1
|
Bharath MN, Gupta S, Vashistha G, Ahmad S, Singh SV. Bioprospective Role of Ocimum sanctum and Solanum xanthocarpum against Emerging Pathogen: Mycobacterium avium Subspecies paratuberculosis: A Review. Molecules 2023; 28:molecules28083490. [PMID: 37110723 PMCID: PMC10145132 DOI: 10.3390/molecules28083490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic, contagious, and typically life-threatening enteric disease of ruminants caused by a bacterium of the genus Mycobacterium, but it can also affect non-ruminant animals. MAP transmission occurs through the fecal-oral pathway in neonates and young animals. After infection, animals generate IL-4, IL-5, and IL-10, resulting in a Th2 response. Early detection of the disease is necessary to avoid its spread. Many detection methods, viz., staining, culture, and molecular methods, are available, and numerous vaccines and anti-tuberculosis drugs are used to control the disease. However, the prolonged use of anti-tuberculosis drugs leads to the development of resistance. Whereas vaccines hamper the differentiation between infected and vaccinated animals in an endemic herd. This leads to the identification of plant-based bioactive compounds to treat the disease. Bioactive compounds of Ocimum sanctum and Solanum xanthocarpum have been evaluated for their anti-MAP activity. Based on the MIC50 values, Ursolic acid (12 µg/mL) and Solasodine (60 µg/mL) were found to be suitable for anti-MAP activity.
Collapse
Affiliation(s)
- Manthena Nava Bharath
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Garima Vashistha
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Centre of Excellence in Unani Medicine (Pharmacognosy and Pharma Cology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| |
Collapse
|
2
|
Johnson P, McLeod L, Qin Y, Osgood N, Rosengren L, Campbell J, Larson K, Waldner C. Investigating effective testing strategies for the control of Johne's disease in western Canadian cow-calf herds using an agent-based simulation model. Front Vet Sci 2022; 9:1003143. [PMID: 36504856 PMCID: PMC9732103 DOI: 10.3389/fvets.2022.1003143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Johne's disease is an insidious infectious disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease can have important implications for animal welfare and risks causing economic losses in affected herds due to reduced productivity, premature culling and replacement, and veterinary costs. Despite the limited accuracy of diagnostic tools, testing and culling is the primary option for controlling Johne's disease in beef herds. However, evidence to inform specific test and cull strategies is lacking. In this study, a stochastic, continuous-time agent-based model was developed to investigate Johne's disease and potential control options in a typical western Canadian cow-calf herd. The objective of this study was to compare different testing and culling scenarios that included varying the testing method and frequency as well as the number and risk profile of animals targeted for testing using the model. The relative effectiveness of each testing scenario was determined by the simulated prevalence of cattle shedding MAP after a 10-year testing period. A second objective was to compare the direct testing costs of each scenario to identify least-cost options that are the most effective at reducing within-herd disease prevalence. Whole herd testing with individual PCR at frequencies of 6 or 12 months were the most effective options for reducing disease prevalence. Scenarios that were also effective at reducing prevalence but with the lowest total testing costs included testing the whole herd with individual PCR every 24 months and testing the whole herd with pooled PCR every 12 months. The most effective method with the lowest annual testing cost per unit of prevalence reduction was individual PCR on the whole herd every 24 months. Individual PCR testing only cows that had not already been tested 4 times also ranked well when considering both final estimated prevalence at 10 years and cost per unit of gain. A more in-depth economic analysis is needed to compare the cost of testing to the cost of disease, taking into account costs of culling, replacements and impacts on calf crops, and to determine if testing is an economically attractive option for commercial cow-calf operations.
Collapse
Affiliation(s)
- Paisley Johnson
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Lianne McLeod
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Yang Qin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathaniel Osgood
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - John Campbell
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Kathy Larson
- Agricultural and Resource Economics, College of Agriculture and Bioresources, Saskatoon, SK, Canada
| | - Cheryl Waldner
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Jeong J, McCallum H. Using Stochastic Modeling to Predict the Effect of Culling and Colony Dispersal of Bats on Zoonotic Viral Epidemics. Vector Borne Zoonotic Dis 2021; 21:369-377. [PMID: 33691497 DOI: 10.1089/vbz.2020.2700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Frequent outbreaks of emerging infectious diseases originating from wild animals have highlighted the necessity of managing wildlife populations to prevent zoonotic spillover, and the appropriate development of management protocols required attention on gaining a better understanding of viral dynamics in wild animal populations. In east Australia, there have been outbreaks of Hendra virus (HeV) infection in horses and humans following spillover from the virus's reservoir hosts, flying foxes (family Pteropodidae), and bat culling and colony dispersal have been proposed as appropriate management strategies. A key factor relating to flying fox population structure that influences HeV dynamics is that these bats form metapopulations, and consequently, to assess this factor, we designed an epidemic dynamics model of HeV transmission, focusing on bat metapopulation dynamics. Specifically, using flying fox movement data, we stochastically simulated models for a hypothetical metapopulation of flying foxes to examine the impact of metapopulation-related parameters, and subsequently simulated probable scenarios of culling and colony dispersal to estimate their effects on the probability of epidemic occurrence. Modeling of the hypothetical metapopulation revealed that a reduction in the number of large-sized colonies would lead to an increase in the probability of epidemic occurrence within the bat population, whereas the strong spatial coupling among colonies was found to dilute the effects of altering the number of colonies and the number of bats in each colony through culling or colony dispersal of bats on the probability that an epidemic within the bat population would occur. Culling and colony dispersal scenarios showed no significantly beneficial effect with respect to reducing the probability of an HeV epidemic occurring in flying foxes, and may indeed prove counterproductive. In conclusion, the modeling results indicate that bat culling and colony dispersal may not be an effective strategy to control HeV epidemics.
