1
|
Ma HH, Zheng JY, Qiu YH, Su S, Lu FM, Wu GL, Zhang SJ, Cai YF. Dengzhan Shengmai capsule ameliorates cognitive impairment via inhibiting ER stress in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 338:119016. [PMID: 39505222 DOI: 10.1016/j.jep.2024.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a common type of neurodegenerative disease with the β-amyloid plaques (Aβ) deposition. Previously, Dengzhan Shengmai capsule (DZSM) has been shown to reduce the pathology associated with AD, but the underlying mechanism is unclear. AIM OF STUDY This study investigated the potential mechanisms of DZSM against AD. MATERIALS AND METHODS The six-month-old wild-type male mice and APP/PS1 double transgenic male mice were administered 0.9 % saline or DZSM for 8 weeks by gavage. Open field test, new object recognition test, and Morris Water maze test were used to assess spatial learning and memory. Aβ plaques in brains were visualized using ThT staining. Nissl staining, TUNEL staining, and Western blot analyses were used to detect the neuronal function and apoptosis level. The superoxide dismutase (SOD), glutathione peroxidase assay kit (GSH-Px), and malondialdehyde (MDA) kits were performed to assess oxidative stress levels. Then, immunofluorescence and Western blot analysis were applied to evaluate ER stress pathway protein levels. Finally, HT22 cells were treated by Aβ1-42 with or without DZSM medicated serum. Cell viability was assessed using the CCK-8 assay, and Western blot analysis was applied to evaluate ER stress pathway protein levels. RESULTS Open filed test, new object recognition test and Morris Water maze test showed that DZSM restored cognitive disorders in APP/PS1 mice. Immunohistochemistry and Thioflavin T staining results indicated that DZSM reduced Aβ plaques in the brain. Deeper and denser Nissl bodies were found in APP/PS1 mice after DZSM administration. Besides, APP/PS1 mice treated with DZSM showed a lower level of TUNEL and Bax/Bcl-2 ratio. DZSM improved the acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity while reducing acetylcholinesterase (AChE) and malondialdehyde (MDA) activity. In addition, the levels of ER stress pathway containing Phospho-PKR-like ER kinase (P-PERK), phosphorylate eukaryotic initiation factor 2 (P-eIF2α), activating transcription factor 4 (ATF4), glutamine-rich protein 1 (QRICH1), phosphorylate inositol-requiring protein 1α (P-IRE1α), the spliced form of X-box binding protein 1 (XBP1s), activating transcription factor-6 (ATF6) and C/EBP homologous binding protein (CHOP) were decreased by DZSM. CCK-8 results indicated that DZSM medicated serum played cytoprotective effects on Aβ1-42-induced HT22 cells. Western blot results suggested DZSM possibly inhibited ER stress pathways in Aβ1-42-induced HT22 cells. CONCLUSION The potential protective mechanism of DZSM on cognitive impairment in AD might be related to ER stress pathways.
Collapse
Affiliation(s)
- Hui-Han Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Zhang H, Liu Y, Zhang Z, Jiang M, Tao X, Lee XN, Fang Z, Song X, Silkiss RZ, Fan X, Zhou H. Neuroimaging in thyroid eye disease: A systematic review. Autoimmun Rev 2024; 23:103667. [PMID: 39396626 DOI: 10.1016/j.autrev.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid eye disease (TED) is an organ-specific autoimmune disease secondary largely to hyperthyroid Graves' disease, which profoundly affects patients' visual function, appearance, and physical and mental well-being. Emerging neuroimaging studies have reported alterations in the brains of patients with TED, suggesting that the impact of this autoimmune disease may extend beyond the orbit. This systematic review aims to consolidate the neuroimaging evidence that describes the brain alterations of TED. We analyzed information from thirty-one related studies involving 1349 TED patients and 710 healthy controls, employing multimodal neuroimaging techniques such as structural magnetic resonance imaging (MRI), functional MRI, diffusion MRI, and metabolic MRI. These studies define the brain alterations in regions associated with vision, cognition, and emotion regulation, such as gray matter volume changes, altered functional connectivity and activity, and microstructural modifications, revealing the neurological impact of TED beyond the orbit. Notably, there was convergence across these studies indicating predominant abnormalities within the occipital and parietal lobes. This review underscores the critical role of advanced neuroimaging techniques in unraveling the complex neuropathological mechanism of TED, laying a foundation for future research and potential therapeutic targets.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixiang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ning Lee
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilin Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rona Z Silkiss
- Division of Ophthalmic Plastic Surgery, California Pacific Medical Center, Silkiss Eye Surgery, San Francisco, CA, United States
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Liu K, Yang Y, Wu Z, Sun C, Su Y, Huang N, Wu H, Yi C, Ye J, Xiao L, Niu J. Remyelination-oriented clemastine treatment attenuates neuropathies of optic nerve and retina in glaucoma. Glia 2024; 72:1555-1571. [PMID: 38829008 DOI: 10.1002/glia.24543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.
Collapse
Affiliation(s)
- Kun Liu
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yujian Yang
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Zhonghao Wu
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chunhui Sun
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nanxin Huang
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Haoqian Wu
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jian Ye
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Pang Y, Bang JW, Kasi A, Li J, Parra C, Fieremans E, Wollstein G, Schuman JS, Wang M, Chan KC. Contributions of Brain Microstructures and Metabolism to Visual Field Loss Patterns in Glaucoma Using Archetypal and Information Gain Analyses. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38975942 PMCID: PMC11232899 DOI: 10.1167/iovs.65.8.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose To investigate the contributions of the microstructural and metabolic brain environment to glaucoma and their association with visual field (VF) loss patterns by using advanced diffusion magnetic resonance imaging (dMRI), proton magnetic resonance spectroscopy (MRS), and clinical ophthalmic measures. Methods Sixty-nine glaucoma and healthy subjects underwent dMRI and/or MRS at 3 Tesla. Ophthalmic data were collected from VF perimetry and optical coherence tomography. dMRI parameters of microstructural integrity in the optic radiation and MRS-derived neurochemical levels in the visual cortex were compared among early glaucoma, advanced glaucoma, and healthy controls. Multivariate regression was used to correlate neuroimaging metrics with 16 archetypal VF loss patterns. We also ranked neuroimaging, ophthalmic, and demographic attributes in terms of their information gain to determine their importance to glaucoma. Results In dMRI, decreasing fractional anisotropy, radial kurtosis, and tortuosity and increasing radial diffusivity correlated with greater overall VF loss bilaterally. Regionally, decreasing intra-axonal space and extra-axonal space diffusivities correlated with greater VF loss in the superior-altitudinal area of the right eye and the inferior-altitudinal area of the left eye. In MRS, both early and advanced glaucoma patients had lower gamma-aminobutyric acid (GABA), glutamate, and choline levels than healthy controls. GABA appeared to associate more with superonasal VF loss, and glutamate and choline more with inferior VF loss. Choline ranked third for importance to early glaucoma, whereas radial kurtosis and GABA ranked fourth and fifth for advanced glaucoma. Conclusions Our findings highlight the importance of non-invasive neuroimaging biomarkers and analytical modeling for unveiling glaucomatous neurodegeneration and how they reflect complementary VF loss patterns.
Collapse
Affiliation(s)
- Yueyin Pang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Ji Won Bang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Anisha Kasi
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Jeremy Li
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Carlos Parra
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Els Fieremans
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joel S Schuman
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Drexel University School of Biomedical Engineering, Science and Health Studies, Philadelphia, Pennsylvania, United States
| | - Mengyu Wang
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Neuroscience Institute and Tech4Health Institute, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
8
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Chen D, Miao S, Chen X, Wang Z, Lin P, Zhang N, Yang N. Regulated Necrosis in Glaucoma: Focus on Ferroptosis and Pyroptosis. Mol Neurobiol 2024; 61:2542-2555. [PMID: 37910286 DOI: 10.1007/s12035-023-03732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Glaucoma is one of the most common causes of irreversible blindness worldwide. This neurodegenerative disease is characterized by progressive and irreversible damage to retinal ganglion cells (RGCs) and optic nerves, which can lead to permanent loss of peripheral and central vision. To date, maintaining long-term survival of RGCs using traditional treatments, such as medication and surgery, remains challenging, as these do not promote optic nerve regeneration. Therefore, it is of great clinical and social significance to investigate the mechanisms of optic nerve degeneration in depth and find reliable targets to provide pioneering methods for the prevention and treatment of glaucoma. Regulated necrosis is a form of genetically programmed cell death associated with the maintenance of homeostasis and disease progression in vivo. An increasing body of innovative evidence has recognized that aberrant activation of regulated necrosis pathways is a common feature in neurodegenerative diseases, such as Alzheimer's, Parkinson's, and glaucoma, resulting in unwanted loss of neuronal cells and function. Among them, ferroptosis and pyroptosis are newly discovered forms of regulated cell death actively involved in the pathophysiological processes of RGCs loss and optic nerve injury. This was shown by a series of in vivo and in vitro studies, and these mechanisms have been emerging as a key new area of scientific research in ophthalmic diseases. In this review, we focus on the molecular mechanisms of ferroptosis and pyroptosis and their regulatory roles in the pathogenesis of glaucoma, with the aim of exploring their implications as potential therapeutic targets and providing new perspectives for better clinical decision-making in glaucoma treatment.
