1
|
Tu X, Zou Z, Li J, Zeng S, Luo Z, Li G, Gao Y, Zhang K. Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model. Chin Med J (Engl) 2025; 138:172-184. [PMID: 39719694 PMCID: PMC11745860 DOI: 10.1097/cm9.0000000000003387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited. Notably, artificial intelligence (AI) technologies have significantly advanced drug discovery. This study aimed to discover RIPK3 inhibitor with AI assistance. METHODS An acute ocular hypertension model was used to simulate pathological ocular hypertension in vivo . We employed a series of AI methods, including large language and graph neural network models, to identify the target compounds of RIPK3. Subsequently, these target candidates were validated using molecular simulations (molecular docking, absorption, distribution, metabolism, excretion, and toxicity [ADMET] prediction, and molecular dynamics simulations) and biological experiments (Western blotting and fluorescence staining) in vitro and in vivo . RESULTS AI-driven drug screening techniques have the potential to greatly accelerate drug development. A compound called HG9-91-01, identified using AI methods, exerted neuroprotective effects in acute glaucoma. Our research indicates that all five candidates recommended by AI were able to protect the morphological integrity of RGC cells when exposed to hypoxia and glucose deficiency, and HG9-91-01 showed a higher cell survival rate compared to the other candidates. Furthermore, HG9-91-01 was found to protect the retinal structure and reduce the loss of retinal layers in an acute glaucoma model. It was also observed that the neuroprotective effects of HG9-91-01 were highly correlated with the inhibition of PANoptosis (apoptosis, pyroptosis, and necroptosis). Finally, we found that HG9-91-01 can regulate key proteins related to PANoptosis, indicating that this compound exerts neuroprotective effects in the retina by inhibiting the expression of proteins related to apoptosis, pyroptosis, and necroptosis. CONCLUSION AI-enabled drug discovery revealed that HG9-91-01 could serve as a potential treatment for acute glaucoma.
Collapse
Affiliation(s)
- Xing Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixing Zou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
| | - Jiahui Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Simiao Zeng
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zhengchao Luo
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100871, China
| | - Gen Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yuanxu Gao
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- Institute for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region 999078, China
| | - Kang Zhang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Institute for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region 999078, China
| |
Collapse
|
2
|
Parameswarappa DC, Kulkarni A, Sahoo NK, Padhy SK, Singh SR, Héon E, Chhablani J. From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases. Diagnostics (Basel) 2024; 15:28. [PMID: 39795556 PMCID: PMC11720060 DOI: 10.3390/diagnostics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. Methods: This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs. Results: Key modalities covered are adaptive optics, fluorescence lifetime imaging ophthalmoscopy, polarization-sensitive optical coherence tomography, optoretinography, mitochondrial imaging, flavoprotein fluorescence imaging, and retinal oximetry. Each imaging method covers its principles, acquisition techniques, data from healthy eyes, applications in IRDs with specific examples, and current challenges and future directions. Conclusions: Emerging technologies, including adaptive optics and metabolic imaging, offer promising potential for cellular-level imaging and functional correlation in IRDs, allowing for earlier intervention and improved therapeutic targeting. Their integration into clinical practice may significantly improve IRD management and patient outcomes.
Collapse
Affiliation(s)
- Deepika C. Parameswarappa
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
| | - Ashwini Kulkarni
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Niroj Kumar Sahoo
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Elise Héon
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Jay Chhablani
- UPMC Eye Centre and Choroidal Analysis and Research (CAR) Lab, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Qiu X, Gammon ST, Rasmussen C, Pisaneschi F, Kim CBY, Ver Hoeve J, Millward SW, Barnett EM, Nork TM, Kaufman PL, Piwnica-Worms D. In vivo scanning laser fundus and high-resolution OCT imaging of retinal ganglion cell injury in a non-human primate model with an activatable fluorescent-labeled TAT peptide probe. PLoS One 2024; 19:e0313579. [PMID: 39642160 PMCID: PMC11623487 DOI: 10.1371/journal.pone.0313579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024] Open
Abstract
The optical imaging agent TcapQ488 has enabled imaging of retinal ganglion cell (RGC) injury in vivo in rodents and has potential as an effective diagnostic probe for early detection and intervention monitoring in glaucoma patients. In the present study, we investigated TcapQ488 in non-human primates (NHPs) to identify labeling efficacy and early signals of injured RGC, to determine species-dependent changes in RGC probe uptake and clearance, and to determine dose-limiting toxicities. Doses of 3, 6, and 12 nmol of TcapQ488 were delivered intravitreally to normal healthy NHP eyes and eyes that had undergone hemiretinal endodiathermy axotomy (HEA) in the inferior retina. Post-injection fundus fluorescence imaging using a Spectralis imaging platform (Heidelberg Engineering) documented TcapQ488 activation in RGC cell bodies. Optical coherence tomography (OCT), slit-lamp examinations, intraocular pressure measurements, and visual electrophysiology testing were performed to monitor probe tolerability. For comparison, a negative control, non-cleavable, non-quenched probe (dTcap488, 6 nmol), was delivered intravitreally to a normal healthy eye. In normal healthy eyes, intravitreal injection of 3 nmol of TcapQ488 was well-tolerated, while 12 nmol of TcapQ488 to the healthy eye caused extensive probe activation in the ganglion cell layer (GCL) and eventual retinal nerve fiber layer thinning. In HEA eyes, the HEA procedure followed by intravitreal TcapQ488 (3 nmol) injection resulted in probe activation within cell bodies in the GCL, confined to the HEA-treated inferior retina, indicating cell injury and slow axonal transport in the GCL. However, in contrast to rodents, a vitreal haze that lasted 2-12 weeks obscured rapid high-resolution imaging of the fundus. By contrast, intravitreal TcapQ488 injection prior to the HEA procedure led to minimal probe labeling in the GCL. The results of the dTcap488 control experiments indicated that fast axonal transport carried the probe out of the retina after cell body uptake. No evidence of pan-retinal toxicity or loss of retino-cortical function was detected in any of the three NHPs tested. Overall, these data provide evidence of TcapQ488 activation, without toxicity, in NHP HEA eyes that had been intravitreally injected with 3 nmol of the probe. Compared to rodents, unexpectedly rapid axonal transport in the NHPs reduced the capacity to visualize RGC cell bodies and axons through the backdrop of an intravitreal haze. Nonetheless, although intravitreal clearance rates did not scale to NHPs, HEA-induced reductions in axonal transport enhanced probe visualization in the cell body.