Collapse
Affiliation(s)
- Jaewoon Jeong
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, Australia.,Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Ariel O, Brouard JS, Marete A, Miglior F, Ibeagha-Awemu E, Bissonnette N. Genome-wide association analysis identified both RNA-seq and DNA variants associated to paratuberculosis in Canadian Holstein cattle 'in vitro' experimentally infected macrophages. BMC Genomics 2021; 22:162. [PMID: 33678157 PMCID: PMC7938594 DOI: 10.1186/s12864-021-07487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis, or Johne’s disease (JD), an incurable bovine disease. The evidence for susceptibility to MAP disease points to multiple interacting factors, including the genetic predisposition to a dysregulation of the immune system. The endemic situation in cattle populations can be in part explained by a genetic susceptibility to MAP infection. In order to identify the best genetic improvement strategy that will lead to a significant reduction of JD in the population, we need to understand the link between genetic variability and the biological systems that MAP targets in its assault to dominate macrophages. MAP survives in macrophages where it disseminates. We used next-generation RNA (RNA-Seq) sequencing to study of the transcriptome in response to MAP infection of the macrophages from cows that have been naturally infected and identified as positive for JD (JD (+); n = 22) or negative for JD (healthy/resistant, JD (−); n = 28). In addition to identifying genetic variants from RNA-seq data, SNP variants were also identified using the Bovine SNP50 DNA chip. Results The complementary strategy allowed the identification of 1,356,248 genetic variants, including 814,168 RNA-seq and 591,220 DNA chip variants. Annotation using SnpEff predicted that the 2435 RNA-seq genetic variants would produce high functional effect on known genes in comparison to the 33 DNA chip variants. Significant variants from JD(+/−) macrophages were identified by genome-wide association study and revealed two quantitative traits loci: BTA4 and 11 at (P < 5 × 10− 7). Using BovineMine, gene expression levels together with significant genomic variants revealed pathways that potentially influence JD susceptibility, notably the energy-dependent regulation of mTOR by LKB1-AMPK and the metabolism of lipids. Conclusion In the present study, we succeeded in identifying genetic variants in regulatory pathways of the macrophages that may affect the susceptibility of cows that are healthy/resistant to MAP infection. RNA-seq provides an unprecedented opportunity to investigate gene expression and to link the genetic variations to biological pathways that MAP normally manipulate during the process of killing macrophages. A strategy incorporating functional markers into genetic selection may have a considerable impact in improving resistance to an incurable disease. Integrating the findings of this research into the conventional genetic selection program may allow faster and more lasting improvement in resistance to bovine paratuberculosis in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07487-4.
Collapse
Affiliation(s)
- Olivier Ariel
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Jean-Simon Brouard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Andrew Marete
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Filippo Miglior
- Center of Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - Eveline Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada.
| |
Collapse
|
5
|
Jeong J, McCallum H. The persistence of a SIR disease in a metapopulation: Hendra virus epidemics in Australian black flying foxes (Pteropus alecto). AUST J ZOOL 2021. [DOI: 10.1071/zo20094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Understanding how emerging viruses persist in bat populations is a fundamental step to understand the processes by which viruses are transmitted from reservoir hosts to spillover hosts. Hendra virus, which has caused fatal infections in horses and humans in eastern Australia since 1994, spills over from its natural reservoir hosts, Pteropus bats (colloquially known as flying foxes). It has been suggested that the Hendra virus maintenance mechanism in the bat populations might be implicated with their metapopulation structure. Here, we examine whether a metapopulation consisting of black flying fox (P. alecto) colonies that are smaller than the critical community size can maintain the Hendra virus. By using the Gillespie algorithm, stochastic mathematical models were used to simulate a cycle, in which viral extinction and recolonisation were repeated in a single colony within a metapopulation. Given estimated flying fox immigration rates, the simulation results showed that recolonisation occurred more frequently than extinction, which indicated that infection would not go extinct in the metapopulation. Consequently, this study suggests that a collection of transient epidemics of Hendra virus in numerous colonies of flying foxes in Australia can support the long-term persistence of the virus at the metapopulation level.