Collapse
Affiliation(s)
- Duan Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Sen Miao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
10
|
Xiang X, Xia S, Li S, Zeng Y, Wang L, Zhou Y. Study on the role and mechanism of Tan IIA in Alzheimer's disease based on CREB-BDNF-TrkB pathway. Neurosci Lett 2024; 830:137769. [PMID: 38616003 DOI: 10.1016/j.neulet.2024.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The occurrence and development of Alzheimer's disease (AD) is closely related to neuronal loss, inflammatory response, cholinergic imbalance, and Tau protein hyperphosphorylation. Previous studies have confirmed that Streptozotocin (STZ) can be used to establish a rat model of AD by injecting it into the rat brain via the lateral ventricle. Our previous research showed that Danshentone IIA (Tan IIA) can improve cognitive dysfunction in rats caused by CC chemokine ligand 2, and network pharmacology results show that Tan IIA is very likely to improve AD symptoms through the cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor protein (TrkB) pathway. The results of the water maze experiment showed that after Tan IIA treatment, the escape latency of AD rats was shortened and the number of platform crossings increased; in the new object recognition experiment, the discrimination index of AD rats significantly increased after treatment; Nissl staining and Tunel staining results showed that Tan IIA increased the number of surviving neurons in the hippocampus of cognitively impaired rats and reduced neuronal apoptosis; Bielschowsky silver staining results showed that Tan IIA reduced neurofibrillary tangles (NFTs) in the AD rats; Tan IIA can reduce the inflammatory response and oxidative stress reaction in the hippocampus of AD rats, and at the same time reduce the activity of acetylcholinesterase. Tan IIA can significantly increase the expression of CREB, BDNF, TrkB in the hippocampal tissue of STZ-injured rats (P < 0.05). These data suggest that Tan IIA may upregulate the expression of the CREB-BDNF-TrkB signaling pathway in the hippocampus of brain tissue, produce anti-neuroinflammatory, antioxidant stress, inhibit neuronal apoptosis effects, and improve cholinergic neurotransmitter disorder induced by STZ, reduce the neuronal damage and learning and memory impairment caused by STZ in rats, and improve the cognitive function of rats.
Collapse
Affiliation(s)
- Xiyong Xiang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Siyu Xia
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Shan Li
- College of Nursing, Guangxi Medical University, Nanning 530021, China
| | - Yirong Zeng
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Lixuan Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yan Zhou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
11
|
Zhu H, Qu Y, Du Z, Zhou Q, Shen Y, Jiang Y, Zhou Z, Zhou H. Mining and analysis of adverse event signals of Cariprazine based on the real-world data of FAERS database. J Affect Disord 2024; 347:45-50. [PMID: 37992768 DOI: 10.1016/j.jad.2023.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE This study aims to analyze the adverse events (AEs) of Cariprazine based on the FAERS database, providing evidence for its safety surveillance. METHODS For signal quantification of Cariprazine-related AEs, we used disproportionality analysis including the Ratio of Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-Item Gamma Poisson Shrinker (MGPS) algorithms. RESULTS We selected Cariprazine-related AE reports from the FAERS database from the fourth quarter of 2015 to the first quarter of 2023, and performed a detailed data analysis. Out of a total of 12,278,580 case reports, 3659 were found to be directly related to Cariprazine. We identified 140 Preferred Terms (PT) to describe these AEs, finding that they involved 27 organ systems. Specifically, AEs related to eye disorders such as Cataract cortical, Cataract nuclear, Accommodation disorder, Lenticular opacities, Oculogyric crisis, Dyschromatopsia were not explicitly mentioned in the drug's leaflet, indicating the presence of new ADR signals. CONCLUSION Analysis of the FAERS database identified AEs associated with Cariprazine, notably in eye disorders not previously documented in the drug's official leaflet. These findings emphasize the need for continuous post-market surveillance and awareness among healthcare professionals regarding potential new ADR signals.
Collapse
Affiliation(s)
- Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yucai Qu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Zhiqiang Du
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Qin Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yuan Shen
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Zhenhe Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Hongliang Zhou
- Department of Psychology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Xu W, Song Y, Xiao W, Gong Z. Regulatory Effects and Mechanisms of L-Theanine on Neurotransmitters via Liver-Brain Axis Under a High Protein Diet. Mol Neurobiol 2024; 61:783-798. [PMID: 37659037 DOI: 10.1007/s12035-023-03608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Excessive protein intake causes liver and brain damage and neurotransmitter disorders, thereby inducing cognitive dysfunction. L-theanine can regulate the neurotransmitter content and show great potential in liver and brain protection. However, it remains unclear whether l-theanine effectively regulates neurotransmitter content under high-protein diet. A 40-day feeding experiment was performed in Sprague Dawley rats to investigate the regulatory effects and mechanisms of l-theanine on neurotransmitters via liver-brain axis in high-protein diets. The results showed that a 30% protein diet increased the liver and brain neurotransmitter content while maintaining the normal structure of liver and the hippocampal CA1 of brain and improving the autonomous behavior of rats. In contrast, 40% and 50% protein diets decreased the content of neurotransmitters, affected autonomous behavior, destroyed the hippocampal CA1 of brain structure, increased hepatic inflammatory infiltration, lipid degeneration, and hepatocyte eosinophilic change in liver, increased liver AST, ALT, MDA, CRP, and blood ammonia level, and decreased liver SOD and CAT level. However, l-theanine improved liver and brain neurotransmitter content, autonomous behavior, liver and hippocampal brain structure, and liver biochemical indicators in 40% and 50% protein diets. To explore how LTA can eliminate the adverse effects of a high-protein diet, we analyzed different metabolites and proteomes and using western blotting for validate quantitatively. We found that l-theanine regulates the activity of PF4 and G protein subunit alpha i2, increases the content of brain-derived neurotrophic factor and dopamine under a 20% protein diet. In addition, l-theanine can activate the adenylate cyclase-protein kinase A pathway through the protein alpha/beta-hydrolase domain protein 12 to regulate the content of neurotransmitters under a 40% protein diet, thereby exerting a neuroprotective effect.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Yuxin Song
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China.
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China.
| |
Collapse
|
13
|
Luo L, Zhang L, Huang H, Guan J, Zhang X, Lin Y, Wu R. 3.0 T multi-parametric MRI reveals metabolic and microstructural abnormalities in the posterior visual pathways in patients with thyroid eye disease. Front Neurosci 2024; 17:1306364. [PMID: 38274503 PMCID: PMC10809795 DOI: 10.3389/fnins.2023.1306364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction We aim to explore the microstructural and metabolic changes in visual pathways in patients with thyroid eye disease (TED) using 3T multi-parametric MRI. Methods Thirty-four TED patients (inactive group = 20; active group = 14; acute group = 18; chronic group = 16) and 12 healthy controls (HC) were recruited from November 2020 to July 2021. Proton magnetic resonance spectroscopy (1H-MRS), glutamate chemical exchange saturation transfer (GluCEST) and diffusion kurtosis imaging (DKI) were performed on 3.0T MR scanner. Data analysis and group comparisons were performed after MR data processing. Results As compare to HC group, the levels of total choline (tCh) in optic radiation (OR) in active group ([1.404 ± 0.560] vs. [1.022 ± 0.260]; p < 0.05), together with tCh ([1.415 ± 0.507] vs. [1.022 ± 0.260]; p < 0.05) in OR in acute group were significantly increased. Glutamine (Gln) levels were higher in OR in the chronic group than those in HCs and were positively correlated with the levels of thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), free triiodothyronine (FT3) and FT4 in chronic group. Glutamate (Glu) levels by 1H-MRS did not show significant differences between any two groups. Interestingly, MTRasym (3.0 ppm) was higher in OL in inactive group, active group, acute group and chronic group than those in HCs, and was positively correlated with Glu levels in OL in 1H-MRS. Fractional anisotropy (FA) values from DKI in OR in acute group were significantly lower than those in HCs. Discussion Our initial study demonstrate that GluCEST performs better than 1H-MRS to monitor Glu alterations in visual pathway in TED patients. Changes of brain glutamine levels in TED patients are closely related to their associated hormones alterations, indicating that disease injury status could be reflected through non-invasive metabolites detection by brain 1H-MRS. FA is the most sensitive DKI index to reveal the visual pathway impairment in TED patients. Altogether, our study revealed that 3T multiparametric MR techniques are useful to demonstrate metabolic and microstructural alterations in visual pathways in TED patients. We found that damage to visual pathways occurs in mild TED cases, which not only offers a new approach to the diagnosis of dysthyroid optic neuropathy, but also demonstrates neuropathy in TED is a gradual and continuous spatio-emporal progression.