Collapse
Affiliation(s)
- Xudong Qiu
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carol Rasmussen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charlene B. Y. Kim
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James Ver Hoeve
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Edward M. Barnett
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - T. Michael Nork
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
4
|
Meng X, Li C, Cui A, Zhang X, Zhao L, Zhao B. Identification of peripheral nerve functional fascicles in Sprague-Dawley rats by the carbon quantum dot-Annexin V antibody complex. Sci Rep 2024; 14:25691. [PMID: 39463438 PMCID: PMC11514204 DOI: 10.1038/s41598-024-77276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
To explore a method to identify the sensory and motor fascicles of the peripheral nerve to achieve accurate peripheral nerve functional fascicle suture. The peripheral nerve Sunderland V injury model, muscle branch of the femoral nerve and saphenous nerve were established in the bilateral femoral nerves of Sprague-Dawley (SD) rats. The specific samples were grouped as follows: the main trunk of the femoral nerve was exposed bilaterally and cut with microscopic scissors in the main trunk of the femoral nerve to prepare a model of Sunderland V injury in the mixed fascicle of peripheral nerves; the muscle branch of the femoral nerve was exposed bilaterally and cut in the middle section of the muscle branch of the femoral nerve to prepare a model of Sunderland V injury in the motor fascicle of peripheral nerves; the saphenous nerve was exposed bilaterally and cut at 1 cm below the patella to prepare a model of Sunderland V injury to the sensory fascicle of the peripheral nerves. A carbon quantum dot (CD)-annexin V antibody complex was prepared and applied to the distal and proximal nerve stumps of the peripheral nerve Sunderland V injury model groups of SD rats. Under the excitation light source of a 380 nm uv lamp, fluorescence color development was observed under a fluorescence microscope after 5, 10, 15, and 20 min. At 5 min, sections of the bilateral femoral nerve trunk, muscular branches of the femoral nerve, and Sunderland V lesion of the saphenous nerve in SD rats were only dark in color under the microscope, and there was no difference in fluorescence. The intensity of the staining increased significantly for 10-20 min. The sensory fascicles and saphenous nerves of the femoral nerve trunk showed blue fluorescence under the CD-Annexin V antibody complex staining, while the motor fascicles and muscle branches of the femoral nerve trunk showed no fluorescence. Fluorescence intensity gradually decreased after 20 min of staining. There was no significant difference in the staining intensity at 5, 10, 15, and 20 min in each group. Our results suggest that the CD-Annexin antibody complex can be used to identify functional fascicles of peripheral nerves in SD rats.
Collapse
Affiliation(s)
- Xianyu Meng
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China.
