1
|
Humphries B, Ward MP. Critically appraised topic: the use of vaccination to control the spread of foot-and-mouth disease in Australian livestock in the event of an incursion. Aust Vet J 2024; 102:407-415. [PMID: 38840308 DOI: 10.1111/avj.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
With recent outbreaks of foot-and-mouth disease (FMD) in Indonesia and Bali, industry, government and public concern for its incursion into Australia is increasing. The potential impact of an outbreak on the agricultural industry and national economy could be devastating. To date, research conducted in relation to FMD in Australia predominantly concerns simulations and models performed to predict various outcomes. This project critically appraises the current literature regarding the simulated use of vaccination and its effectiveness for controlling the spread of FMD in Australia in the event of an outbreak. Findings from 10 modelling studies suggest that vaccination is effective at controlling the size and duration of an outbreak (under certain conditions), however, there is less clarity about cost-effectiveness.
Collapse
Affiliation(s)
- B Humphries
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - M P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| |
Collapse
|
2
|
Bauzile B, Durand B, Lambert S, Rautureau S, Fourtune L, Guinat C, Andronico A, Cauchemez S, Paul MC, Vergne T. Impact of palmiped farm density on the resilience of the poultry sector to highly pathogenic avian influenza H5N8 in France. Vet Res 2023; 54:56. [PMID: 37430292 PMCID: PMC10334606 DOI: 10.1186/s13567-023-01183-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
We analysed the interplay between palmiped farm density and the vulnerability of the poultry production system to highly pathogenic avian influenza (HPAI) H5N8. To do so, we used a spatially-explicit transmission model, which was calibrated to reproduce the observed spatio-temporal distribution of outbreaks in France during the 2016-2017 epidemic of HPAI. Six scenarios were investigated, in which the density of palmiped farms was decreased in the municipalities with the highest palmiped farm density. For each of the six scenarios, we first calculated the spatial distribution of the basic reproduction number (R0), i.e. the expected number of farms a particular farm would be likely to infect, should all other farms be susceptible. We also ran in silico simulations of the adjusted model for each scenario to estimate epidemic sizes and time-varying effective reproduction numbers. We showed that reducing palmiped farm density in the densest municipalities decreased substantially the size of the areas with high R0 values (> 1.5). In silico simulations suggested that reducing palmiped farm density, even slightly, in the densest municipalities was expected to decrease substantially the number of affected poultry farms and therefore provide benefits to the poultry sector as a whole. However, they also suggest that it would not have been sufficient, even in combination with the intervention measures implemented during the 2016-2017 epidemic, to completely prevent the virus from spreading. Therefore, the effectiveness of alternative structural preventive approaches now needs to be assessed, including flock size reduction and targeted vaccination.
Collapse
Affiliation(s)
- Billy Bauzile
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Benoit Durand
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France
| | | | | | - Lisa Fourtune
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Claire Guinat
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Alessio Andronico
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, 75015, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, 75015, Paris, France
| | | | - Timothée Vergne
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
3
|
Kaniyamattam K, Tedeschi LO. ASAS-NANP symposium: mathematical modeling in animal nutrition: agent-based modeling for livestock systems: the mechanics of development and application. J Anim Sci 2023; 101:skad321. [PMID: 37997925 PMCID: PMC10664392 DOI: 10.1093/jas/skad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/30/2023] [Indexed: 11/25/2023] Open
Abstract
Over the last three decades, agent-based modeling/model (ABM) has been one of the most powerful and valuable simulation-based decision modeling techniques used to study the complex dynamic interactions between animals and their environment. ABM is a relatively new modeling technique in the animal research arena, with immense potential for routine decision-making in livestock systems. We describe ABM's fundamental characteristics for developing intelligent modeling systems, exemplify its use for livestock production, and describe commonly used software for designing and developing ABM. After that, we discuss several aspects of the developmental mechanics of an ABM, including (1) how livestock researchers can conceptualize and design a model, (2) the main components of an ABM, (3) different statistical methods of analyzing the outputs, and (4) verification, validation, and replication of an ABM. Then, we perform an overall analysis of the utilities of ABM in different subsystems of the livestock systems ranging from epidemiological prediction to nutritional management to livestock market dynamics. Finally, we discuss the concept of hybrid intelligent models (i.e., merging real-time data streams with intelligent ABM), which have applications in artificial intelligence-based decision-making for precision livestock farming. ABM captures individual agents' characteristics, interactions, and the emergent properties that arise from these interactions; thus, animal scientists can benefit from ABM in multiple ways, including understanding system-level outcomes, analyzing agent behaviors, exploring different scenarios, and evaluating policy interventions. Several platforms for building ABM exist (e.g., NetLogo, Repast J, and AnyLogic), but they have unique features making one more suitable for solving specific problems. The strengths of ABM can be combined with other modeling approaches, including artificial intelligence, allowing researchers to advance our understanding further and contribute to sustainable livestock management practices. There are many ways to develop and apply mathematical models in livestock production that might assist with sustainable development. However, users must be experienced when choosing the appropriate modeling technique and computer platform (i.e., modeling development tool) that will facilitate the adoption of mathematical models by certifying that the model is field-ready and versatile enough for untrained users.