Collapse
|
6
|
McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ, O'Grady L, Green MJ, Doherty ML. A review of paratuberculosis in dairy herds - Part 2: On-farm control. Vet J 2019; 246:54-58. [PMID: 30902189 DOI: 10.1016/j.tvjl.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/08/2023]
Abstract
Bovine paratuberculosis is a chronic infectious disease of cattle, caused by Mycobacterium avium subspecies paratuberculosis (MAP). This is the second in a two-part review of the epidemiology and control of paratuberculosis in dairy herds. Several negative production effects associated with MAP infection have been described, but perhaps the most significant concern in relation to the importance of paratuberculosis as a disease of dairy cattle is the potential link with Crohn's disease in humans. Milk is considered a potential transmission route to humans and it is recognised that pasteurisation does not necessarily eliminate the bacterium. Therefore, control must also include reduction of the levels of MAP in bulk milk supplied from dairy farms. There is little field evidence in support of specific control measures, although several studies seem to show a decreased prevalence associated with the implementation of a combined management and test-and-cull programme. Improvements in vaccination efficacy and reduced tuberculosis (TB) test interference may increase uptake of vaccination as a control option. Farmer adoption of best practice recommendations at farm level for the control of endemic diseases can be challenging. Improved understanding of farmer behaviour and decision making will help in developing improved communication strategies which may be more efficacious in affecting behavioural change on farm.
Collapse
Affiliation(s)
- Conor G McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland.
| | - Steven Roche
- Department of Population Medicine, University of Guelph, 50 Stone Rd., Guelph, ON, N1G 2W1, Canada
| | - Caroline Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive, Calgary, AB, T2N 1N4, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive, Calgary, AB, T2N 1N4, Canada
| | - Paul Whyte
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Simon J More
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Luke O'Grady
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Martin J Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Michael L Doherty
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| |
Collapse
|
7
|
A data-driven individual-based model of infectious disease in livestock operation: A validation study for paratuberculosis. PLoS One 2018; 13:e0203177. [PMID: 30550580 PMCID: PMC6294356 DOI: 10.1371/journal.pone.0203177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic livestock diseases cause large financial loss and affect animal health and welfare. Controlling these diseases mostly requires precise information on both individual animal and population dynamics to inform the farmer’s decisions, but even successful control programmes do by no means assure elimination. Mathematical models provide opportunities to test different control and elimination options rather than implementing them in real herds, but these models require robust parameter estimation and validation. Fitting these models to data is a difficult task due to heterogeneities in livestock processes. In this paper, we develop an infectious disease modeling framework for a livestock disease (paratuberculosis) that is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Infection with MAP leads to reduced milk production, pregnancy rates, and slaughter value and increased culling rates in cattle and causes significant economic losses to the dairy industry. These economic effects are particularly important motivations in the control and elimination of MAP. In this framework, an individual-based model (IBM) of a dairy herd was built and MAP infection dynamics was integrated. Once the model produced realistic dynamics of MAP infection, we implemented an evaluation method by fitting it to data from three dairy herds from the Northeast region of the US. The model fitting exercises used least-squares and parameter space searching methods to obtain the best-fitted values of selected parameters. The best set of parameters were used to model the effect of interventions. The results show that the presented model can complement real herd statistics where the intervention strategies suggest a reduction in MAP prevalence without elimination. Overall, this research not only provides a complete model for MAP infection dynamics in a dairy herd but also offers a method for estimating parameters by fitting IBM models.
Collapse
|
8
|
Konboon M, Bani-Yaghoub M, Pithua PO, Rhee N, Aly SS. A nested compartmental model to assess the efficacy of paratuberculosis control measures on U.S. dairy farms. PLoS One 2018; 13:e0203190. [PMID: 30278041 PMCID: PMC6168138 DOI: 10.1371/journal.pone.0203190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
Paratuberculosis, also known as Johne's disease (JD), is a chronic contagious disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease is incurable, fatal and causes economic losses estimated to exceed 200 million dollars to the U.S. dairy industry annually. Several preventive and control measures have been recommended; however, only a few of these measures have been validated empirically. Using a nested compartmental (NC) modeling approach, the main objective of this research was to identify the best combination of control and preventive measures that minimizes the prevalence and incidence of JD and the risk of MAP occurrence in a dairy herd. The NC model employs both MAP transmission estimates and data on pen movement of cattle on a dairy to quantify the effectiveness of control and preventive measures. To obtain reasonable ranges of parameter values for between-pen movements, the NC model was fitted to the movement data of four typical California dairy farms. Using the estimated ranges of the movement parameters and those of JD from previous research, the basic reproduction number was calculated to measure the risk of MAP occurrence in each pen environment as well as the entire dairy. Although the interventions evaluated by the NC model were shown to reduce the infection, no single measure alone was capable of eradicating the infection. The numerical simulations suggest that a combination of test and cull with more frequent manure removal is the most effective method in reducing incidence, prevalence and the risk of MAP occurrence. Other control measures such as limiting calf-adult cow contacts, raising calves in a disease-free herd or colostrum management were less effective.