| | - Changqing Li
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Aoyun Cui
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Xu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| | - Lina Zhao
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| | - Binbin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| |
Collapse
|
5
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
6
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613293. [PMID: 39345568 PMCID: PMC11430098 DOI: 10.1101/2024.09.17.613293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Accumulation of pathological tau isoforms, especially hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers, has been demonstrated in the retinas of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Previous studies have noted a decrease in retinal ganglion cells (RGCs) in AD patients, but the presence and impact of pathological tau isoforms in RGCs and RGC integrity, particularly in early AD stages, have not been explored. To investigate this, we examined retinal superior temporal cross-sections from 25 patients with MCI (due to AD) or AD dementia and 16 cognitively normal (CN) controls, matched for age and gender. We utilized the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining to assess neuronal density in the ganglion cell layer (GCL). Our study found that hypertrophic RGCs containing pS396-tau and T22-positive tau oligomers were more frequently observed in MCI and AD patients compared to CN subjects. Quantitative analyses indicated a decline in RGC integrity, with 46-55% and 55-56% reductions of RBPMS+ RGCs (P<0.01) and Nissl+ GCL neurons (P<0.01-0.001), respectively, in MCI and AD patients. This decrease in RGC count was accompanied by increases in necroptotic-like morphology and the cleaved caspase-3 apoptotic marker in RGCs of AD patients. Furthermore, there was a 2.1 to 3.1-fold increase (P<0.05-0.0001) in pS396-tau-laden RGCs in MCI and AD patients, with a greater abundance observed in individuals with higher Braak stages (V-VI), more severe clinical dementia ratings (CDR=3), and lower mini-mental state examination (MMSE) scores. Strong correlations were noted between the decline in RGCs and the total amount of retinal pS396-tau and pS396-tau+ RGCs, with pS396-tau+ RGC counts correlating significantly with brain neurofibrillary tangle scores (r= 0.71, P= 0.0001), Braak stage (r= 0.65, P= 0.0009), and MMSE scores (r= -0.76, P= 0.0004). These findings suggest that retinal tauopathy, characterized by pS396-tau and oligomeric tau in hypertrophic RGCs, is associated with and may contribute to RGC degeneration in AD. Future research should validate these findings in larger cohorts and explore noninvasive retinal imaging techniques that target tau pathology in RGCs to improve AD detection and monitor disease progression.
Collapse
Affiliation(s)
- Miyah R. Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, 28040 Madrid, Spain. Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain. Health Research Institute, Clinico San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bhakta P. Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A. Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S. Schneider
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Debra Hawes
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
7
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
8
|
Frostegård A, Haegerstrand A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5-A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals (Basel) 2024; 17:979. [PMID: 39204083 PMCID: PMC11357257 DOI: 10.3390/ph17080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Despite progress in the management of patients with retinal vascular and degenerative diseases, there is still an unmet clinical need for safe and effective therapeutic options with novel mechanisms of action. Recent mechanistic insights into the pathogenesis of retinal diseases with a prominent vascular component, such as retinal vein occlusion (RVO), diabetic retinopathy (DR) and wet age-related macular degeneration (AMD), may open up new treatment paradigms that reach beyond the inhibition of vascular endothelial growth factor (VEGF). Phosphatidylserine (PS) is a novel lipid target that is linked to the pathophysiology of several human diseases, including retinal diseases. PS acts upstream of VEGF and complement signaling pathways. Annexin A5 is a protein that targets PS and inhibits PS signaling. This review explores the current understanding of the potential roles of PS as a target and Annexin A5 as a therapeutic. The clinical development status of Annexin A5 as a therapeutic and the potential utility of PS-Annexin A5 as a theranostic pairing in retinal vascular conditions in particular is described.
Collapse
Affiliation(s)
- Anna Frostegård
- Annexin Pharmaceuticals AB, Kammakargatan 48, S-111 60 Stockholm, Sweden
- Unit of Immunology and Chronic Disease, IMM, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
9
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Liu D, Liu Z, Liao H, Chen ZS, Qin B. Ferroptosis as a potential therapeutic target for age-related macular degeneration. Drug Discov Today 2024; 29:103920. [PMID: 38369100 DOI: 10.1016/j.drudis.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Cell death plays a crucial part in the process of age-related macular degeneration (AMD), but its mechanisms remain elusive. Accumulating evidence suggests that ferroptosis, a novel form of regulatory cell death characterized by iron-dependent accumulation of lipid hydroperoxides, has a crucial role in the pathogenesis of AMD. Numerous studies have suggested that ferroptosis participates in the degradation of retinal cells and accelerates the progression of AMD. Furthermore, inhibitors of ferroptosis exhibit notable protective effects in AMD, underscoring the significance of ferroptosis as a pivotal mechanism in the death of retinal cells during the process of AMD. This review aims to summarize the molecular mechanisms of ferroptosis in AMD, enumerate potential inhibitors and discuss the challenges and future opportunities associated with targeting ferroptosis as a therapeutic strategy, providing important information references and insights for the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Hongxia Liao
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier Eye Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Murakami T, Gardner TW. Rejuvenation of diabetic macular edema with senolytic therapy. Nat Med 2024; 30:346-347. [PMID: 38332040 DOI: 10.1038/s41591-024-02804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Ishikawa T, Kishi N, Shimizu Y, Fujimura T, Yamazaki T. Real-Time Imaging of Single Retinal Cell Apoptosis in a Non-Human Primate Ocular Hypertension Model. Transl Vis Sci Technol 2024; 13:20. [PMID: 38252520 PMCID: PMC10810027 DOI: 10.1167/tvst.13.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose To evaluate the feasibility of using DARC (detection of apoptosing retinal cells) technology as a biomarker for preclinical assessment of glaucomatous damage in a non-human primate (NHP) model of ocular hypertension (OHT). Methods Elevated intraocular pressure (IOP) was induced by applying a laser to the trabecular meshwork in each eye of NHPs. Changes in DARC counts in the retina, identified as fluorescent-tagged annexin V (ANX776)-positive cells, were evaluated together with optic nerve damage, assessed using spectral domain-optical coherence tomography. The pharmacokinetic properties of ANX776 in both healthy and OHT model monkeys were also examined. Results Sustained elevation of IOP and subsequent thinning of the retinal nerve fiber layer thickness (RNFLT) around the optic nerve head were confirmed in the OHT model. Increases in DARC counts were also detected after IOP elevation. We identified a statistically significant relationship between cumulative DARC counts and reductions in RNFLT both globally and in each peripapillary sector. Intravenous administration of ANX776 increased blood annexin V in a dose-dependent manner, which was subsequently eliminated. Conclusions This study revealed that DARC technology can effectively assess glaucomatous damage in an NHP OHT model. We obtained the fundamental data that could serve as a reference for developing preclinical models to evaluate the pharmacodynamics of neuroprotective agents using DARC technology in NHP OHT models. Translational Relevance Our basic data in a monkey OHT model could be useful for future preclinical studies using DARC technology to estimate the pharmacodynamic response of neuroprotective agents.