Collapse
Affiliation(s)
- Karun Kaniyamattam
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
4
|
Sanson RL, Rawdon TG, van Andel M, Yu Z. Modelling the field personnel resources to control foot-and-mouth disease outbreaks in New Zealand. Transbound Emerg Dis 2022; 69:3926-3939. [PMID: 36397293 DOI: 10.1111/tbed.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
The objective of the study was to simulate New Zealand's foot-and-mouth disease (FMD) operational plan to determine personnel requirements for an FMD response and understand how the numbers of front-line staff available could affect the size and duration of FMD outbreaks, when using stamping-out (SO) measures with or without vaccination. The model utilized a national dataset of all known livestock farms. Each simulation randomly seeded infection into a single farm. Transmission mechanisms included direct and indirect contacts, local and airborne spread. Prior to each simulation, the numbers of personnel available for front-line tasks (including contact tracing, surveillance of at-risk farms, depopulation and vaccination) were set randomly. In a random subset of simulations, vaccination was allowed to be deployed as an adjunct to SO. The effects of personnel numbers on the size and duration of epidemics were explored using machine learning methods. In the second stage of the study, using a subset of iterations where numbers of personnel were unconstrained, the number of personnel used each day were quantified. When personnel resources were unconstrained, the 95th percentile and maximum number of infected places (IPs) were 78 and 462, respectively, and the 95th percentile and maximum duration were 69 and 217 days, respectively. However, severe constraints on personnel resources allowed some outbreaks to exceed the size of the UK 2001 FMD epidemic which had 2026 IPs. The number of veterinarians available had a major influence on the size and duration of outbreaks, whereas the availability of other personnel types did not. A shortage of veterinarians was associated with an increase in time to detect and depopulate IPs, allowing for continued transmission. Emergency vaccination placed a short-term demand for additional staff at the start of the vaccination programme, but the overall number of person days used was similar to SO-only strategies. This study determined the optimal numbers of front-line personnel required to implement the current operational plans to support an FMD response in New Zealand. A shortage of veterinarians was identified as the most influential factor to impact disease control outcomes. Emergency vaccination led to earlier control of FMD outbreaks but at the cost of a short-term spike in demand for personnel. In conclusion, a successful response needs to have access to sufficient personnel, particularly veterinarians, trained in response roles and available at short notice.