Collapse
Affiliation(s)
- Lan Luo
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Radiology Department, Huizhou Central People’s Hospital, Huizhou, Guangdong Province, China
| | - Liling Zhang
- Endocrinology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Huaidong Huang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jitian Guan
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaolei Zhang
- Radiology Department, Huizhou Central People’s Hospital, Huizhou, Guangdong Province, China
| | - Yan Lin
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Renhua Wu
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
14
|
Melecchi A, Amato R, Dal Monte M, Rusciano D, Bagnoli P, Cammalleri M. Restored retinal physiology after administration of niacin with citicoline in a mouse model of hypertensive glaucoma. Front Med (Lausanne) 2023; 10:1230941. [PMID: 37731716 PMCID: PMC10508956 DOI: 10.3389/fmed.2023.1230941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Much interest has been addressed to antioxidant dietary supplements that are known to lower the risk of developing glaucoma or delay its progression. Among them, niacin and citicoline protect retinal ganglion cells (RGCs) from degeneration by targeting mitochondria, though at different levels. A well-established mouse model of RGC degeneration induced by experimental intraocular pressure (IOP) elevation was used to investigate whether a novel combination of niacin/citicoline has better efficacy over each single component in preserving RGC health in response to IOP increase. Methods Ocular hypertension was induced by an intracameral injection of methylcellulose that clogs the trabecular meshwork. Electroretinography and immunohistochemistry were used to evaluate RGC function and density. Oxidative, inflammatory and apoptotic markers were evaluated by Western blot analysis. Results The present results support an optimal efficacy of niacin with citicoline at their best dosage in preventing RGC loss. In fact, about 50% of RGCs were spared from death leading to improved electroretinographic responses to flash and pattern stimulation. Upregulated levels of oxidative stress and inflammatory markers were also consistently reduced by almost 50% after niacin with citicoline thus providing a significant strength to the validity of their combination. Conclusion Niacin combined with citicoline is highly effective in restoring RGC physiology but its therapeutic potential needs to be further explored. In fact, the translation of the present compound to humans is limited by several factors including the mouse modeling, the higher doses of the supplements that are necessary to demonstrate their efficacy over a short follow up period and the scarce knowledge of their transport to the bloodstream and to the eventual target tissues in the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Dario Rusciano
- Research Center, Fidia Farmaceutici S.p.A, Catania, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals (Basel) 2023; 16:1172. [PMID: 37631087 PMCID: PMC10458083 DOI: 10.3390/ph16081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Normal tension glaucoma (NTG) is defined as a subtype of primary open-angle glaucoma (POAG) in which the intraocular pressure (IOP) values are constantly within the statistically normal range without treatment and represents approximately the 30-40% of all glaucomatous cases. The pathophysiology of this condition is multifactorial and is still not completely well known. Several theories have been proposed to explain the onset and progression of this disease, which can be divided into IOP-dependent and IOP-independent factors, suggesting different therapeutic strategies. The current literature strongly supports the fundamental role of IOP in NTG. The gold standard treatment for NTG tends to be based on the lowering IOP even if "statistically normal". Numerous studies have shown, however, that the IOP reduction alone is not enough to slow down or stop the disease progression in all cases, suggesting that other IOP-independent risk factors may contribute to the NTG pathogenesis. In addition to IOP-lowering strategies, several different therapeutic approaches for NTG have been proposed, based on vaso-active, antioxidant, anti-inflammatory and/or neuroprotective substances. To date, unfortunately, there are no standardized or proven treatment alternatives for NTG when compared to traditional IOP reduction treatment regimes. The efficacy of the IOP-independent strategies in decreasing the risk or treating NTG still remains inconclusive. The aim of this review is to highlight strategies reported in the current literature to treat NTG. The paper also describes the challenges in finding appropriate and pertinent treatments for this potentially vision-threatening disease. Further comprehension of NTG pathophysiology can help clinicians determine when to use IOP-lowering treatments alone and when to consider additional or alternatively individualized therapies focused on particular risk factors, on a case-by-case basis.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
16
|
Rossetti L, Goni F, Montesano G, Stalmans I, Topouzis F, Romano D, Galantin E, Delgado-Gonzales N, Giammaria S, Coco G, Vandewalle E, Lemmens S, Giannoulis D, Pappas T, Manni G. The effect of citicoline oral solution on quality of life in patients with glaucoma: the results of an international, multicenter, randomized, placebo-controlled cross-over trial. Graefes Arch Clin Exp Ophthalmol 2023; 261:1659-1668. [PMID: 36639525 PMCID: PMC10199108 DOI: 10.1007/s00417-022-05947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE This study aims to evaluate whether the use of citicoline oral solution could improve quality of life in patients with chronic open-angle glaucoma (OAG). DESIGN Randomized, double-masked, placebo-controlled, cross-over study was used. Patients were randomized to one of the two sequences: either citicoline 500 mg/day oral solution-placebo or placebo-citicoline 500 mg/day oral solution. Switch of treatments was done after 3 months; patients were then followed for other 6 months. Follow-up included 3-month, 6-month, and 9-month visits. OUTCOMES The primary outcome was the mean change of "intra-patient" composite score of the Visual Function Questionnaire-25 (VFQ-25). after citicoline oral solution vs placebo at 6-month visit as compared with baseline. METHODS The trial was multicenter, conducted at 5 European Eye Clinics. OAG patients with bilateral visual field damage, a mean deviation (MD) ranging from - 5 to - 13 dB in the better eye, and controlled IOP were included. VFQ-25 and SF-36 questionnaires were administered at baseline and at 3-, 6-, and 9-month visits. A mixed effect model, with a random effect on the intercept, accounted for correlations among serial measurements on each subject. RESULTS The primary pre-specified outcome of the analysis reached statistical significance (p = 0.0413), showing greater improvement after citicoline oral solution. There was an increase in the composite score in both arms compared to baseline, but it was significant only for the placebo-citicoline arm (p = 0.0096, p = 0.0007, and p = 0.0006 for the three time-points compared to baseline). The effect of citicoline was stronger in patients with vision-related quality of life more affected by glaucoma at baseline. CONCLUSIONS This is the first placebo-controlled clinical study evaluating the effect of a medical treatment aiming at improving vision-related quality of life in glaucomatous patients.
Collapse
Affiliation(s)
- Luca Rossetti
- Eye Clinic, ASST Santi Paolo E Carlo, University of Milan, Via Di Rudinì, 8 20142, Milan, Italy.
| | | | - Giovanni Montesano
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | | | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Dario Romano
- Eye Clinic, ASST Santi Paolo E Carlo, University of Milan, Via Di Rudinì, 8 20142, Milan, Italy
| | - Eleonora Galantin
- Eye Clinic, ASST Santi Paolo E Carlo, University of Milan, Via Di Rudinì, 8 20142, Milan, Italy
| | | | | | - Giulia Coco
- Eye Clinic, Policlinico Tor Vergata, Dipartimento Scienze Cliniche e Medicina Traslazionale Rome, Rome, Italy
| | | | | | - Dimitrios Giannoulis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Theofanis Pappas
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Gianluca Manni
- Eye Clinic, Policlinico Tor Vergata, Dipartimento Scienze Cliniche e Medicina Traslazionale Rome, Rome, Italy
| |
Collapse
|
17
|
Pinazo-Durán MD, Zanón-Moreno V, García–Villanueva C, Martucci A, Peris-Martínez C, Vila-Arteaga J, García-Medina JJ, Andrés–Blasco I, Gallego–Martínez A, Nucci C, García–Feijoo J. Biochemical-molecular-genetic biomarkers in the tear film, aqueous humor, and blood of primary open-angle glaucoma patients. Front Med (Lausanne) 2023; 10:1157773. [PMID: 37305138 PMCID: PMC10251746 DOI: 10.3389/fmed.2023.1157773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Glaucoma is a chronic neurodegenerative disease, which is the leading cause of irreversible blindness worldwide. As a response to high intraocular pressure, the clinical and molecular glaucoma biomarkers indicate the biological state of the visual system. Classical and uncovering novel biomarkers of glaucoma development and progression, follow-up, and monitoring the response to treatment are key objectives to improve vision outcomes. While the glaucoma imaging field has successfully validated biomarkers of disease progression, there is still a considerable need for developing new biomarkers of early glaucoma, that is, at the preclinical and initial glaucoma stages. Outstanding clinical trials and animal-model study designs, innovative technology, and analytical approaches in bioinformatics are essential tools to successfully uncover novel glaucoma biomarkers with a high potential for translation into clinical practice. Methods To better understand the clinical and biochemical-molecular-genetic glaucoma pathogenesis, we conducted an analytical, observational, and case-comparative/control study in 358 primary open-angle glaucoma (POAG) patients and 226 comparative-control individuals (CG) to collect tears, aqueous humor, and blood samples to be processed for identifying POAG biomarkers by exploring several biological pathways, such as inflammation, neurotransmitter/neurotrophin alteration, oxidative stress, gene expression, miRNAs fingerprint and its biological targets, and vascular endothelial dysfunction, Statistics were done by using the IBM SPSS 25.0 program. Differences were considered statistically significant when p ≤ 0.05. Results Mean age of the POAG patients was 70.03 ± 9.23 years, and 70.62 ± 7.89 years in the CG. Malondialdehyde (MDA), nitric oxide (NO), interleuquin (IL)-6, endothelin-1 (ET-1), and 5 hydroxyindolacetic acid (5-HIAA), displayed significantly higher levels in the POAG patients vs. the CG (p < 0.001). Total antioxidant capacity (TAC), brain derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), solute carrier family 23-nucleobase transporters-member 2 (SLC23A2) gene, and the glutathione peroxidase 4 (GPX4) gene, showed significantly lower levelsin the POAG patients than in the CG (p < 0.001). The miRNAs that differentially expressed in tear samples of the POAG patients respect to the CG were the hsa miR-26b-5p (involved in cell proliferation and apoptosis), hsa miR-152-3p (regulator of cell proliferation, and extracellular matrix expression), hsa miR-30e-5p (regulator of autophagy and apoptosis), and hsa miR-151a-3p (regulator of myoblast proliferation). Discussion We are incredibly enthusiastic gathering as much information as possible on POAG biomarkers to learn how the above information can be used to better steer the diagnosis and therapy of glaucoma to prevent blindness in the predictable future. In fact, we may suggest that the design and development of blended biomarkers is a more appropriate solution in ophthalmological practice for early diagnosis and to predict therapeutic response in the POAG patients.