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| | - Naoki Kishi
- Portfolio Evaluation Group, Cooperate Strategy, Astellas Pharma Inc., Tokyo, Japan
| | - Yoshiko Shimizu
- Product Creation Unit, Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Takao Fujimura
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| | - Takao Yamazaki
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| |
Collapse
|
13
|
Feng KM, Tsung TH, Chen YH, Lu DW. The Role of Retinal Ganglion Cell Structure and Function in Glaucoma. Cells 2023; 12:2797. [PMID: 38132117 PMCID: PMC10741833 DOI: 10.3390/cells12242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health. Finally, we investigated the current possible neuroprotective targets for RGCs that could help with future glaucoma research and management.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (K.M.F.); (T.-H.T.); (Y.-H.C.)
| |
Collapse
|
14
|
Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet 2023; 402:1788-1801. [PMID: 37742700 DOI: 10.1016/s0140-6736(23)01289-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023]
Abstract
The glaucomas are a group of conditions leading to irreversible sight loss and characterised by progressive loss of retinal ganglion cells. Although not always elevated, intraocular pressure is the only modifiable risk factor demonstrated by large clinical trials. It remains the leading cause of irreversible blindness, but timely treatment to lower intraocular pressure is effective at slowing the rate of vision loss from glaucoma. Methods for lowering intraocular pressure include laser treatments, topical medications, and surgery. Although modern surgical innovations aim to be less invasive, many have been introduced with little supporting evidence from randomised controlled trials. Many cases remain undiagnosed until the advanced stages of disease due to the limitations of screening and poor access to opportunistic case finding. Future research aims to generate evidence for intraocular pressure-independent neuroprotective treatments, personalised treatment through genetic risk profiling, and exploration of potential advanced cellular and gene therapies.
Collapse
Affiliation(s)
- Hari Jayaram
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | - Miriam Kolko
- Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - David S Friedman
- Massachusetts Eye and Ear Hospital, Glaucoma Center of Excellence, Boston, MA, USA; Harvard University, Boston, MA, USA
| | - Gus Gazzard
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK.
| |
Collapse
|
15
|
Hammer DX, Kovalick K, Liu Z, Chen C, Saeedi OJ, Harrison DM. Cellular-Level Visualization of Retinal Pathology in Multiple Sclerosis With Adaptive Optics. Invest Ophthalmol Vis Sci 2023; 64:21. [PMID: 37971733 PMCID: PMC10664728 DOI: 10.1167/iovs.64.14.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To apply adaptive optics-optical coherence tomography (AO-OCT) to quantify multiple sclerosis (MS)-induced changes in axonal bundles in the macular nerve fiber layer, ganglion cell somas, and macrophage-like cells at the vitreomacular interface. Methods We used AO-OCT imaging in a pilot study of MS participants (n = 10), including those without and with a history of optic neuritis (ON, n = 4), and healthy volunteers (HV, n = 9) to reveal pathologic changes to inner retinal cells and structures affected by MS. Results We found that nerve fiber layer axonal bundles had 38% lower volume in MS participants (1.5 × 10-3 mm3) compared to HVs (2.4 × 10-3 mm3; P < 0.001). Retinal ganglion cell (RGC) density was 51% lower in MS participants (12.3 cells/mm2 × 1000) compared to HVs (25.0 cells/mm2 × 1000; P < 0.001). Spatial differences across the macula were observed in RGC density. RGC diameter was 15% higher in MS participants (11.7 µm) compared to HVs (10.1 µm; P < 0.001). A nonsignificant trend of higher density of macrophage-like cells in MS eyes was also observed. For all AO-OCT measures, outcomes were worse for MS participants with a history of ON compared to MS participants without a history of ON. AO-OCT measures were associated with key visual and physical disabilities in the MS cohort. Conclusions Our findings demonstrate the utility of AO-OCT for highly sensitive and specific detection of neurodegenerative changes in MS. Moreover, the results shed light on the mechanisms that underpin specific neuronal pathology that occurs when MS attacks the retina. The new findings support the further development of AO-based biomarkers for MS.