Collapse
Affiliation(s)
| | - Thomas G Rawdon
- Diagnostics and Surveillance Services Directorate, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Mary van Andel
- Chief Veterinary Officer, Ministry for Primary Industries, Wellington, New Zealand
| | - Zhidong Yu
- Food Science and Risk Assessment, Ministry for Primary Industries, Wellington, New Zealand
| |
Collapse
|
5
|
THE ECONOMIC BENEFITS OF TARGETED RESPONSE STRATEGIES AGAINST FOOT-AND-MOUTH DISEASE IN AUSTRALIA. Prev Vet Med 2022; 204:105636. [DOI: 10.1016/j.prevetmed.2022.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
6
|
Marschik T, Kopacka I, Stockreiter S, Schmoll F, Hiesel J, Höflechner-Pöltl A, Käsbohrer A, Conrady B. What Are the Human Resources Required to Control a Foot-and-Mouth Disease Outbreak in Austria? Front Vet Sci 2021; 8:727209. [PMID: 34778427 PMCID: PMC8580879 DOI: 10.3389/fvets.2021.727209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Contingency planning allows veterinary authorities to prepare a rapid response in the event of a disease outbreak. A recently published foot-and-mouth disease (FMD) simulation study indicated concerns whether capacity was sufficient to control a potential FMD epidemic in Austria. The objectives of the study presented here were to estimate the human resources required to implement FMD control measures and to identify areas of the operational activities that could potentially delay successful control of the disease. The stochastic spatial simulation model EuFMDiS (The European Foot-and-Mouth Disease Spread Model) was used to simulate a potential FMD outbreak and its economic impact, including different control scenarios based on variations of culling, vaccination, and pre-emptive depopulation. In this context, the utilization of human resources was assessed based on the associated EuFMDiS output regarding the performance of operational activities. The assessments show that the number of personnel needed in an outbreak with a stamping-out policy would reach the peak at the end of the second week of control with a median of 540 (257–926) individuals, out of which 31% would be veterinarians. Approximately 58% of these human resources would be attributable to surveillance, followed by staff for cleaning and disinfection activities. Our analysis demonstrates that, of the operational activities, surveillance personnel were the largest factor influencing the magnitude of the outbreak. The aim of the assessment presented here is to assist veterinary authorities in the contingency planning of required human resources to respond effectively to an outbreak of animal diseases such as FMD.
Collapse
Affiliation(s)
- Tatiana Marschik
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Division for Animal Health, Austrian Agency for Health and Food Safety, Mödling, Austria
| | - Ian Kopacka
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Simon Stockreiter
- Department for Animal Health and Animal Disease Control, Federal Ministry of Labour, Social Affairs, Health and Consumer Protection, Vienna, Austria
| | - Friedrich Schmoll
- Division for Animal Health, Austrian Agency for Health and Food Safety, Mödling, Austria
| | - Jörg Hiesel
- Department of Veterinary Administration, Styrian Provincial Government, Graz, Austria
| | - Andrea Höflechner-Pöltl
- Department for Animal Health and Animal Disease Control, Federal Ministry of Labour, Social Affairs, Health and Consumer Protection, Vienna, Austria
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Beate Conrady
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Complexity Science Hub, Vienna, Austria
| |
Collapse
|
7
|
Capon TR, Garner MG, Tapsuwan S, Roche S, Breed AC, Liu S, Miller C, Bradhurst R, Hamilton S. A Simulation Study of the Use of Vaccination to Control Foot-and-Mouth Disease Outbreaks Across Australia. Front Vet Sci 2021; 8:648003. [PMID: 34458348 PMCID: PMC8385296 DOI: 10.3389/fvets.2021.648003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
This study examines the potential for foot-and-mouth disease (FMD) control strategies that incorporate vaccination to manage FMD spread for a range of incursion scenarios across Australia. Stakeholder consultation was used to formulate control strategies and incursion scenarios to ensure relevance to the diverse range of Australian livestock production regions and management systems. The Australian Animal Disease Spread model (AADIS) was used to compare nine control strategies for 13 incursion scenarios, including seven control strategies incorporating vaccination. The control strategies with vaccination differed in terms of their approaches for targeting areas and species. These strategies are compared with two benchmark strategies based on stamping out only. Outbreak size and duration were compared in terms of the total number of infected premises, the duration of the control stage of an FMD outbreak, and the number of vaccinated animals. The three key findings from this analysis are as follows: (1) smaller outbreaks can be effectively managed by stamping out without vaccination, (2) the size and duration of larger outbreaks can be significantly reduced when vaccination is used, and (3) different vaccination strategies produced similar reductions in the size and duration of an outbreak, but the number of animals vaccinated varied. Under current international standards for regaining FMD-free status, vaccinated animals need to be removed from the population at the end of the outbreak to minimize trade impacts. We have shown that selective, targeted vaccination strategies could achieve effective FMD control while significantly reducing the number of animals vaccinated.