Collapse
Affiliation(s)
- Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolia”, Foundation for Research in Health and Biomedicine (FISABIO), Valencia, Spain
- Cellular and Molecular Ophthalmobiology Group, Surgery Department, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Spanish Network of Inflammatory Diseases: REI-RICORS (RD21/0002/0032) of the Institute of Health Carlos III (ISCIII), Spanish Government, Madrid, Spain
| | - Vicente Zanón-Moreno
- Spanish Network of Inflammatory Diseases: REI-RICORS (RD21/0002/0032) of the Institute of Health Carlos III (ISCIII), Spanish Government, Madrid, Spain
- Biosanitary Research Institute, Valencian International University (VIU), Valencia, Spain
| | | | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Peris-Martínez
- Spanish Network of Inflammatory Diseases: REI-RICORS (RD21/0002/0032) of the Institute of Health Carlos III (ISCIII), Spanish Government, Madrid, Spain
- Medical Ophthalmology FISABIO-FOM Center, Valencia, Spain
| | - Jorge Vila-Arteaga
- Department of Ophthalmology, University and Polytechnic Hospital “La Fe”, Valencia, Spain
| | - Jose J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolia”, Foundation for Research in Health and Biomedicine (FISABIO), Valencia, Spain
- Spanish Network of Inflammatory Diseases: REI-RICORS (RD21/0002/0032) of the Institute of Health Carlos III (ISCIII), Spanish Government, Madrid, Spain
- Department of Ophthalmology, The General University Hospital “Morales Meseguer”, Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, Murcia, Spain
| | - Irene Andrés–Blasco
- Ophthalmic Research Unit “Santiago Grisolia”, Foundation for Research in Health and Biomedicine (FISABIO), Valencia, Spain
- Cellular and Molecular Ophthalmobiology Group, Surgery Department, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Spanish Network of Inflammatory Diseases: REI-RICORS (RD21/0002/0032) of the Institute of Health Carlos III (ISCIII), Spanish Government, Madrid, Spain
| | - Alex Gallego–Martínez
- Ophthalmic Research Unit “Santiago Grisolia”, Foundation for Research in Health and Biomedicine (FISABIO), Valencia, Spain
- Cellular and Molecular Ophthalmobiology Group, Surgery Department, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Julian García–Feijoo
- Department of Ophthalmology, The University Clinic Hospital “San Carlos”, Madrid, Spain
| |
Collapse
|
18
|
García-López C, García-López V, Matamoros JA, Fernández-Albarral JA, Salobrar-García E, de Hoz R, López-Cuenca I, Sánchez-Puebla L, Ramírez JM, Ramírez AI, Salazar JJ. The Role of Citicoline and Coenzyme Q10 in Retinal Pathology. Int J Mol Sci 2023; 24:5072. [PMID: 36982157 PMCID: PMC10049438 DOI: 10.3390/ijms24065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Ocular neurodegenerative diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration are common retinal diseases responsible for most of the blindness causes in the working-age and elderly populations in developed countries. Many of the current treatments used in these pathologies fail to stop or slow the progression of the disease. Therefore, other types of treatments with neuroprotective characteristics may be necessary to allow a more satisfactory management of the disease. Citicoline and coenzyme Q10 are molecules that have neuroprotective, antioxidant, and anti-inflammatory properties, and their use could have a beneficial effect in ocular neurodegenerative pathologies. This review provides a compilation, mainly from the last 10 years, of the main studies that have been published on the use of these drugs in these neurodegenerative diseases of the retina, analyzing the usefulness of these drugs in these pathologies.
Collapse
Affiliation(s)
- Claudia García-López
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Verónica García-López
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José A. Matamoros
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
19
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
20
|
You M, Rong R, Zeng Z, Fan C, Li H, Yang Q, Ji D. Integrated analysis of long non-coding RNAs and mRNAs associated with glaucoma in vitro. Front Endocrinol (Lausanne) 2023; 14:1087442. [PMID: 36923213 PMCID: PMC10008935 DOI: 10.3389/fendo.2023.1087442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION In recent years, the biological functions and important roles of long non-coding RNAs (lncRNAs) have been widely reported in many diseases. Although glaucoma is the leading cause of blindness worldwide, the specific mechanisms of lncRNAs in the pathogenesis and progression of glaucoma remain unclear. Our research aims to elucidate the differentially expressed lncRNAs and mRNAs in glaucoma and to provide a basis for further exploration of the specific mechanism of action of lncRNAs in the progression of glaucoma. METHODS We performed RNA sequencing on samples from a pressurized model of R28 cells and performed bioinformatics analyses on the sequencing results. The expression consistency of lncRNAs in clinical samples from patients with glaucoma or cataracts was detected using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS RNA sequencing results showed that lncRNAs in cluster 5 were upregulated with increasing stress after typing all significantly altered lncRNAs using k-means in a cellular stress model. KEGG analysis indicated that they were associated with neurodegenerative diseases. Differentially expressed lncRNAs were verified by RT-qPCR, and the lncRNA expression levels of AC120246.2 and XLOC_006247 were significantly higher in the aqueous humor (AH) of patients with glaucoma than in those with cataracts. For LOC102551819, there was almost no expression in the AH and trabecular meshwork in patients with glaucoma but high expression was observed in the iris. CONCLUSION Our research proposes potential diagnostic or intervention targets for clinical applications as well as a theoretical basis for more in-depth research on the function of lncRNAs in glaucoma.
Collapse
Affiliation(s)
- Mengling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dan Ji,
| |
Collapse
|
21
|
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res 2023; 18:87-93. [PMID: 35799514 PMCID: PMC9241424 DOI: 10.4103/1673-5374.344831] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
Collapse
|
22
|
Martucci A, Mancino R, Cesareo M, Pinazo-Duran MD, Nucci C. Combined use of coenzyme Q10 and citicoline: A new possibility for patients with glaucoma. Front Med (Lausanne) 2022; 9:1020993. [PMID: 36590976 PMCID: PMC9797721 DOI: 10.3389/fmed.2022.1020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Several risk factors have been involved in the pathogenesis of the disease. By now, the main treatable risk factor is elevated intraocular pressure. Nevertheless, some patients, whose intraocular pressure is considered in the target level, still experience a progression of the disease. Glaucoma is a form of multifactorial ocular neurodegeneration with complex etiology, pathogenesis, and pathology. New evidence strongly suggests brain involvement in all aspects of this disease. This hypothesis and the need to prevent glaucomatous progression led to a growing interest in the pharmacological research of new neuroprotective, non-IOP-lowering, agents. The aim of this paper is to report evidence of the usefulness of Coenzyme Q10 and Citicoline, eventually combined, in the prevention of glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Dolores Pinazo-Duran
- Ophthalmic Research Unit “Santiago Grisolia”, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, University of Valencia, Valencia, Spain
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
23
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
24
|
Mavilio A, Sisto D, Dammacco R, Durante G, Alessio G. Retrograde Optic Nerve Degeneration in Pituitary Adenoma: A Study with RE-PERG. Clin Ophthalmol 2022; 16:4135-4144. [DOI: 10.2147/opth.s384525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
|
25
|
Wagner IV, Stewart MW, Dorairaj SK. Updates on the Diagnosis and Management of Glaucoma. Mayo Clin Proc Innov Qual Outcomes 2022; 6:618-635. [PMID: 36405987 PMCID: PMC9673042 DOI: 10.1016/j.mayocpiqo.2022.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glaucoma is the leading cause of blindness throughout the world (after cataracts); therefore, general physicians should be familiar with the diagnosis and management of affected patients. Glaucomas are usually categorized by the anatomy of the anterior chamber angle (open vs narrow/closed), rapidity of onset (acute vs chronic), and major etiology (primary vs secondary). Most glaucomas are primary (ie, without a contributing comorbidity); however, several coexisting ophthalmic conditions may serve as the underlying etiologies of secondary glaucomas. Chronic glaucoma occurs most commonly; thus, regular eye examinations should be performed in at-risk patients to prevent the insidious loss of vision that can develop before diagnosis. Glaucoma damages the optic nerve and retinal nerve fiber layer, leading to peripheral and central visual field defects. Elevated intraocular pressure (IOP), a crucial determinant of disease progression, remains the only modifiable risk factor; thus, all current treatments (medications, lasers, and operations) aim to reduce the IOP. Pharmacotherapy is the usual first-line therapy, but noncompliance, undesirable adverse effects, and cost limit effectiveness. Laser and surgical treatments may lower IOP significantly over long periods and may be more cost effective than pharmacotherapy, but they are plagued by greater procedural risks and frequent treatment failures. Traditional incisional procedures have recently been replaced by several novel, minimally invasive glaucoma surgeries with improved safety profiles and only minimal decreases in efficacy. Minimally invasive glaucoma surgeries have dramatically transformed the surgical management of glaucoma; nevertheless, large, randomized trials are required to assess their long-term efficacy.
Collapse
Key Words
- ACA, anterior chamber angle
- ACG, angle-closure glaucoma
- AIT, ab-interno trabeculotomy
- CAI, carbonic anhydrase inhibitor
- CE, cataract extraction
- GDD, glaucoma drainage device
- IOP, intraocular pressure
- KDB, Kahook Dual Blade
- MIGS, minimally invasive glaucoma surgery
- MMC, mitomycin C
- OAG, open-angle glaucoma
- OCT, optical coherence tomography
- ONH, optic nerve head
- PGA, prostaglandin analog
- PGI, PAUL glaucoma implant
- POAG, primary open-angle glaucoma
- RNFL, retinal nerve fiber layer
- SLT, selective laser trabeculoplasty
- TM, trabecular meshwork
Collapse
Affiliation(s)
- Isabella V. Wagner
- Department of Ophthalmology, Mayo Clinic School of Medicine, Jacksonville, FL
| | - Michael W. Stewart
- Department of Ophthalmology, Mayo Clinic School of Medicine, Jacksonville, FL
| | - Syril K. Dorairaj
- Department of Ophthalmology, Mayo Clinic School of Medicine, Jacksonville, FL
| |
Collapse
|
26
|
Wändell PE, Ljunggren G, Wahlström L, Carlsson AC. Psychiatric diseases and dementia and their association with open-angle glaucoma in the total population of Stockholm. Ann Med 2022; 54:3349-3356. [PMID: 36411732 PMCID: PMC9704081 DOI: 10.1080/07853890.2022.2148735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Association between some somatic diseases and primary open-angle glaucoma (POAG) are well-known. We aimed to study psychiatric diseases and dementia and their association with POAG in the total population of Region Stockholm. METHODS All living individuals above 18 years of age who resided in Stockholm County, Sweden, on 1 January 2017 (N = 1,703,675) were included. Data were obtained from administrative regional data. We identified individuals with specified psychiatric disorders in the years 2010-2019, and further identified those with an incident diagnosis of POAG during 2012-2018. Analyses were performed by age-group and sex. We calculated odds ratios (ORs) with 95% confidence intervals (95% CI), adjusted for age and neighborhood socio-economic status for individuals with POAG, and used individuals without POAG as referents. RESULTS A total of 16,299 cases of POAG were identified, of whom 9204 were women and 7095 men. Adjusted OR (95% CI) for the risk of POAG was 0.653 (0.610-0.698) for women and 0.714 (0.656-0.778) for men with dementia, respectively. The OR for POAG was 0.478 (0.355-0.643) for women with psychosis, and 1.164 (1.105-1.227) for women with depression. A high neighbourhood socio-economic status was associated with a higher risk of POAG. Other associations were non-significant. CONCLUSION The prevalence of newly diagnosed POAG was decreased in men and women with dementia, and in women with psychosis, which could be an underestimation, owing to lack of investigation, which warrants attention. The risk of POAG was increased in women with depression, which could be secondary to the glaucoma diagnosis.KEY MESSAGESThe prevalence of newly diagnosed glaucoma was decreased in men and women with dementia, and in women with psychosis. A lower prevalence of newly diagnosed glaucoma may be due to an underestimation, owing to a lack of investigation.The risk of glaucoma was increased in women with depression, which could be secondary to the glaucoma diagnosis.