Collapse
Affiliation(s)
- Malinee Konboon
- Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Majid Bani-Yaghoub
- Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Patrick O. Pithua
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Noah Rhee
- Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Sharif S. Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, California, United States of America
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Camanes G, Joly A, Fourichon C, Ben Romdhane R, Ezanno P. Control measures to prevent the increase of paratuberculosis prevalence in dairy cattle herds: an individual-based modelling approach. Vet Res 2018; 49:60. [PMID: 30005698 PMCID: PMC6044053 DOI: 10.1186/s13567-018-0557-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Paratuberculosis, a gastrointestinal disease caused by Mycobacterium avium subsp. paratuberculosis (Map), can lead to severe economic losses in dairy cattle farms. Current measures are aimed at controlling prevalence in infected herds, but are not fully effective. Our objective was to determine the most effective control measures to prevent an increase in adult prevalence in infected herds. We developed a new individual-based model coupling population and infection dynamics. Animals are characterized by their age (6 groups) and health state (6 states). The model accounted for all transmission routes and two control measures used in the field, namely reduced calf exposure to adult faeces and test-and-cull. We defined three herd statuses (low, moderate, and high) based on realistic prevalence ranges observed in French dairy cattle herds. We showed that the most relevant control measures depend on prevalence. Calf management and test-and-cull both were required to maximize the probability of stabilizing herd status. A reduced calf exposure was confirmed to be the most influential measure, followed by test frequency and the proportion of infected animals that were detected and culled. Culling of detected high shedders could be delayed for up to 3 months without impacting prevalence. Management of low prevalence herds is a priority since the probability of status stabilization is high after implementing prioritized measures. On the contrary, an increase in prevalence was particularly difficult to prevent in moderate prevalence herds, and was only feasible in high prevalence herds if the level of control was high.
Collapse
Affiliation(s)
- Guillaume Camanes
- Groupement de Défense Sanitaire de Bretagne, 56019 Vannes, France
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| | - Alain Joly
- Groupement de Défense Sanitaire de Bretagne, 56019 Vannes, France
| | | | | | - Pauline Ezanno
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| |
Collapse
|
10
|
Verteramo Chiu LJ, Tauer LW, Al-Mamun MA, Kaniyamattam K, Smith RL, Grohn YT. An agent-based model evaluation of economic control strategies for paratuberculosis in a dairy herd. J Dairy Sci 2018; 101:6443-6454. [PMID: 29705432 DOI: 10.3168/jds.2017-13175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
This paper uses an agent-based simulation model to estimate the costs associated with Mycobacterium avium ssp. paratuberculosis (MAP), or Johne's disease, in a milking herd, and to determine the net benefits of implementing various control strategies. The net present value (NPV) of a 1,000-cow milking herd is calculated over 20 yr, parametrized to a representative US commercial herd. The revenues of the herd are generated from sales of milk and culled animals. The costs include all variable and fixed costs necessary to operate a representative 1,000-cow milking herd. We estimate the NPV of the herd with no MAP infection, under an expected endemic infection distribution with no controls, and under an expected endemic infection distribution with various controls. The initial number of cows in a herd with an endemic MAP infection is distributed as 75% susceptible, 13% latent, 9% low MAP shedding, and 3% high MAP shedding. Control strategies include testing using ELISA and fecal culture tests and culling of cows that test positive, and culling based on observable milk production decrease. Results show that culling cows based on test results does not increase the herd's NPV and in most cases decreases NPV due to test costs as well as false positives and negatives with their associated costs (e.g., culling healthy cows and keeping infected cows). Culling consistently low producing cows when MAP is believed to be present in the herd produces higher NPV over the strategy of testing and culling MAP infected animals, and over the case of no MAP control.