Collapse
Affiliation(s)
| | | | | | - Sharon Roche
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia
| | - Andrew C Breed
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia.,School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Shuang Liu
- CSIRO Land & Water, Acton, ACT, Australia
| | - Corissa Miller
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia
| | - Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, VIC, Australia
| | - Sam Hamilton
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia
| |
Collapse
|
8
|
Garner G, Vosloo W, Tapsuwan S, Bradhurst R, Seitzinger AH, Breed AC, Capon T. Comparing surveillance approaches to support regaining free status after a foot-and-mouth disease outbreak. Prev Vet Med 2021; 194:105441. [PMID: 34352519 DOI: 10.1016/j.prevetmed.2021.105441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Following an FMD eradication program, surveillance will be required to demonstrate that the program has been successful. The World Organization for Animal Health (OIE) provides guidelines including waiting periods and appropriate surveillance to support regaining FMD-free status. Serological surveillance is the recommended method for demonstrating freedom but is time consuming and expensive. New technologies such as real-time reverse transcription polymerase chain reaction (RT-qPCR) tests and sampling techniques such as bulk milk testing (BMT) of dairy cattle, oral swabs, and saliva collection with rope tethers in piggeries could enable surveillance to be done more efficiently. Epidemiological modelling was used to simulate FMD outbreaks, with and without emergency vaccination as part of the response, in Australia. Baseline post-outbreak surveillance approaches for unvaccinated and vaccinated animals based on the European FMD directive were compared with alternative approaches in which the sampling regime, sampling approaches and/or the diagnostic tests used were varied. The approaches were compared in terms of the resources required, time taken, cost, and effectiveness i.e., ability of the surveillance regime to correctly identify the infection status of herds. In the non-vaccination scenarios, the alternative approach took less time to complete and cost less, with the greatest benefits seen with larger outbreaks. In vaccinated populations, the alternative surveillance approaches significantly reduced the number of herds sampled, the total number of tests done and costs of the post-outbreak surveillance. There was no reduction in effectiveness using the alternative approaches, with one of the benefits being a reduction in the number of false positive herds. Alternative approaches to FMD surveillance based on non-invasive sampling methods and RT-qPCR tests have the potential to enable post outbreak surveillance substantiating FMD freedom to be done more quickly and less expensively than traditional approaches based on serological surveys.
Collapse
Affiliation(s)
- Graeme Garner
- CSIRO-Land and Water, North Road, Acton, 2601, ACT, Australia
| | - Wilna Vosloo
- CSIRO-Australian Centre for Disease Preparedness, 5 Portarlington Road, 3220, Geelong, Australia
| | - Sorada Tapsuwan
- CSIRO-Land and Water, North Road, Acton, 2601, ACT, Australia
| | - Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, School of BioSciences, University of Melbourne, Parkville, 3010, VIC, Australia
| | | | - Andrew C Breed
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, 2601, ACT, Australia; School of Veterinary Science, University of Queensland, Brisbane, Australia
| | - Tim Capon
- CSIRO-Land and Water, North Road, Acton, 2601, ACT, Australia
| |
Collapse
|
9
|
Bradhurst R, Garner G, Hóvári M, de la Puente M, Mintiens K, Yadav S, Federici T, Kopacka I, Stockreiter S, Kuzmanova I, Paunov S, Cacinovic V, Rubin M, Szilágyi J, Kókány ZS, Santi A, Sordilli M, Sighinas L, Spiridon M, Potocnik M, Sumption K. Development of a transboundary model of livestock disease in Europe. Transbound Emerg Dis 2021; 69:1963-1982. [PMID: 34169659 PMCID: PMC9545780 DOI: 10.1111/tbed.14201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/01/2021] [Indexed: 12/03/2022]
Abstract
Epidemiological models of notifiable livestock disease are typically framed at a national level and targeted for specific diseases. There are inherent difficulties in extending models beyond national borders as details of the livestock population, production systems and marketing systems of neighbouring countries are not always readily available. It can also be a challenge to capture heterogeneities in production systems, control policies, and response resourcing across multiple countries, in a single transboundary model. In this paper, we describe EuFMDiS, a continental‐scale modelling framework for transboundary animal disease, specifically designed to support emergency animal disease planning in Europe. EuFMDiS simulates the spread of livestock disease within and between countries and allows control policies to be enacted and resourced on a per‐country basis. It provides a sophisticated decision support tool that can be used to look at the risk of disease introduction, establishment and spread; control approaches in terms of effectiveness and costs; resource management; and post‐outbreak management issues.