Collapse
Affiliation(s)
- Per E Wändell
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Gunnar Ljunggren
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.,Academic Primary Health Care Centre, Region Stockholm Region, Stockholm, Sweden
| | - Lars Wahlström
- Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Axel Carl Carlsson
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.,Academic Primary Health Care Centre, Region Stockholm Region, Stockholm, Sweden
| |
Collapse
|
27
|
Secades JJ, Gareri P. Citicoline: pharmacological and clinical review, 2022 update. Rev Neurol 2022; 75:S1-S89. [PMID: 36544369 PMCID: PMC10548480 DOI: 10.33588/rn.75s05.2022311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 12/24/2022]
Abstract
This review is based on the previous one published in 2016 (Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol 2016; 63 (Supl 3): S1-S73), incorporating 176 new references, having all the information available in the same document to facilitate the access to the information in one document. This review is focused on the main indications of the drug, as acute stroke and its sequelae, including the cognitive impairment, and traumatic brain injury and its sequelae. There are retrieved the most important experimental and clinical data in both indications.
Collapse
Affiliation(s)
- Julio J. Secades
- Departamento Médico. Grupo Ferrer, S.A. Barcelona, EspañaDepartamento MédicoDepartamento MédicoBarcelonaEspaña
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido. ASP Catanzaro. Catanzaro, ItaliaCenter for Cognitive Disorders and Dementia - Catanzaro LidoCenter for Cognitive Disorders and Dementia - Catanzaro LidoCatanzaroItalia
| |
Collapse
|
28
|
Lv J, Gao R, Wang Y, Huang C, Wu R. Protective effect of leukemia inhibitory factor on the retinal injury induced by acute ocular hypertension in rats. Exp Ther Med 2022; 25:19. [PMID: 36561619 PMCID: PMC9748713 DOI: 10.3892/etm.2022.11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness worldwide. As such, neuroprotective therapy is essential for the treatment of this disease. Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family and the LIF signaling pathway is considered to be one of the major endogenous factors mediating neuroprotection in the retina. Therefore, the present study aimed to investigate the possible effects of LIF in acute ocular hypertension (AOH). The intraocular pressure in rat eyes was raised to 110 mmHg for 1 h by infusing the anterior chamber with normal saline to establish the AOH model. In the treatment group, LIF was then injected into the vitreous cavity after AOH was ceased. The retinal tissues were obtained after the termination of AOH, and H&E staining was conducted to assess the morphological damage. The number of retinal ganglion cells (RGCs) was counted using the Fluoro-Gold retrograde staining method. TUNEL staining was used to determine the extent of apoptosis among the retinal cells. In addition, the protein expression levels of cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), STAT3 and components of the AKT/mTOR/70-kDa ribosomal protein S6 kinase (p70S6K) signaling pathway were examined by western blotting. The results showed that AOH induced tissue swelling and structural damage in the retina, which were reversed by LIF injection. In the LIF treatment group, RGC loss was significantly inhibited and the quantity of TUNEL-stained cells was also significantly reduced, whereas the expression of cleaved caspase-3 and PARP was decreased. Furthermore, increased phosphorylation of STAT3, AKT, mTOR and p70S6K was observed after LIF treatment. By contrast, pretreatment with the STAT3 inhibitor C188-9 or the PI3K/AKT/mTOR inhibitor LY3023414 reversed the LIF-induced inhibition of RGC loss. These results suggested that exogenous LIF treatment inhibited the retinal damage induced by AOH, which was associated with the activation of STAT3 and mTOR/p70S6K signaling. Therefore, LIF may serve a role in neuroprotection for glaucoma treatment.
Collapse
Affiliation(s)
- Jiexuan Lv
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Ruxin Gao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Yao Wang
- Shaanxi Provincial Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Shaanxi Clinical Study Center for Ocular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Medical School, Northwest University, Xi'an, Shaanxi 710002, P.R. China
| | - Changquan Huang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China
| | - Renyi Wu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China,Department of Glaucoma, Shanghai Peace Eye Hospital, Shanghai 200437, P.R. China,Correspondence to: Professor Renyi Wu, Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, 336 Xiahe Road, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
29
|
Vernazza S, Passalacqua M, Tirendi S, Marengo B, Domenicotti C, Sbardella D, Oddone F, Bassi AM. Citicoline Eye Drops Protect Trabecular Meshwork Cells from Oxidative Stress Injury in a 3D In Vitro Glaucoma Model. Int J Mol Sci 2022; 23:11375. [PMID: 36232676 PMCID: PMC9570302 DOI: 10.3390/ijms231911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023] Open
Abstract
Intraocular pressure (IOP) is considered an important modifiable risk factor for glaucoma, which is known as the second leading cause of blindness worldwide. However, lowering the IOP is not always sufficient to preserve vision due to other non-IOP-dependent mechanisms being involved. To improve outcomes, adjunctive therapies with IOP-independent targets are required. To date, no studies have shown the effect of citicoline on the trabecular meshwork (TM), even though it is known to possess neuroprotective/enhancement properties and multifactorial mechanisms of action. Given that reactive oxygen species seem to be involved in glaucomatous cascade, in this present study, an advanced millifluidic in vitro model was used to evaluate if citicoline could exert a valid TM protection against oxidative stress. To this end, the cellular behavior, in terms of viability, apoptosis, mitochondrial state, senescence and pro-inflammatory cytokines, on 3D human TM cells, treated either with H2O2 alone or cotreated with citicoline, was analyzed. Our preliminary in vitro results suggest a counteracting effect of citicoline eye drops against oxidative stress on TM cells, though further studies are necessary to explore citicoline's potential as a TM-target therapy.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | | | | | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
30
|
Das A, Imanishi Y. Drug Discovery Strategies for Inherited Retinal Degenerations. BIOLOGY 2022; 11:1338. [PMID: 36138817 PMCID: PMC9495580 DOI: 10.3390/biology11091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Mastropasqua L, Agnifili L, Ferrante C, Sacchi M, Figus M, Rossi GCM, Brescia L, Aloia R, Orlando G. Citicoline/Coenzyme Q10/Vitamin B3 Fixed Combination Exerts Synergistic Protective Effects on Neuronal Cells Exposed to Oxidative Stress. Nutrients 2022; 14:nu14142963. [PMID: 35889920 PMCID: PMC9316190 DOI: 10.3390/nu14142963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The present study aimed to investigate the rationale and efficacy of using a citicoline, coenzyme Q10 (CAVAQ10) and vitamin B3 fixed combination in combating inflammation and oxidation in neuronal cells exposed to oxidative stress. Methods: HypoE22 cells and isolated hypothalamic specimens were selected as in vitro models to conduct the experiments. The efficacy of citicoline, CAVAQ10, and vitamin B3, with their fixed combination, were assayed after the exposure of hypothalamic cells to hydrogen peroxide (concentration range 1 nM–10 µM), in order to evaluate the biocompatibility of treatments. The activity of neuroprotective and pro-inflammatory factors, namely, brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα), involved in the neuronal cell damage in neurodegenerative diseases, were assayed in isolated hypothalamus. Results: Neither citicoline, CAVAQ10, nor vitamin B3 significantly altered hypothalamic cell viability, thus suggesting the biocompatibility of single ingredients and fixed combination in the concentration range considered for the study. In the same condition, citicoline and CAVAQ10 were also effective in reducing the gene expression of monoaminoxidase-B, involved in dopamine degradation. However, only citicoline demonstrated an ability to reduce dopamine levels. Conversely, all compounds were effective in reducing the gene expression of IL-6, and TNFα, and in inducing the gene expression of BDNF, with the co-administration of citicoline/CAVAQ10/vitamin B3 being generally more effective than single ingredients. Conclusions: The present findings support the beneficial and synergistic effects of citicoline, CAVAQ10, and vitamin B3 in fixed combination in reducing inflammation and oxidation, and in stimulating neurotrophin production in neuronal cells.
Collapse
Affiliation(s)
- Leonardo Mastropasqua
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
- Correspondence: (L.A.); (L.B.); Tel.: +39-0871-358489 (L.A. & L.B.); Fax: +39-0871-358794 (L.A. & L.B.)