Collapse
Affiliation(s)
- Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Osamah J. Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, Baltimore VA Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
16
|
Lin JB, Pitts KM, El Helwe H, Neeson C, Hall NE, Falah H, Schultz SA, Wang SL, Lo K, Song C, Margeta MA, Solá-Del Valle D. Neurofilament Light Chain in Aqueous Humor as a Marker of Neurodegeneration in Glaucoma. Clin Ophthalmol 2023; 17:2209-2217. [PMID: 37551375 PMCID: PMC10404437 DOI: 10.2147/opth.s417664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
Purpose Neurofilament light chain (NfL) is a neuronal cytoskeletal protein that has been identified as a marker of neurodegeneration in diseases of the central nervous system. In this study, we investigated whether NfL in the aqueous humor (AH) can serve as a marker of neurodegeneration in glaucoma in a racially diverse North American population. Design Single-center, case-control study. Participants We enrolled patients with various types and stages of glaucoma undergoing planned ophthalmic surgery as part of their routine care and compared them with patients without glaucoma undergoing phacoemulsification for age-related cataract. Methods We collected AH from 39 glaucoma patients and 10 patients without glaucoma. AH NfL was quantified using the Single-Molecule Array (Simoa)® NF-light assay (Quanterix). Demographic information, such as age, body mass index, sex, and self-reported race, as well as clinical information, such as pre-operative intraocular pressure (IOP), maximum IOP, and number of pre-operative glaucoma medications, was obtained by reviewing the medical record. Main Outcome Measures Levels of AH NfL. Results In a model controlling for age and body mass index (BMI), NfL was significantly elevated in AH from glaucoma patients (mean: 429 pg/mL; standard deviation [SD]: 1136 pg/mL) compared to AH from patients without glaucoma (mean: 3.1 pg/mL; SD: 1.9 pg/mg): P = 0.002. Higher AH NfL was associated with higher maximum IOP (R = 0.44, P = 0.005), higher pre-operative IOP (R = 0.46, P = 0.003), and more pre-operative glaucoma medications (Rs = 0.61, P < 0.001). There was no association between AH NfL and Humphrey visual field mean deviation (R = -0.20, P = 0.220), retinal nerve fiber layer thickness as measured with optical coherence tomography (R = 0.07, P = 0.694), or glaucoma stage (Rs = 0.015, P = 0.935). Conclusion Our findings suggest that AH NfL may have clinical utility as a marker of glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Kristen M Pitts
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Hani El Helwe
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Cameron Neeson
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Nathan E Hall
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Henisk Falah
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Stephanie A Schultz
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Silas L Wang
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Kristine Lo
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Christian Song
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Milica A Margeta
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - David Solá-Del Valle
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
17
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Sharif NA. Identifying new drugs and targets to treat rapidly elevated intraocular pressure for angle closure and secondary glaucomas to curb visual impairment and prevent blindness. Exp Eye Res 2023; 232:109444. [PMID: 36958427 DOI: 10.1016/j.exer.2023.109444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
A multitude of pharmacological compounds have been shown to lower and control intraocular pressure (IOP) in numerous species of animals and human subjects after topical ocular dosing or via other routes of administration. Most researchers have been interested in finding drug candidates that exhibit a relatively long duration of action from a chronic therapeutic use perspective, for example to treat ocular hypertension (OHT), primary open-angle glaucoma and even normotensive glaucoma. However, it is equally important to seek and characterize treatment modalities which offer a rapid onset of action to help provide fast relief from quickly rising IOP that occurs in certain eye diseases. These include acute angle-closure glaucoma, primary angle-closure glaucoma, uveitic and inflammatory glaucoma, medication-induced OHT, and other secondary glaucomas induced by eye injury or infection which can cause partial or complete loss of eyesight. Such fast-acting agents can delay or prevent the need for ocular surgery which is often used to lower the dangerously raised IOP. This research survey was therefore directed at identifying agents from the literature that demonstrated ocular hypotensive activity, normalizing and unifying the data, determining their onset of action and rank ordering them on the basis of rapidity of action starting within 30-60 min and lasting up to at least 3-4 h post topical ocular dosing in different animal species. This research revealed a few health authority-approved drugs and some investigational compounds that appear to meet the necessary criteria of fast onset of action coupled with significant efficacy to reduce elevated IOP (by ≥ 20%, preferably by >30%). However, translation of the novel animal-based findings to the human conditions remains to be demonstrated but represent viable targets, especially EP2-receptor agonists (e.g. omidenepag isopropyl; AL-6598; butaprost), mixed activity serotonin/dopamine receptor agonists (e.g. cabergoline), rho kinase inhibitors (e.g. AMA0076, Y39983), CACNA2D1-gene product inhibitors (e.g. pregabalin), melatonin receptor agonists, and certain K+-channel openers (e.g. nicorandil, pinacidil). Other drug candidates and targets were also identified and will be discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Institute of Ophthalmology, University College London (UCL), London, UK; Imperial College of Science and Technology, St. Mary's Campus, London, UK; Eye-ACP Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute (SERI), Singapore; Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA; Ophthalmology Innovation Center, Santen Inc USA, Emeryville, CA, USA.