Collapse
Affiliation(s)
- Leslie J Verteramo Chiu
- Section of Epidemiology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| | - Loren W Tauer
- Charles H. Dyson School of Applied Economics and Management, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Mohammad A Al-Mamun
- Section of Epidemiology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Karun Kaniyamattam
- Section of Epidemiology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Rebecca L Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana 61802
| | - Yrjo T Grohn
- Section of Epidemiology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
11
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
12
|
Kirkeby C, Græsbøll K, Nielsen SS, Toft N, Halasa T. Epidemiological and economic consequences of purchasing livestock infected with Mycobacterium avium subsp. paratuberculosis. BMC Vet Res 2017; 13:202. [PMID: 28655323 PMCID: PMC5488427 DOI: 10.1186/s12917-017-1119-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/19/2017] [Indexed: 12/29/2022] Open
Abstract
Background Paratuberculosis (PTB) is a chronic disease which may lead to reduced milk yield, lower animal welfare and death in cattle. The causative agent is Mycobacterium avium subsp. paratuberculosis (MAP). The economic consequences are particularly important incentives in the control and eradication of the infection. One strategy to control PTB in a herd is to purchase animals from farms with a low risk of MAP infection. We wanted to investigate the epidemiological and economic consequences of buying livestock from different supplier farms of low, medium or high risk, as well as farms with unknown status. We also wanted to estimate the probability of spontaneous fadeout if the farmer of an initially MAP-free herd bought a specified number of infected animals in a single year, or continually bought infected animals. This was achieved through simulation modeling, and the effects of consistently introducing one, five or ten infected animals annually into an initially infection-free herd was also modeled. Results Our findings show that once infected, a farm can relatively safely purchase animals from other low and medium-risk farms without experiencing an increase in the prevalence, highlighting the importance of certification programmes. Furthermore, farms free of MAP are highly susceptible and cannot purchase more than a small number of animals per year without having a high risk of being infected. The probability of spontaneous fadeout after 10 years was 82% when introducing a single infected animal into an initially MAP-free herd. When purchasing ten infected animals, this probability was 46%. The continual purchase of infected animals resulted in very low probabilities of spontaneous fadeout. Conclusions We demonstrated that MAP-free farms can purchase a small number of animals, preferably from certified farms, each year and still remain free of MAP. Already infected farms have little risk of increasing the prevalence on a farm when purchasing animals from other farms.
Collapse
Affiliation(s)
- Carsten Kirkeby
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark.
| | - Kaare Græsbøll
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark.,DTU Compute, Section for Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Bygning 324, 2800, Kgs. Lyngby, Denmark
| | - Søren Saxmose Nielsen
- Department of Large Animal Sciences, Section for Animal Welfare and DiseaseControl, University of Copenhagen, Grønnegaardsvej 8, 1870 Frb. C, København, Denmark
| | - Nils Toft
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark
| | - Tariq Halasa
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Mycobacterium avium subsp. paratuberculosis – An Overview of the Publications from 2011 to 2016. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0054-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Bannantine JP, Lingle CK, Adam PR, Ramyar KX, McWhorter WJ, Stabel JR, Picking WD, Geisbrecht BV. NlpC/P60 domain-containing proteins of Mycobacterium avium subspecies paratuberculosis that differentially bind and hydrolyze peptidoglycan. Protein Sci 2016; 25:840-51. [PMID: 26799947 DOI: 10.1002/pro.2884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
A subset of proteins containing NlpC/P60 domains are bacterial peptidoglycan hydrolases that cleave noncanonical peptide linkages and contribute to cell wall remodeling as well as cell separation during late stages of division. Some of these proteins have been shown to cleave peptidoglycan in Mycobacterium tuberculosis and play a role in Mycobacterium marinum virulence of zebra fish; however, there are still significant knowledge gaps concerning the molecular function of these proteins in Mycobacterium avium subspecies paratuberculosis (MAP). The MAP genome sequence encodes five NlpC/P60 domain-containing proteins. We describe atomic resolution crystal structures of two such MAP proteins, MAP_1272c and MAP_1204. These crystal structures, combined with functional assays to measure peptidoglycan cleavage activity, led to the observation that MAP_1272c does not have a functional catalytic core for peptidoglycan hydrolysis. Furthermore, the structure and sequence of MAP_1272c demonstrate that the catalytic residues normally required for hydrolysis are absent, and the protein does not bind peptidoglycan as efficiently as MAP_1204. While the NlpC/P60 catalytic triad is present in MAP_1204, changing the catalytic cysteine-155 residue to a serine significantly diminished catalytic activity, but did not affect binding to peptidoglycan. Collectively, these findings suggest a broader functional repertoire for NlpC/P60 domain-containing proteins than simply hydrolases.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa
| | - Cari K Lingle
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Philip R Adam
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma
| | - Kasra X Ramyar
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - William J McWhorter
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa
| | - William D Picking
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma
| | - Brian V Geisbrecht
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
15
|
Beaunée G, Vergu E, Ezanno P. Modelling of paratuberculosis spread between dairy cattle farms at a regional scale. Vet Res 2015; 46:111. [PMID: 26407894 PMCID: PMC4583165 DOI: 10.1186/s13567-015-0247-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease, with large economic consequences for dairy cattle producers worldwide. Map spread between farms is mainly due to animal movements. Locally, herd size and management are expected to influence infection dynamics. To provide a better understanding of Map spread between dairy cattle farms at a regional scale, we describe the first spatio-temporal model accounting simultaneously for population and infection dynamics and indirect local transmission within dairy farms, and between-farm transmission through animal trade. This model is applied to Brittany, a French region characterized by a high density of dairy cattle, based on data on animal trade, herd size and farm management (birth, death, renewal, and culling) from 2005 to 2013 for 12,857 dairy farms. In all simulated scenarios, Map infection highly persisted at the metapopulation scale. The characteristics of initially infected farms strongly impacted the regional Map spread. Network-related features of incident farms influenced their ability to contaminate disease-free farms. At the herd level, we highlighted a balanced effect of the number of animals purchased: when large, it led to a high probability of farm infection but to a low persistence. This effect was reduced when prevalence in initially infected farms increased. Implications of our findings in the current enzootic situation are that the risk of infection quickly becomes high for farms buying more than three animals per year. Even in regions with a low proportion of infected farms, Map spread will not fade out spontaneously without the use of effective control strategies.