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University, 66013 Chieti, Italy; (C.F.); (G.O.)
| | - Matteo Sacchi
- University Eye Clinic, San Giuseppe Hospital, IRCCS Multimedica, 20900 Milan, Italy;
| | - Michele Figus
- Ophthalmology Unit, Department of Surgery, Medicine, Molecular and Emergency, University of Pisa, 56124 Pisa, Italy;
| | | | - Lorenza Brescia
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
- Correspondence: (L.A.); (L.B.); Tel.: +39-0871-358489 (L.A. & L.B.); Fax: +39-0871-358794 (L.A. & L.B.)
| | - Raffaella Aloia
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
| | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University, 66013 Chieti, Italy; (C.F.); (G.O.)
| |
Collapse
|
32
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Bailey RL, Dog TL, Smith-Ryan AE, Das SK, Baker FC, Madak-Erdogan Z, Hammond BR, Sesso HD, Eapen A, Mitmesser SH, Wong A, Nguyen H. Sex Differences Across the Life Course: A Focus On Unique Nutritional and Health Considerations among Women. J Nutr 2022; 152:1597-1610. [PMID: 35294009 PMCID: PMC9258555 DOI: 10.1093/jn/nxac059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
In the United States, women, while having a longer life expectancy than men, experience a differential risk for chronic diseases and have unique nutritional needs based on physiological and hormonal changes across the life span. However, much of what is known about health is based on research conducted in men. Additional complexity in assessing nutritional needs within gender include the variations in genetics, body compositions, hormonal milieus, underlying chronic diseases, and medication usage, with this list expanding as we consider these variables across the life course. It is clear women experience nutrient shortfalls during key periods of their lives, which may differentially impact their health. Consequently, as we move into the era of precision nutrition, understanding these sex- and gender-based differences may help optimize recommendations and interventions chosen to support health and weight management. Recently, a scientific conference was convened with content experts to explore these topics from a life-course perspective at biological, physiological, and behavioral levels. This publication summarizes the presentations and discussions from the workshop and provides an overview of important nutrition and related lifestyle considerations across the life course. The landscape of addressing female-specific nutritional needs continues to grow; now more than ever, it is essential to increase our understanding of the physiological differences between men and women, and determine how these physiological considerations may aid in optimizing nutritional strategies to support certain personal goals related to health, quality of life, sleep, and exercise performance among women.
Collapse
Affiliation(s)
- Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Sai Krupa Das
- Jean-Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Billy R Hammond
- Behavioral and Brain Sciences Program, Department of Psychology, University of Georgia, Athens, GA, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Eapen
- R&D Scientific & Regulatory Affairs–North America, Cargill, Wayzata, MN, USA
| | | | - Andrea Wong
- Scientific & Regulatory Affairs, Council for Responsible Nutrition, Washington, DC, USA
| | - Haiuyen Nguyen
- Scientific & Regulatory Affairs, Council for Responsible Nutrition, Washington, DC, USA
| |
Collapse
|
34
|
Rossi GCM, Rolle T, De Silvestri A, Sisto D, Mavilio A, Mirabile AV, Paviglianiti A, Strano B, Picasso E, Pasinetti GM, Milano G, Ruberto G. Multicenter, Prospective, Randomized, Single Blind, Cross-Over Study on the Effect of a Fixed Combination of Citicoline 500 mg Plus Homotaurine 50 mg on Pattern Electroretinogram (PERG) in Patients With Open Angle Glaucoma on Well Controlled Intraocular Pressure. Front Med (Lausanne) 2022; 9:882335. [PMID: 35572982 PMCID: PMC9106378 DOI: 10.3389/fmed.2022.882335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To evaluate the potential beneficial and synergistic effects of oral intake of a fixed combination of citicoline 500 mg plus homotaurine 50 mg (CIT/HOMO) on retinal ganglion cell (RGC) function in subjects with glaucoma using pattern electroretinogram (PERG) and to investigate the effects on visual field and quality of life. Methods Consecutive patients with primary open-angle glaucoma with controlled IOP (<18 mmHg) receiving beta-blockers and prostaglandin analogs alone or as combination therapy (fixed or un-fixed); with stable disease (progression no more than −1 dB/year at the visual field MD); and an early to moderate visual field defect (MD < −12 dB) were randomized to: arm A. topical therapy + CIT/HOMO for 4 months, 2 months of wash out, 4 months of topical therapy alone; arm B. topical therapy alone for 4 months, topical therapy + CIT/HOMO for 4 months, 2 months of wash out. All patients underwent 4 visits: complete ocular examination, visual field, PERG and quality of life assessment (NEI-VFQ25) were performed at each visit. Results Fifty-seven patients completed the study: 26 in group A and 31 in group B. At the end of the intake period, PERG's P50 and N95 waves recorded a greater amplitude. The increase was statistically significant in the inferior and superior P50 waves amplitude: 0.47 μV (95%CI, 0.02–0.93; p = 0.04) and 0.65 μV (95% CI, 0.16–1.13; p = 0.009), respectively, and in the inferior N95 wave amplitude 0.63 μV (95% CI, 0.22–1.04; p = 0.002). A significantly shorter peak time of 3.3 μV (95% CI, −6.01– −0.54; p = 0.01) was observed for the superior P50 wave only. Conclusions Daily oral intake of the fixed combination CIT/HOMO for 4 months improved the function of inner retinal cells recorded by PERG in the inferior and in the superior quadrants, independently from IOP reduction. This interesting association could represent a valid option for practicing neuromodulation in patients with glaucoma to prevent disease progression.
Collapse
Affiliation(s)
- Gemma Caterina Maria Rossi
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- *Correspondence: Gemma Caterina Maria Rossi ; ; orcid.org/0000-0003-3519-2420
| | - Teresa Rolle
- Department of Surgical Sciences, School of Medicine, University of Turin, Turin, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometric Unit, Scientific Direction, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Dario Sisto
- Department of Neuroscience, Eye Clinic, Aldo Moro University of Bari, Bari, Italy
| | | | - Alessandra Venera Mirabile
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessia Paviglianiti
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Beatrice Strano
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Erica Picasso
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | | | - Giovanni Milano
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulio Ruberto
- Department of Surgical Sciences, University Eye Clinic, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
35
|
Ma HH, Wan C, Zhang LD, Zhang RR, Peng D, Qiao LJ, Zhang SJ, Cai YF, Huang HQ. Sodium tanshinone IIA sulfonate improves cognitive impairment via regulating Aβ transportation in AD transgenic mouse model. Metab Brain Dis 2022; 37:989-1001. [PMID: 35080687 DOI: 10.1007/s11011-022-00911-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a most common neurodegenerative disease. Sodium Tanshinone IIA Sulfonate (STS) has been reported to ameliorate AD pathology. However, the underlying mechanism is still unclear. In this study, AD transgenic mouse model (APP/PS1) was used to explore the potential mechanism of STS against AD. Morris water maze and Y-maze tests showed that administration of STS improved learning and memory abilities of APP/PS1 mice. STS reduced the levels of reactive oxygen species and malondialdehyde, while improved the activity of superoxide dismutase in both hippocampus and cortex in APP/PS1 mice. STS inhibited the activity of acetylcholinesterase, while improved the activity of choline acetyltransferase in APP/PS1 mice. In addition, STS elevated the protein expressions of neurotrophic factors and synapse-related proteins in both the hippocampus and cortex in APP/PS1 mice. At last, STS improved the protein expressions of glucose transporter 1 (GLUT1) and low-density lipoprotein receptor-related protein 1 (LRP1). These results indicated that the potential mechanism of STS on AD might be related to Aβ transportation function via GLUT1/LRP1 pathway. HIGHLIGHTS: STS improves cognitive impairment of APP/PS1 mice. STS ameliorates the oxidative stress damage and improves the cholinergic system. STS protects against neuronal dysfunction and enhances the synaptic plasticity. STS mediates the Aβ transportation of BMECs.
Collapse
Affiliation(s)
- Hui-Han Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu-Di Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong-Rong Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Peng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Hong-Qiang Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
36
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
37
|
Du X, Zhang Q, Jiang Y, Li H, Zhu X, Zhang Y, Liu C, Niu Y, Ji J, Jiang C, Cai J, Chen R, Kan H. Dynamic molecular choreography induced by traffic exposure: A randomized, crossover trial using multi-omics profiling. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127359. [PMID: 34601410 DOI: 10.1016/j.jhazmat.2021.127359] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The biological mechanism of adverse health outcomes related to exposure to traffic-related air pollution (TRAP) needs elucidation. We conducted a randomized, crossover trial among healthy young students in Shanghai, China. Participants wore earplugs and were randomly assigned to a 4-hour walking treatment either along a traffic-polluted road or through a traffic-free park. We conducted untargeted analyses of plasma exosome transcriptomics, serum mass spectrometry-based proteomics, and serum metabolomics to evaluate changes in genome-wide transcription, protein, and metabolite profiles in 35 randomly selected participants. Mean personal exposure levels of ultrafine particles, black carbon, nitrogen dioxide, and carbon monoxide in the road were 2-3 times higher than that in the park. We observed 3449 exosome mRNAs, 58 serum proteins, and 128 serum metabolites that were significantly associated with TRAP. The multi-omics analysis showed dozens of regulatory pathways altered in response to TRAP, such as inflammation, oxidative stress, coagulation, endothelin-1 signaling, and renin-angiotensin signaling. We found that several novel pathways activated in response to TRAP exposure: growth hormone signaling, adrenomedullin signaling, and arachidonic acid metabolism. Our study served as a demonstration and proof of concept on the evidence that associated TRAP exposure with global molecular changes based on the multi-omics level.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - John Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
38
|
Kobayashi T, Uchino H, Elmér E, Ogihara Y, Fujita H, Sekine S, Ishida Y, Saiki I, Shibata S, Kawachi A. Disease Outcome and Brain Metabolomics of Cyclophilin-D Knockout Mice in Sepsis. Int J Mol Sci 2022; 23:961. [PMID: 35055146 PMCID: PMC8779771 DOI: 10.3390/ijms23020961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction resulting from a systemic inflammatory response to infection, but the mechanism remains unclear. The mitochondrial permeability transition pore (MPTP) could play a central role in the neuronal dysfunction, induction of apoptosis, and cell death in SAE. The mitochondrial isomerase cyclophilin D (CypD) is known to control the sensitivity of MPTP induction. We, therefore, established a cecal ligation and puncture (CLP) model, which is the gold standard in sepsis research, using CypD knockout (CypD KO) mice, and analyzed the disease phenotype and the possible molecular mechanism of SAE through metabolomic analyses of brain tissue. A comparison of adult, male wild-type, and CypD KO mice demonstrated statistically significant differences in body temperature, mortality, and histological changes. In the metabolomic analysis, the main finding was the maintenance of reduced glutathione (GSH) levels and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the KO animals following CLP. In conclusion, we demonstrate that CypD is implicated in the pathogenesis of SAE, possibly related to the inhibition of MPTP induction and, as a consequence, the decreased production of ROS and other free radicals, thereby protecting mitochondrial and cellular function.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Yukihiko Ogihara
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan;
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Yusuke Ishida
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Shoichiro Shibata
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| | - Aya Kawachi
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.U.); (Y.O.); (S.S.); (Y.I.); (I.S.); (S.S.); (A.K.)