| |
Collapse
|
19
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
20
|
Wei W, Anantharanjit R, Patel RP, Cordeiro MF. Detection of macular atrophy in age-related macular degeneration aided by artificial intelligence. Expert Rev Mol Diagn 2023:1-10. [PMID: 37144908 DOI: 10.1080/14737159.2023.2208751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in wet AMD. A recognized unmet need in AMD is the early detection of MA development. AREAS COVERED Artificial Intelligence (AI) has demonstrated great impact in detection of retinal diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging modalities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great promise in identifying early MA using the new criteria in 2018. EXPERT OPINION There are few studies in which AI-OCT methods have been used to identify MA; however, results are very promising when compared to other imaging modalities. In this paper, we review the development and advances of ophthalmic imaging modalities and their combination with AI technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, cost-effective tool for the early detection and monitoring of the progression of MA in AMD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Department of Surgery & Cancer, Imperial College London, London, UK
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
| | - Rajeevan Anantharanjit
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS trust, London, UK
| | - Radhika Pooja Patel
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS trust, London, UK
| | - Maria Francesca Cordeiro
- Department of Surgery & Cancer, Imperial College London, London, UK
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS trust, London, UK
| |
Collapse
|
21
|
Pitha I, Kambhampati S, Sharma A, Sharma R, McCrea L, Mozzer A, Kannan RM. Targeted Microglial Attenuation through Dendrimer-Drug Conjugates Improves Glaucoma Neuroprotection. Biomacromolecules 2023; 24:1355-1365. [PMID: 36827603 PMCID: PMC10189638 DOI: 10.1021/acs.biomac.2c01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Retinal microglial/macrophage activation and optic nerve (ON) microglial/macrophage activation are glaucoma biomarkers and potential therapeutic targets for this blinding disease. We report targeting of activated microglia by PAMAM dendrimers in a rat glaucoma model and neuroprotection by N-acetylcysteine-conjugated dendrimer (D-NAC) conjugates in a post-injury rescue experiment. Intravitreally delivered fluorescently labeled dendrimer (D-Cy5) conjugates targeted and were retained in Iba-1-positive cells (90% at 7 days and 55% after 28 days) in the retina following intraocular pressure (IOP) elevation, while systemically delivered D-Cy5 targeted ON cells. A single intravitreal D-NAC dose given 1 week after IOP elevation significantly reduced transcription of pro-inflammatory (IL-6, MCP-1, IL-1β) and A1 astrocyte (Serping1, Fkbp5, Amigo2) markers and increased survival of retinal ganglion cells (39 ± 12%) versus BSS- (20 ± 15%, p = 0.02) and free NAC-treated (26 ± 14%, p = 0.15) eyes. These results highlight the potential of dendrimer-targeted microglia and macrophages for early glaucoma detection and as a neuroprotective therapeutic target.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Siva Kambhampati
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Anjali Sharma
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Rishi Sharma
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Liam McCrea
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ann Mozzer
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Rangaramanujam M. Kannan
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
22
|
A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 2023; 294:121997. [PMID: 36638554 DOI: 10.1016/j.biomaterials.2023.121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Early discovery and prioritized intervention significantly impact its prognosis. Precise monitoring of the biomarker GDF15 contributes towards effective diagnosis and assessment of glaucoma. In this study, we demonstrate that GDF15 monitoring can also aid screening for glaucoma risk and early diagnosis. We obtained an aptamer (APT2TM) with high affinity, high specificity, and high stability for binding to both human-derived and rat-derived GDF15. Simulation results showed that the binding capabilities of APT2TM are mainly affected by the interplay between van der Waals forces and polar solvation energy, and that salt bridges and hydrogen bonds play critical roles. We then integrated an enzyme-linked aptamer sandwich assay (ELASA) into a biolayer interferometry (BLI) system to develop an automated, high-throughput, real-time monitoring BLI-ELASA biosensing platform. This platform exhibited a wide linear detection window (10-810 pg/mL range) and high sensitivity for GDF15 (detection limit of 5-6 pg/mL). Moreover, we confirmed its excellent performance when applied to GDF15 quantification in real samples from glaucomatous rats and clinical patients. We believe that this technology represents a robust, convenient, and cost-effective approach for risk screening, early diagnosis, and animal modeling evaluation of glaucoma in the near future.