Collapse
Affiliation(s)
- Gaël Beaunée
- INRA, UR1404 Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), F-78352, Jouy-en-Josas Cedex, France. .,INRA, LUNAM Université, Oniris, UMR1300 BioEpAR, CS40706, F-44307, Nantes, France.
| | - Elisabeta Vergu
- INRA, UR1404 Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), F-78352, Jouy-en-Josas Cedex, France.
| | - Pauline Ezanno
- INRA, LUNAM Université, Oniris, UMR1300 BioEpAR, CS40706, F-44307, Nantes, France.
| |
Collapse
|
16
|
Aly SS, Gardner IA, Adaska JM, Anderson RJ. Off-site rearing of heifers reduces the risk of Mycobacterium avium ssp. paratuberculosis ELISA seroconversion and fecal shedding in a California dairy herd. J Dairy Sci 2015; 98:1805-14. [DOI: 10.3168/jds.2014-8759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
|
17
|
Mitchell RM, Whitlock RH, Gröhn YT, Schukken YH. Back to the real world: connecting models with data. Prev Vet Med 2014; 118:215-25. [PMID: 25583453 DOI: 10.1016/j.prevetmed.2014.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 11/30/2014] [Accepted: 12/06/2014] [Indexed: 11/18/2022]
Abstract
Mathematical models for infectious disease are often used to improve our understanding of infection biology or to evaluate the potential efficacy of intervention programs. Here, we develop a mathematical model that aims to describe infection dynamics of Mycobacterium avium subspecies paratuberculosis (MAP). The model was developed using current knowledge of infection biology and also includes some components of MAP infection dynamics that are currently still hypothetical. The objective was to show methods for parameter estimation of state transition models and to connect simulation models with detailed real life data. Thereby making model predictions and results of simulations more reflective and predictive of real world situations. Longitudinal field data from a large observational study are used to estimate parameter values. It is shown that precise data, including molecular diagnostics on the obtained MAP strains, results in more precise and realistic parameter estimates. It is argued that modeling of infection disease dynamics is of great value to understand the patho-biology, epidemiology and control of infectious diseases. The quality of conclusions drawn from model studies depend on two key issues; first, the quality of biology that has gone in the process of developing the model structure; second the quality of the data that go into the estimation of the parameters and the quality and quantity of the data that go into model validation. The more real world data that are used in the model building process, the more likely that modeling studies will provide novel, innovative and valid results.
Collapse
Affiliation(s)
- Rebecca M Mitchell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA; Centers for Disease Control and Prevention, Division of Parasitology and Malaria, GA, USA
| | - Robert H Whitlock
- New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ynte H Schukken
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA; GD Animal Health, Deventer, The Netherlands.
| |
Collapse
|
18
|
Rathnaiah G, Lamont EA, Harris NB, Fenton RJ, Zinniel DK, Liu X, Sotos J, Feng Z, Livneh-Kol A, Shpigel NY, Czuprynski CJ, Sreevatsan S, Barletta RG. Generation and screening of a comprehensive Mycobacterium avium subsp. paratuberculosis transposon mutant bank. Front Cell Infect Microbiol 2014; 4:144. [PMID: 25360421 PMCID: PMC4197770 DOI: 10.3389/fcimb.2014.00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/25/2014] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's Disease in ruminants. This enteritis has significant economic impact and worldwide distribution. Vaccination is one of the most cost effective infectious disease control measures. Unfortunately, current vaccines reduce clinical disease and shedding, but are of limited efficacy and do not provide long-term protective immunity. Several strategies have been followed to mine the MAP genome for virulence determinants that could be applied to vaccine and diagnostic assay development. In this study, a comprehensive mutant bank of 13,536 MAP K-10 Tn5367 mutants (P > 95%) was constructed and screened in vitro for phenotypes related to virulence. This strategy was designated to maximize identification of genes important to MAP pathogenesis without relying on studies of other mycobacterial species that may not translate into similar effects in MAP. This bank was screened for mutants with colony morphology alterations, susceptibility to D-cycloserine, impairment in siderophore production or secretion, reduced cell association, and decreased biofilm and clump formation. Mutants with interesting phenotypes were analyzed by PCR, Southern blotting and DNA sequencing to determine transposon insertion sites. These insertion sites mapped upstream from the MAP1152-MAP1156 cluster, internal to either the Mod operon gene MAP1566 or within the coding sequence of lsr2, and several intergenic regions. Growth curves in broth cultures, invasion assays and kinetics of survival and replication in primary bovine macrophages were also determined. The ability of vectors carrying Tn5370 to generate stable MAP mutants was also investigated.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Elise A Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul MN, USA
| | - N Beth Harris
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Robert J Fenton
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Xiaofei Liu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Josh Sotos
- School of Veterinary Medicine, University of Wisconsin Madison, WI, USA
| | - Zhengyu Feng
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Ayala Livneh-Kol
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem Rehovot, Israel
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem Rehovot, Israel
| | | | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul MN, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| |