| |
Collapse
|
39
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
40
|
Sims JR, Chen AM, Sun Z, Deng W, Colwell NA, Colbert MK, Zhu J, Sainulabdeen A, Faiq MA, Bang JW, Chan KC. Role of Structural, Metabolic, and Functional MRI in Monitoring Visual System Impairment and Recovery. J Magn Reson Imaging 2021; 54:1706-1729. [PMID: 33009710 PMCID: PMC8099039 DOI: 10.1002/jmri.27367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The visual system, consisting of the eyes and the visual pathways of the brain, receives and interprets light from the environment so that we can perceive the world around us. A wide variety of disorders can affect human vision, ranging from ocular to neurologic to systemic in nature. While other noninvasive imaging techniques such as optical coherence tomography and ultrasound can image particular sections of the visual system, magnetic resonance imaging (MRI) offers high resolution without depth limitations. MRI also gives superior soft-tissue contrast throughout the entire pathway compared to computed tomography. By leveraging different imaging sequences, MRI is uniquely capable of unveiling the intricate processes of ocular anatomy, tissue physiology, and neurological function in the human visual system from the microscopic to macroscopic levels. In this review we discuss how structural, metabolic, and functional MRI can be used in the clinical assessment of normal and pathologic states in the anatomic structures of the visual system, including the eyes, optic nerves, optic chiasm, optic tracts, visual brain nuclei, optic radiations, and visual cortical areas. We detail a selection of recent clinical applications of MRI at each position along the visual pathways, including the evaluation of pathology, plasticity, and the potential for restoration, as well as its limitations and key areas of ongoing exploration. Our discussion of the current and future developments in MR ocular and neuroimaging highlights its potential impact on our ability to understand visual function in new detail and to improve our protection and treatment of anatomic structures that are integral to this fundamental sensory system. LEVEL OF EVIDENCE 3: TECHNICAL EFFICACY STAGE 3: .
Collapse
Affiliation(s)
- Jeffrey R. Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Anna M. Chen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Zhe Sun
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Nicole A. Colwell
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Max K. Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Jingyuan Zhu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anoop Sainulabdeen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, New York, USA
| |
Collapse
|
41
|
Wu X, Dou YN, Fei Z, Fei F. Parkin Prevents Glutamate Excitotoxicity Through Inhibiting NLRP3 Inflammasome in Retinal Ganglion Cells. Neuroscience 2021; 478:1-10. [PMID: 34600073 DOI: 10.1016/j.neuroscience.2021.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
Glutamate excitotoxicity is one of the important pathophysiological culprits in retinal ganglion cells (RGCs) damage after acute optic nerve injury such as traumatic optic neuropathies and glaucoma. It is necessary to elucidate the mechanism of glutamate injury to RGCs in order to find the relevant neuroprotector. In this study, it was observed that the expression of Parkin increased and peaked at 24 h after glutamate injury to RGCs. Moreover, upregulating Parkin attenuated glutamate induced apoptosis, mitochondrial dysfunction and oxidative stress. And, it was found that Parkin could exert neuroprotective effects on RGCs by inhibiting nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) inflammasome. Moreover, the genetic and pharmacological downregulation of NLRP3 improved survival of RGCs against glutamate excitotoxicity. In the end, knockdown of Parkin exacerbated glutamate induced RGCs damage via triggering NLRP3 inflammasome activation. Taken together, these results shed light on the promising molecular targets for the prevention and treatment of acute optic nerve injury.
Collapse
Affiliation(s)
- Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China.
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China.
| |
Collapse
|
42
|
Chan RW, Won Bang J, Trivedi V, Murphy MC, Liu P, Wollstein G, Schuman JS, Chan KC. Relationships between cerebrovascular reactivity, visual-evoked functional activity, and resting-state functional connectivity in the visual cortex and basal forebrain in glaucoma. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4037-4040. [PMID: 34892116 PMCID: PMC9218998 DOI: 10.1109/embc46164.2021.9630904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glaucoma is primarily considered an eye disease with widespread involvements of the brain. Yet, it remains unclear how cerebrovasculature is regulated in glaucoma and how different brain regions coordinate functionally across disease severity. To address these questions, we applied a novel whole-brain relative cerebrovascular reactivity (rCVR) mapping technique using resting-state functional magnetic resonance imaging (fMRI) without gas challenges to 38 glaucoma patients and 21 healthy subjects. The relationships between rCVR, visual-evoked fMRI response, and resting-state functional connectivity in glaucoma were then established. In the visual cortex, rCVR has a decreasing trend with glaucoma severity (p<0.05), and is coupled with visual-evoked response and functional connectivity in both hemispheres (p<0.001). Interestingly, rCVR in the basal forebrain (BF) has an increasing trend with glaucoma severity (p<0.05). The functional connectivity between right diagonal band of Broca (a sub-region of BF) and lateral visual cortex decreases with glaucoma (p<0.05), while such connectivity is inversely coupled with rCVR in the BF (p<0.05), but not the visual cortex. Overall, we demonstrate opposite trends of rCVR changes in the visual cortex and BF in glaucoma patients, suggestive of compensatory actions in vascular reserve between the two brain regions. The neurovascular coupling within the visual cortex appears deteriorated in glaucoma, whereas the association between BF-visual cortex functional connectivity and rCVR of BF indicates the functional and vascular involvements in glaucoma beyond the primary visual pathway.
Collapse
|
43
|
Abstract
Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.
Collapse
Affiliation(s)
- Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology; Department of Radiology; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
44
|
Storgaard L, Tran TL, Freiberg JC, Hauser AS, Kolko M. Glaucoma Clinical Research: Trends in Treatment Strategies and Drug Development. Front Med (Lausanne) 2021; 8:733080. [PMID: 34589504 PMCID: PMC8473801 DOI: 10.3389/fmed.2021.733080] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose: To investigate the trends and progresses in glaucoma research by searching two major clinical trial registries; clinicaltrials.gov, and Australianclinicaltrials.gov.au. Methods: All clinical trials with glaucoma covered by Clinicaltrials.gov, and Australianclinicaltrials.gov.au starting the study before 1 January 2021 were included. Trials evaluating glaucoma treatment were separated from non-treatment trials and divided into three major categories: "laser treatment," "surgical treatment," and "medical treatment." In the category of "medical treatment," new compounds and their individual targets were identified and subcategorized according to treatment strategy; intraocular pressure (IOP)-lowering, neuroprotective or vascular. The phase transition success rates were calculated. Results: One-thousand five hundred and thirty-seven trials were identified. Sixty-three percent (n = 971) evaluated glaucoma treatment, of which medical treatment accounted for the largest proportion (53%). The majority of medical trials evaluated IOP-lowering compounds, while trials with neuroprotective or vascular compounds accounted for only 5 and 3%, respectively. Eighty-eight new compounds were identified. Phase I, II, and III transition success rates were 63, 26, and 47%, respectively. Conclusion: The number of clinical trials in glaucoma research has increased significantly over the last 30 years. Among the most recently evaluated compounds, all three main treatment strategies were represented, but clinical trials in neuroprotection and vascular modalities are still sparse. In addition to traditional medicines, dietary supplements and growth factors are assessed for a potential anti-glaucomatous effect. Phase II and III success rates were below previously reported success rates for all diseases and ophthalmology in general. A stricter phenotyping of patients can improve the success rates in glaucoma and ophthalmological research and gain a better understanding of responders and non-responders.
Collapse
Affiliation(s)
- Line Storgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thuy Linh Tran
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | | | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
45
|
Gowtham L, Halder N, Angmo D, Singh SB, Jayasundar R, Dada T, Velpandian T. Elevated histamine levels in aqueous humor of patients with glaucoma. Mol Vis 2021; 27:564-573. [PMID: 34531647 PMCID: PMC8421060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Neurotransmitters (NTs) are the key mediators of essential ocular functions, such as processing the visual functions of the retina, maintaining homeostasis of aqueous humor, and regulating ocular blood flow. This study aims to determine variations in the levels of L-glutamate and γ-aminobutyric acid (GABA), histaminergic, adrenergic, cholinergic, and serotonergic NTs in patients with primary glaucoma versus patients with cataract. METHODS This case-control study involved three age-matched groups of patients with primary open angle glaucoma (POAG, n = 14), primary angle closure glaucoma (PACG, n = 21), and cataract (control, n = 19). Patients' aqueous humor and plasma were collected, snap frozen at -80 °C, and subjected to ultrasensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for quantification of NTs. RESULTS Baseline intraocular pressure and the cup-to-disc ratio were found to be statistically significantly elevated in the POAG and PACG groups compared to the cataract control group. In aqueous humor, histamine was found to be statistically significantly elevated (5-fold, p<0.0001), whereas 1-methyl histamine was statistically significantly decreased (p<0.05) in POAG compared to the control group. A statistically significant increase in L-glutamate and GABA was observed among both patient groups with glaucoma compared to the cataract control group. Adrenaline was found to be elevated only in the PACG group (2.7-fold, p<0.05). No statistically significant difference was observed among the plasma NT levels between the groups. CONCLUSIONS This study demonstrated the prominent role of the histaminergic system apart from autonomic mechanisms in the progression of glaucoma. Elevated L-glutamate and GABA could be due to retinal ganglionic cell death. Further studies are required to evaluate the effects of histamine on Müller cell dysfunction.