Collapse
|
23
|
Zhang JH, Wang MJ, Tan YT, Luo J, Wang SC. A bibliometric analysis of apoptosis in glaucoma. Front Neurosci 2023; 17:1105158. [PMID: 36814788 PMCID: PMC9939748 DOI: 10.3389/fnins.2023.1105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
Background Glaucoma is the first irreversible and second blindness disease, which is characterized by the death of retinal ganglion cells (RGCs) and degeneration of the optic nerve. Previous works have indicated that apoptosis is the main reason for RGC death in glaucoma. Although many studies have investigated the mechanism of apoptosis and different strategies targeting apoptosis to protect the RGCs and finally recover the impaired vision in the glaucoma. However, the global trend and hotspots of apoptosis in glaucoma have not been well illustrated and discussed. Methods Documents were extracted from the Web of Science Core Collection on November 2, 2022. We selected articles and reviews published in English from January 1, 1999 to November 1, 2022 to perform visual analysis and statistical analysis of countries, institutions, authors, references and keywords by VOSviewer 1.6.18 and CiteSpace 5.8. Results The publications about apoptosis in glaucoma show an increasing trend over time. Besides, the authors, institutions in the US and China published the most numbers of articles with the highest citation, which may be leading the research in the field of apoptosis in glaucoma. Last, series of advanced research results, technology and treatment for glaucoma, such as the discovery of key regulatory mechanisms on RGC apoptosis are emerging and will provide precise strategies for the treatment of glaucoma. Conclusion This research will broaden our comprehension about the role of apoptosis in the process of glaucoma, and provide guidelines for us in basic research and disease treatment in the further.
Collapse
Affiliation(s)
- Jia-Heng Zhang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Clinical Medicine 5-Year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mei-Juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Ya-Ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Shu-Chao Wang ✉
| |
Collapse
|
24
|
Hill D, Choi S, Cordeiro MF. In Vivo Detection of Retinal Ganglion Cell Stress in Rodents with DARC. Methods Mol Biol 2023; 2708:123-129. [PMID: 37558966 DOI: 10.1007/978-1-0716-3409-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
DARC (detection of apoptosing retinal cells) uses fluorescently tagged Annexin A5 to identify retinal apoptosis non-invasively in vivo using a confocal laser scanning ophthalmoscope (cSLO). This can provide insights into the presence and progression of disease pathology and the efficacy of neuroprotective intervention. The methods of administration, imaging, and quantification of DARC, including the operation of the cSLO, are described here.
Collapse
Affiliation(s)
| | | | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London, UK.
- Western Eye Hospital Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
25
|
Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ 2023; 30:69-81. [PMID: 35933500 PMCID: PMC9883496 DOI: 10.1038/s41418-022-01046-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Glaucoma can result in retinal ganglion cell (RGC) death and permanently damaged vision. Pathologically high intraocular pressure (ph-IOP) is the leading cause of damaged vision during glaucoma; however, controlling ph-IOP alone does not entirely prevent the loss of glaucomatous RGCs, and the underlying mechanism remains elusive. In this study, we reported an increase in ferric iron in patients with acute primary angle-closure glaucoma (the most typical glaucoma with ph-IOP damage) compared with the average population by analyzing free iron levels in peripheral serum. Thus, iron metabolism might be involved in regulating the injury of RGCs under ph-IOP. In vitro and in vivo studies confirmed that ph-IOP led to abnormal accumulation of ferrous iron in cells and retinas at 1-8 h post-injury and elevation of ferric iron in serum at 8 h post-injury. Nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin heavy polypeptide 1(FTH1) is essential to disrupt iron metabolism in the retina after ph-IOP injury. Furthermore, knockdown of Ncoa4 in vivo inhibited FTH1 degradation and reduced the retinal ferrous iron level. Elevated ferrous iron induced by ph-IOP led to a marked accumulation of pro-ferroptotic factors (lipid peroxidation and acyl CoA synthetase long-chain family member 4) and a depletion of anti-ferroptotic factors (glutathione, glutathione peroxidase 4, and nicotinamide adenine dinucleotide phosphate). These biochemical changes resulted in RGC ferroptosis. Deferiprone can pass through the blood-retinal barrier after oral administration and chelated abnormally elevated ferrous iron in the retina after ph-IOP injury, thus inhibiting RGC ferroptosis and protecting visual function. In conclusion, this study revealed the role of NCOA4-FTH1-mediated disturbance of iron metabolism and ferroptosis in RGCs during glaucoma. We demonstrate the protective effect of Deferiprone on RGCs via inhibition of ferroptosis, providing a research direction to understand and treat glaucoma via the iron homeostasis and ferroptosis pathways.
Collapse
|
26
|
Guymer RH. Treating Geographic Atrophy-Are We Ready? A Call to Image. Ophthalmol Retina 2023; 7:1-3. [PMID: 36604013 DOI: 10.1016/j.oret.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
27
|
Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-ĸB/HMGB1 and Nrf2/HO-1 pathways. Int Immunopharmacol 2023; 114:109619. [PMID: 36700781 DOI: 10.1016/j.intimp.2022.109619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury often causes poor outcomes and has few established treatments. Neuroinflammation and ferroptosis hinder therapeutic progress in this domain. Annexin A5 (A5) has anticoagulant, anti-apoptotic and anti-inflammatory bioactivities. However, its protective effects on traumatic brain injury remain unclear. Thus, we explored whether inhibiting ferroptosis and neuroinflammation using A5 could ameliorate traumatic brain injury. We injected recombinant A5 (50 µg/kg) in the tail vein of mice 30 min after fluid percussion injury. We then assessed modified neurologic severity scores, Morris water maze performance, rotarod test performance, brain water content, and blood-brain barrier permeability to document the neuroprotective effects of A5. Two days after the traumatic brain injury, we collected injured cortex tissues for western blot, Perl's staining, apoptosis staining, Nissl staining, immunofluorescence/immunohistochemistry, and enzyme-linked immunosorbent assay. We also quantified superoxide dismutase and glutathione peroxidase activity and glutathione and malondialdehyde levels. A5 improved neurological deficits, weight loss, cerebral hypoperfusion, brain edema, blood-brain barrier disruption, neuronal apoptosis, and ferroptosis. It also increased the ratio of M2/M1 phenotype microglia, reduced interleukin 1β and 6 levels, decreased peripheral immune cell infiltration, and increased interleukin 10 levels. A5 reduced neuronal iron accumulation, p53-related cell death, and oxidative stress damage. Finally, A5 downregulated HMGB1 and NF-ĸB pathways and upregulated the nuclear erythroid 2-related factor (Nrf2) and HO-1 pathways. These results suggest that A5 exerts neuroprotection in traumatic brain injury mice and ameliorates neuroinflammation, oxidative stress, and ferroptosis by regulating the NF-kB/HMGB1 pathway and the Nrf2/HO-1 antioxidant system.