Collapse
Affiliation(s)
- Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Graeme Garner
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| | - Márk Hóvári
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| | - Maria de la Puente
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| | - Koen Mintiens
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| | - Shankar Yadav
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| | - Tiziano Federici
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| | - Ian Kopacka
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Graz, Austria
| | - Simon Stockreiter
- Division for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Graz, Austria
| | | | | | - Vladimir Cacinovic
- Veterinary Inspection and Control of Food Safety Sector, State Inspectorate, Zagreb, Croatia
| | - Martina Rubin
- Veterinary and Food Safety Directorate, Ministry of Agriculture, Zagreb, Croatia
| | | | | | - Annalisa Santi
- Veterinary Epidemiology Unit, Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna
| | - Marco Sordilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, Italy
| | - Laura Sighinas
- National Sanitary Veterinary and Food Safety Authority, Bucharest, Romania
| | - Mihaela Spiridon
- National Sanitary Veterinary and Food Safety Authority, Bucharest, Romania
| | - Marko Potocnik
- Animal Health and Animal Welfare Division Administration of the Republic of Slovenia for Food Safety, Veterinary Sector and Plant Protection, Ljubljana, Slovenia
| | - Keith Sumption
- European Commission for the Control of Foot-and-Mouth Disease, FAO, Rome, Italy
| |
Collapse
|
10
|
Tao Y, Probert WJM, Shea K, Runge MC, Lafferty K, Tildesley M, Ferrari M. Causes of delayed outbreak responses and their impacts on epidemic spread. J R Soc Interface 2021; 18:20200933. [PMID: 33653111 PMCID: PMC8086880 DOI: 10.1098/rsif.2020.0933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Livestock diseases have devastating consequences economically, socially and politically across the globe. In certain systems, pathogens remain viable after host death, which enables residual transmissions from infected carcasses. Rapid culling and carcass disposal are well-established strategies for stamping out an outbreak and limiting its impact; however, wait-times for these procedures, i.e. response delays, are typically farm-specific and time-varying due to logistical constraints. Failing to incorporate variable response delays in epidemiological models may understate outbreak projections and mislead management decisions. We revisited the 2001 foot-and-mouth epidemic in the United Kingdom and sought to understand how misrepresented response delays can influence model predictions. Survival analysis identified farm size and control demand as key factors that impeded timely culling and disposal activities on individual farms. Using these factors in the context of an existing policy to predict local variation in response times significantly affected predictions at the national scale. Models that assumed fixed, timely responses grossly underestimated epidemic severity and its long-term consequences. As a result, this study demonstrates how general inclusion of response dynamics and recognition of partial controllability of interventions can help inform management priorities during epidemics of livestock diseases.
Collapse
Affiliation(s)
- Yun Tao
- Intelligence Community Postdoctoral Research Fellowship Program, Oak Ridge, TN, USA.,Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - William J M Probert
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Katriona Shea
- Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA, USA.,The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Michael C Runge
- US Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Kevin Lafferty
- US Geological Survey, Western Ecological Research Center at Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Michael Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, West Midlands, UK
| | - Matthew Ferrari
- Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA, USA.,The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Zaheer MU, Salman MD, Steneroden KK, Magzamen SL, Weber SE, Case S, Rao S. Challenges to the Application of Spatially Explicit Stochastic Simulation Models for Foot-and-Mouth Disease Control in Endemic Settings: A Systematic Review. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7841941. [PMID: 33294003 PMCID: PMC7700052 DOI: 10.1155/2020/7841941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
Simulation modeling has become common for estimating the spread of highly contagious animal diseases. Several models have been developed to mimic the spread of foot-and-mouth disease (FMD) in specific regions or countries, conduct risk assessment, analyze outbreaks using historical data or hypothetical scenarios, assist in policy decisions during epidemics, formulate preparedness plans, and evaluate economic impacts. Majority of the available FMD simulation models were designed for and applied in disease-free countries, while there has been limited use of such models in FMD endemic countries. This paper's objective was to report the findings from a study conducted to review the existing published original research literature on spatially explicit stochastic simulation (SESS) models of FMD spread, focusing on assessing these models for their potential use in endemic settings. The goal was to identify the specific components of endemic FMD needed to adapt these SESS models for their potential application in FMD endemic settings. This systematic review followed the PRISMA guidelines, and three databases were searched, which resulted in 1176 citations. Eighty citations finally met the inclusion criteria and were included in the qualitative synthesis, identifying nine unique SESS models. These SESS models were assessed for their potential application in endemic settings. The assessed SESS models can be adapted for use in FMD endemic countries by modifying the underlying code to include multiple cocirculating serotypes, routine prophylactic vaccination (RPV), and livestock population dynamics to more realistically mimic the endemic characteristics of FMD. The application of SESS models in endemic settings will help evaluate strategies for FMD control, which will improve livestock health, provide economic gains for producers, help alleviate poverty and hunger, and will complement efforts to achieve the Sustainable Development Goals.