Collapse
Affiliation(s)
- Lakshminarayanan Gowtham
- Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Nabanita Halder
- Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Dewang Angmo
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rama Jayasundar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Kattar A, Concheiro A, Alvarez-Lorenzo C. Diabetic eye: associated diseases, drugs in clinic, and role of self-assembled carriers in topical treatment. Expert Opin Drug Deliv 2021; 18:1589-1607. [PMID: 34253138 DOI: 10.1080/17425247.2021.1953466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Diabetes is a pandemic disease that causes relevant ocular pathologies. Diabetic retinopathy, macular edema, cataracts, glaucoma, or keratopathy strongly impact the quality of life of the patients. In addition to glycemic control, intense research is devoted to finding more efficient ocular drugs and improved delivery systems that can overcome eye barriers. Areas covered: The aim of this review is to revisit first the role of diabetes in the development of chronic eye diseases. Then, commercially available drugs and new candidates in clinical trials are tackled together with the pros and cons of their administration routes. Subsequent sections deal with self-assembled drug carriers suitable for eye instillation combining patient-friendly administration with high ocular bioavailability. Performance of topically administered polymeric micelles, liposomes, and niosomes for the management of diabetic eye diseases is analyzed in the light of ex vivo and in vivo results and outcomes of clinical trials. Expert opinion: Self-assembled carriers are being shown useful for efficient delivery of not only a variety of small drugs but also macromolecules (e.g. antibodies) and genes. Successful design of drug carriers may offer alternatives to intraocular injections and improve the treatment of both anterior and posterior segments diabetic eye diseases.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
47
|
Zhu J, Sainulabdeen A, Akers K, Adi V, Sims JR, Yarsky E, Yan Y, Yu Y, Ishikawa H, Leung CK, Wollstein G, Schuman JS, Wei W, Chan KC. Oral Scutellarin Treatment Ameliorates Retinal Thinning and Visual Deficits in Experimental Glaucoma. Front Med (Lausanne) 2021; 8:681169. [PMID: 34414202 PMCID: PMC8369066 DOI: 10.3389/fmed.2021.681169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/07/2021] [Indexed: 01/29/2023] Open
Abstract
Purpose: Intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma, yet glaucoma can continue to progress despite controlled IOP. Thus, development of glaucoma neurotherapeutics remains an unmet need. Scutellarin is a flavonoid that can exert neuroprotective effects in the eye and brain. Here, we investigated the neurobehavioral effects of scutellarin treatment in a chronic IOP elevation model. Methods: Ten adult C57BL/6J mice were unilaterally injected with an optically clear hydrogel into the anterior chamber to obstruct aqueous outflow and induce chronic IOP elevation. Eight other mice received unilateral intracameral injection of phosphate-buffered saline only. Another eight mice with hydrogel-induced unilateral chronic IOP elevation also received daily oral gavage of 300 mg/kg scutellarin. Tonometry, optical coherence tomography, and optokinetics were performed longitudinally for 4 weeks to monitor the IOP, retinal nerve fiber layer thickness, total retinal thickness, visual acuity, and contrast sensitivity of both eyes in all three groups. Results: Intracameral hydrogel injection resulted in unilateral chronic IOP elevation with no significant inter-eye IOP difference between scutellarin treatment and untreated groups. Upon scutellarin treatment, the hydrogel-injected eyes showed less retinal thinning and reduced visual behavioral deficits when compared to the untreated, hydrogel-injected eyes. No significant difference in retinal thickness or optokinetic measures was found in the contralateral, non-treated eyes over time or between all groups. Conclusion: Using the non-invasive measuring platform, oral scutellarin treatment appeared to preserve retinal structure and visual function upon chronic IOP elevation in mice. Scutellarin may be a novel neurotherapeutic agent for glaucoma treatment.
Collapse
Affiliation(s)
- Jingyuan Zhu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Anoop Sainulabdeen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Krystal Akers
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R. Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Eva Yarsky
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Yi Yan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Yu Yu
- Pleryon Therapeutics Limited, Shenzhen, China
| | - Hiroshi Ishikawa
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Christopher K. Leung
- Hong Kong Eye Hospital, University Eye Center, Hong Kong, China,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China,Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States,Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Wenbin Wei
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States,Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States,*Correspondence: Kevin C. Chan
| |
Collapse
|
48
|
Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, Field AS, Yun H, Du Y, Conner IP, Parra C, Faiq MA, Fingert JH, Wollstein G, Schuman JS, Chan KC. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34410298 PMCID: PMC8383913 DOI: 10.1167/iovs.62.10.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.
Collapse
Affiliation(s)
- Max K Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Leon C Ho
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xiaoling Yang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Aaron S Field
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ian P Conner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| |
Collapse
|
49
|
Liu P, Yang Q, Yu N, Cao Y, Wang X, Wang Z, Qiu WY, Ma C. Phenylalanine Metabolism is Dysregulated in Human Hippocampus with Alzheimer's Disease Related Pathological Changes. J Alzheimers Dis 2021; 83:609-622. [PMID: 34334403 DOI: 10.3233/jad-210461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most challenging diseases causing an increasing burden worldwide. Although the neuropathologic diagnosis of AD has been established for many years, the metabolic changes in neuropathologic diagnosed AD samples have not been fully investigated. OBJECTIVE To elucidate the potential metabolism dysregulation in the postmortem human brain samples assessed by AD related pathological examination. METHODS We performed untargeted and targeted metabolomics in 44 postmortem human brain tissues. The metabolic differences in the hippocampus between AD group and control (NC) group were compared. RESULTS The results show that a pervasive metabolic dysregulation including phenylalanine metabolism, valine, leucine, and isoleucine biosynthesis, biotin metabolism, and purine metabolism are associated with AD pathology. Targeted metabolomics reveal that phenylalanine, phenylpyruvic acid, and N-acetyl-L-phenylalanine are upregulated in AD samples. In addition, the enzyme IL-4I1 catalyzing transformation from phenylalanine to phenylpyruvic acid is also upregulated in AD samples. CONCLUSION There is a pervasive metabolic dysregulation in hippocampus with AD-related pathological changes. Our study suggests that the dysregulation of phenylalanine metabolism in hippocampus may be an important pathogenesis for AD pathology formation.
Collapse
Affiliation(s)
- Pan Liu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ning Yu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yan Cao
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Wang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhao Wang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wen-Ying Qiu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Parisi V, Ziccardi L, Barbano L, Giorno P, Varano M, Parravano M. Citicoline and Vitamin B 12 Eye Drops in Type 1 Diabetes: Results of a 36-Month Pilot Study Evaluating Macular Electrophysiological Changes. Adv Ther 2021; 38:3924-3936. [PMID: 34091874 PMCID: PMC8279994 DOI: 10.1007/s12325-021-01771-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Introduction Our aim was to evaluate the effects of 36 months of treatment with citicoline and vitamin B12 eye drops on macular function in patients with type 1 diabetes (DM1) with mild signs of non-proliferative diabetic retinopathy (NPDR). Methods A prospective, randomized, interventional, monocentric, double-masked study was conducted. Twenty patients with DM1 were enrolled and randomly divided into two groups: the DC group (10 patients; mean age ± standard deviation 46.86 ± 8.78 years) in which one eye of each patient was treated with citicoline and vitamin B12 eye drops (OMK2®, Omikron Italia srl, Italy, one drop thrice daily) for a period of 36 months; the DP group (10 patients; mean age ± standard deviation 47.89 ± 7.74 years) in which one eye of each patient was treated with placebo (eye drops containing hypromellose 0.3%, one drop thrice daily) for a period of 36 months. A total of 18 eyes (10 from the DP and 8 from the DC group, respectively) completed the study. In both groups, multifocal electroretinogram (mfERG) recordings were assessed at baseline and after 36 months. In mfERG analysis, the N1–P1 response amplitude density (RAD) evaluated in the 0–2.5° (ring 1), in the 2.5–5° (ring 2), in the 5–10° (ring 3), and in the 0–10° (ring 1 + ring 2 + ring 3) were considered. Results With respect to baseline, after 36 months of follow-up, the mfERG RADs recorded in R1, R2, R3, and R1 + R2 + R3 were significantly increased (i.e., R1 + R2 + R3 RAD from 21.552 ± 2.522 nV/degree2 at baseline to 26.912 ± 2.850 nV/degree2 at 36 months) in DC eyes, whereas in DP eyes they were significantly reduced (i.e., R1 + R2 + R3 RAD from 21.033 ± 3.574 nV/degree2 at baseline to 16.151 ± 3.571 nV/degree2 at 36 months). Conclusions This study indicates that patients with NPDR treated with citicoline and vitamin B12 eye drops for a 36-month period achieved an improvement of the macular bioelectrical responses detectable by mfERG recordings. By contrast, during the same period of follow-up, patients with NPDR treated with placebo showed a worsening of the macular function.
Collapse
|