Collapse
|
28
|
Ferro Desideri L, Rutigliani C, Corazza P, Nastasi A, Roda M, Nicolo M, Traverso CE, Vagge A. The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases. JOURNAL OF OPTOMETRY 2022; 15 Suppl 1:S50-S57. [PMID: 36216736 PMCID: PMC9732476 DOI: 10.1016/j.optom.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the role of artificial intelligence (AI) and deep learning (DL) models is attracting increasing global interest in the field of ophthalmology. DL models are considered the current state-of-art among the AI technologies. In fact, DL systems have the capability to recognize, quantify and describe pathological clinical features. Their role is currently being investigated for the early diagnosis and management of several retinal diseases and glaucoma. The application of DL models to fundus photographs, visual fields and optical coherence tomography (OCT) imaging has provided promising results in the early detection of diabetic retinopathy (DR), wet age-related macular degeneration (w-AMD), retinopathy of prematurity (ROP) and glaucoma. In this review we analyze the current evidence of AI applied to these ocular diseases, as well as discuss the possible future developments and potential clinical implications, without neglecting the present limitations and challenges in order to adopt AI and DL models as powerful tools in the everyday routine clinical practice.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy.
| | | | - Paolo Corazza
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | | | - Matilde Roda
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna and S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - Massimo Nicolo
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Carlo Enrico Traverso
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Aldo Vagge
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| |
Collapse
|
29
|
Porciatti V, Chou TH. Using Noninvasive Electrophysiology to Determine Time Windows of Neuroprotection in Optic Neuropathies. Int J Mol Sci 2022; 23:5751. [PMID: 35628564 PMCID: PMC9145583 DOI: 10.3390/ijms23105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
The goal of neuroprotection in optic neuropathies is to prevent loss of retinal ganglion cells (RGCs) and spare their function. The ideal time window for initiating neuroprotective treatments should be the preclinical period at which RGCs start losing their functional integrity before dying. Noninvasive electrophysiological tests such as the Pattern Electroretinogram (PERG) can assess the ability of RGCs to generate electrical signals under a protracted degenerative process in both clinical conditions and experimental models, which may have both diagnostic and prognostic values and provide the rationale for early treatment. The PERG can be used to longitudinally monitor the acute and chronic effects of neuroprotective treatments. User-friendly versions of the PERG technology are now commercially available for both clinical and experimental use.
Collapse
|
30
|
Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre AL, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17:23. [PMID: 35313950 PMCID: PMC8935795 DOI: 10.1186/s13024-022-00524-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Sally Temple
- Neural Stem Cell Institute, NY, 12144, Rensselaer, USA
| | - Larry I Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, CA, Palo Alto, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, MA, Boston, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, CA, 91125, Pasadena, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Aurora, CO, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | | | | | | | | | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Moons L, De Groef L. Multimodal retinal imaging to detect and understand Alzheimer's and Parkinson's disease. Curr Opin Neurobiol 2021; 72:1-7. [PMID: 34399146 DOI: 10.1016/j.conb.2021.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
Retinal neurodegeneration and visual dysfunctions have been reported in a majority of Alzheimer's and Parkinson's patients, and, in light of the quest for novel biomarkers for these neurodegenerative proteinopathies, the retina has been receiving increasing attention as an organ for diagnosing, monitoring, and understanding disease. Thinning of retinal layers, abnormalities in vasculature, and protein deposition can be imaged at unprecedented resolution, which offers a unique systems biology view on the cellular and molecular changes underlying these pathologies. It makes the retina not only a promising target for biomarker development, but it also suggests that novel fundamental insights into the pathophysiology of Alzheimer's and Parkinson's disease can be obtained by studying the retina-brain axis.
Collapse
Affiliation(s)
- Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Biology Department, University of Leuven, Naamsestraat 61 Box 2464, Leuven, 3000, Belgium; Leuven Brain Institute, Leuven, 3000, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Biology Department, University of Leuven, Naamsestraat 61 Box 2464, Leuven, 3000, Belgium; Leuven Brain Institute, Leuven, 3000, Belgium
| |
Collapse
|