Collapse
|
19
|
Bannantine JP, Hines ME, Bermudez LE, Talaat AM, Sreevatsan S, Stabel JR, Chang YF, Coussens PM, Barletta RG, Davis WC, Collins DM, Gröhn YT, Kapur V. A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol 2014; 4:126. [PMID: 25250245 PMCID: PMC4158869 DOI: 10.3389/fcimb.2014.00126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Since the early 1980s, several investigations have focused on developing a vaccine against Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease in cattle and sheep. These studies used whole-cell inactivated vaccines that have proven useful in limiting disease progression, but have not prevented infection. In contrast, modified live vaccines that invoke a Th1 type immune response, may improve protection against infection. Spurred by recent advances in the ability to create defined knockouts in MAP, several independent laboratories have developed modified live vaccine candidates by transpositional mutation of virulence and metabolic genes in MAP. In order to accelerate the process of identification and comparative evaluation of the most promising modified live MAP vaccine candidates, members of a multi-institutional USDA-funded research consortium, the Johne's disease integrated program (JDIP), met to establish a standardized testing platform using agreed upon protocols. A total of 22 candidates vaccine strains developed in five independent laboratories in the United States and New Zealand voluntarily entered into a double blind stage gated trial pipeline. In Phase I, the survival characteristics of each candidate were determined in bovine macrophages. Attenuated strains moved to Phase II, where tissue colonization of C57/BL6 mice were evaluated in a challenge model. In Phase III, five promising candidates from Phase I and II were evaluated for their ability to reduce fecal shedding, tissue colonization and pathology in a baby goat challenge model. Formation of a multi-institutional consortium for vaccine strain evaluation has revealed insights for the implementation of vaccine trials for Johne's disease and other animal pathogens. We conclude by suggesting the best way forward based on this 3-phase trial experience and challenge the rationale for use of a macrophage-to-mouse-to native host pipeline for MAP vaccine development.
Collapse
Affiliation(s)
- John P Bannantine
- Infectious Bacterial Diseases USDA-ARS, National Animal Disease Center Ames, IA, USA
| | - Murray E Hines
- Tifton Veterinary Diagnostic and Investigational Lab, The University of Georgia Tifton, GA, USA
| | - Luiz E Bermudez
- Departments of Microbiology and Biomedical Sciences, Oregon State University Corvalis, OR, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA ; Department of Food Hygenie, Cairo University Cairo, Egypt
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, University of Minnesota Minneapolis, MN, USA
| | - Judith R Stabel
- Infectious Bacterial Diseases USDA-ARS, National Animal Disease Center Ames, IA, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Paul M Coussens
- Department of Animal Science, Michigan State University Lansing, MI, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - William C Davis
- Department of Veterinary Microbiology, Washington State University Pullman, WA, USA
| | | | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
20
|
Gröhn YT. Progression to multi-scale models and the application to food system intervention strategies. Prev Vet Med 2014; 118:238-46. [PMID: 25217407 DOI: 10.1016/j.prevetmed.2014.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/26/2014] [Accepted: 08/20/2014] [Indexed: 01/03/2023]
Abstract
The aim of this article is to discuss how the systems science approach can be used to optimize intervention strategies in food animal systems. It advocates the idea that the challenges of maintaining a safe food supply are best addressed by integrating modeling and mathematics with biological studies critical to formulation of public policy to address these challenges. Much information on the biology and epidemiology of food animal systems has been characterized through single-discipline methods, but until now this information has not been thoroughly utilized in a fully integrated manner. The examples are drawn from our current research. The first, explained in depth, uses clinical mastitis to introduce the concept of dynamic programming to optimize management decisions in dairy cows (also introducing the curse of dimensionality problem). In the second example, a compartmental epidemic model for Johne's disease with different intervention strategies is optimized. The goal of the optimization strategy depends on whether there is a relationship between Johne's and Crohn's disease. If so, optimization is based on eradication of infection; if not, it is based on the cow's performance only (i.e., economic optimization, similar to the mastitis example). The third example focuses on food safety to introduce risk assessment using Listeria monocytogenes and Salmonella Typhimurium. The last example, practical interventions to effectively manage antibiotic resistance in beef and dairy cattle systems, introduces meta-population modeling that accounts for bacterial growth not only in the host (cow), but also in the cow's feed, drinking water and the housing environment. Each example stresses the need to progress toward multi-scale modeling. The article ends with examples of multi-scale systems, from food supply systems to Johne's disease. Reducing the consequences of foodborne illnesses (i.e., minimizing disease occurrence and associated costs) can only occur through an understanding of the system as a whole, including all its complexities. Thus the goal of future research should be to merge disciplines such as molecular biology, applied mathematics and social sciences to gain a better understanding of complex systems such as the food supply chain.
