivo lenses from Epha2-indel722 mice on a fluorescent reporter background revealed misalignment of epithelial-to-fiber cell meridional-rows at the lens equator and severe disturbance of Y-suture formation at the lens poles, whereas Epha2-Q722 lenses displayed mild disturbance of posterior sutures. Immunofluorescent labeling showed that EPHA2 was localized to radial columns of hexagonal fiber cell membranes in Epha2-Q722 lenses, whereas Epha2-indel722 lenses displayed disorganized radial cell columns and cytoplasmic retention of EPHA2. Immunoprecipitation/blotting studies indicated that EPHA2 formed strong complexes with Src kinase and was mostly serine phosphorylated in the lens. RNA sequencing analysis revealed differential expression of several cytoskeleton-associated genes in Epha2-mutant and Epha2-null lenses including shared downregulation of Lgsn and Clic5. Collectively, our data suggest that mutations within the tyrosine-kinase domain of EPHA2 result in lens cell patterning defects and dysregulated expression of several cytoskeleton-associated proteins.
Collapse
|