Collapse
Affiliation(s)
- Muhammad Usman Zaheer
- Animal Population Health Institute, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
- FMD Project Office, Food and Agriculture Organization of the United Nations, ASI Premises, NARC Gate # 2, Park Road, Islamabad 44000, Pakistan
| | - Mo D. Salman
- Animal Population Health Institute, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Kay K. Steneroden
- Animal Population Health Institute, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Sheryl L. Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Stephen E. Weber
- Animal Population Health Institute, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Shaun Case
- Department of Civil and Environmental Engineering, Walter Scott, Jr. College of Engineering, Colorado State University, Fort Collins CO 80521, USA
| | - Sangeeta Rao
- Animal Population Health Institute, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| |
Collapse
|
12
|
Sumption K, Knight-Jones TJD, McLaws M, Paton DJ. Parallels, differences and lessons: a comparison of the management of foot-and-mouth disease and COVID-19 using UK 2001/2020 as points of reference. Proc Biol Sci 2020; 287:20200906. [PMID: 33143581 PMCID: PMC7735262 DOI: 10.1098/rspb.2020.0906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease (FMD) is an extremely infectious viral infection of cloven-hoofed animals which is highly challenging to control and can give rise to national animal health crises, especially if there is a lack of pre-existing immunity due to the emergence of new strains or following incursions into disease-free regions. The 2001 FMD epidemic in the UK was on a scale that initially overwhelmed the national veterinary services and was eventually controlled by livestock lockdown and slaughter on an unprecedented scale. In 2020, the rapid emergence of COVID-19 has led to a human pandemic unparalleled in living memory. The enormous logistics of multi-agency control efforts for COVID-19 are reminiscent of the 2001 FMD epidemic in the UK, as are the use of movement restrictions, not normally a feature of human disease control. The UK experience is internationally relevant as few countries have experienced national epidemic crises for both diseases. In this review, we reflect on the experiences and lessons learnt from UK and international responses to FMD and COVID-19 with respect to their management, including the challenge of preclinical viral transmission, threat awareness, early detection, different interpretations of scientific information, lockdown, biosecurity behaviour change, shortage of testing capacity and the choices for eradication versus living with infection. A major lesson is that the similarity of issues and critical resources needed to manage large-scale outbreaks demonstrates that there is benefit to a ‘One Health’ approach to preparedness, with potential for greater cooperation in planning and the consideration of shared critical resources.