Collapse
Affiliation(s)
- Yrjö T Gröhn
- Section of Epidemiology, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, S3-108 Schurman Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
21
|
Lamont EA, Talaat AM, Coussens PM, Bannantine JP, Grohn YT, Katani R, Li LL, Kapur V, Sreevatsan S. Screening of Mycobacterium avium subsp. paratuberculosis mutants for attenuation in a bovine monocyte-derived macrophage model. Front Cell Infect Microbiol 2014; 4:87. [PMID: 25072030 PMCID: PMC4075333 DOI: 10.3389/fcimb.2014.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
Vaccination remains a major tool for prevention and progression of Johne's disease, a chronic enteritis of ruminants worldwide. Currently there is only one licensed vaccine within the United States and two vaccines licensed internationally against Johne's disease. All licensed vaccines reduce fecal shedding of Mycobacterium avium subsp. paratuberculosis (MAP) and delay disease progression. However, there are no available vaccines that prevent disease onset. A joint effort by the Johne's Disease Integrated Program (JDIP), a USDA-funded consortium, and USDA—APHIS/VS sought to identify transposon insertion mutant strains as vaccine candidates in part of a three phase study. The focus of the Phase I study was to evaluate MAP mutant attenuation in a well-defined in vitro bovine monocyte-derived macrophage (MDM) model. Attenuation was determined by colony forming unit (CFUs) counts and slope estimates. Based on CFU counts alone, the MDM model did not identify any mutant that significantly differed from the wild-type control, MAP K-10. Slope estimates using mixed models approach identified six mutants as being attenuated. These were enrolled in protection studies involving murine and baby goat vaccination-challenge models. MDM based approach identified trends in attenuation but this did not correlate with protection in a natural host model. These results suggest the need for alternative strategies for Johne's disease vaccine candidate screening and evaluation.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, University of Minnesota St. Paul, MN, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin Madison, WI, USA
| | - Paul M Coussens
- Department of Animal Sciences, Michigan State University East Lansing, MI, USA
| | - John P Bannantine
- Agricultural Research Service, National Animal Disease Center, United States Department of Agriculture Ames, IA, USA
| | - Yrjo T Grohn
- College of Veterinary Medicine, Population Medicine and Diagnostic Sciences, Cornell University Ithaca, NY, USA
| | - Robab Katani
- Department Veterinary and Biomedical Sciences, Penn State University State College, PA, USA
| | - Ling-ling Li
- Department Veterinary and Biomedical Sciences, Penn State University State College, PA, USA
| | - Vivek Kapur
- Department Veterinary and Biomedical Sciences, Penn State University State College, PA, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota St. Paul, MN, USA ; Department of Veterinary Biomedical Sciences, University of Minnesota St. Paul, MN, USA
| |
Collapse
|
22
|
Dudemaine P, Fecteau G, Lessard M, Labrecque O, Roy J, Bissonnette N. Increased blood-circulating interferon-γ, interleukin-17, and osteopontin levels in bovine paratuberculosis. J Dairy Sci 2014; 97:3382-93. [DOI: 10.3168/jds.2013-7059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 02/12/2014] [Indexed: 12/12/2022]
|
23
|
Mycobacterium avium subsp. paratuberculosis antibody response, fecal shedding, and antibody cross-reactivity to Mycobacterium bovis in M. avium subsp. paratuberculosis-infected cattle herds vaccinated against Johne's disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:698-703. [PMID: 24623626 DOI: 10.1128/cvi.00032-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination for Johne's disease with killed inactivated vaccine in cattle herds has shown variable success. The vaccine delays the onset of disease but does not afford complete protection. Johne's disease vaccination has also been reported to interfere with measurements of cell-mediated immune responses for the detection of bovine tuberculosis. Temporal antibody responses and fecal shedding of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne's disease, were measured in 2 dairy cattle herds using Johne's disease vaccine (Mycopar) over a period of 7 years. Vaccination against Johne's disease resulted in positive serum M. avium subsp. paratuberculosis antibody responses in both herds, and the responses persisted in vaccinated cattle up to 7 years of age. Some vaccinated animals (29.4% in herd A and 36.2% in herd B) showed no serological reactivity to M. avium subsp. paratuberculosis. M. avium subsp. paratuberculosis-specific antibody responses were also detected in milk from Johne's disease-vaccinated animals, but fewer animals (39.3% in herd A and 49.4% in herd B) had positive results with milk than with serum samples. With vaccination against M. avium subsp. paratuberculosis, fecal shedding in both dairy herds was reduced significantly (P < 0.001). In addition, when selected Johne's disease-vaccinated and -infected animals were investigated for serological cross-reactivity to Mycobacterium bovis, no cross-reactivity was observed.
Collapse
|