Collapse
Affiliation(s)
- Keith Sumption
- European Commission for the control of Foot-and-Mouth Disease, via Terme di Caracalla, Rome, Italy
| | | | - Melissa McLaws
- European Commission for the control of Foot-and-Mouth Disease, via Terme di Caracalla, Rome, Italy
| | - David J Paton
- European Commission for the control of Foot-and-Mouth Disease, via Terme di Caracalla, Rome, Italy
| |
Collapse
|
13
|
Mummah RO, Hoff NA, Rimoin AW, Lloyd-Smith JO. Controlling emerging zoonoses at the animal-human interface. ONE HEALTH OUTLOOK 2020; 2:17. [PMID: 33073176 PMCID: PMC7550773 DOI: 10.1186/s42522-020-00024-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/09/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND For many emerging or re-emerging pathogens, cases in humans arise from a mixture of introductions (via zoonotic spillover from animal reservoirs or geographic spillover from endemic regions) and secondary human-to-human transmission. Interventions aiming to reduce incidence of these infections can be focused on preventing spillover or reducing human-to-human transmission, or sometimes both at once, and typically are governed by resource constraints that require policymakers to make choices. Despite increasing emphasis on using mathematical models to inform disease control policies, little attention has been paid to guiding rational disease control at the animal-human interface. METHODS We introduce a modeling framework to analyze the impacts of different disease control policies, focusing on pathogens exhibiting subcritical transmission among humans (i.e. pathogens that cannot establish sustained human-to-human transmission). We quantify the relative effectiveness of measures to reduce spillover (e.g. reducing contact with animal hosts), human-to-human transmission (e.g. case isolation), or both at once (e.g. vaccination), across a range of epidemiological contexts. RESULTS We provide guidelines for choosing which mode of control to prioritize in different epidemiological scenarios and considering different levels of resource and relative costs. We contextualize our analysis with current zoonotic pathogens and other subcritical pathogens, such as post-elimination measles, and control policies that have been applied. CONCLUSIONS Our work provides a model-based, theoretical foundation to understand and guide policy for subcritical zoonoses, integrating across disciplinary and species boundaries in a manner consistent with One Health principles.
Collapse
Affiliation(s)
- Riley O. Mummah
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA 90095 USA
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - Nicole A. Hoff
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - Anne W. Rimoin
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA 90095 USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
14
|
Evaluation of strategies using simulation model to control a potential outbreak of highly pathogenic avian influenza among poultry farms in Central Luzon, Philippines. PLoS One 2020; 15:e0238815. [PMID: 32913363 PMCID: PMC7482972 DOI: 10.1371/journal.pone.0238815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
The Philippines confirmed its first epidemic of Highly Pathogenic Avian Influenza (HPAI) on August 11, 2017. It ended in November of 2017. Despite the successful management of the epidemic, reemergence is a continuous threat. The aim of this study was to conduct a mathematical model to assess the spatial transmission of HPAI among poultry farms in Central Luzon. Different control strategies and the current government protocol of 1 km radius pre-emptive culling (PEC) from infected farms were evaluated. The alternative strategies include 0.5km PEC, 1.5km PEC, 2 km PEC, 2.5 km PEC, and 3 km PEC, no pre-emptive culling (NPEC). The NPEC scenario was further modeled with a time of government notification set at 24hours, 48 hours, and 72 hours after the detection. Disease spread scenarios under each strategy were generated using an SEIR (susceptible-exposed-infectious-removed) stochastic model. A spatial transmission kernel was calculated and used to represent all potential routes of infection between farms. We assumed that the latent period occurs between 1–2 days, disease detection at 5–7 days post-infection, notification of authorities at 5–7 days post-detection and start of culling at 1–3 days post notification. The epidemic scenarios were compared based on the number of infected farms, the total number of culled farms, and the duration of the epidemic. Our results revealed that the current protocol is the most appropriate option compared with the other alternative interventions considered among farms with reproductive ratio (Ri) > 1. Shortening the culling radius to 0.5 km increased the duration of the epidemic. Further increase in the PEC zone decreased the duration of the epidemic but may not justify the increased number of farms to be culled. Nonetheless, the no-pre-emptive culling (NPEC) strategy can be an effective alternative to the current protocol if farm managers inform the government immediately within 24 hours of observation of the presence of HPAI in their farms. Moreover, if notification is made on days 1–3 after the detection, the scale and length of the outbreak have been significantly reduced. In conclusion, this study provided a comparison of various control measures for confronting the spread of HPAI infection using the simulation model. Policy makers can use this information to enhance the effectiveness of the current control strategy.
Collapse
|
15
|
Evaluation of human resources needed and comparison with human resources available to implement emergency vaccination in case of foot and mouth disease outbreaks in Tunisia. Epidemiol Infect 2020; 148:e128. [PMID: 32618526 PMCID: PMC7355213 DOI: 10.1017/s0950268820001284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious viral disease that affects domestic and wild artiodactyl animals and causes considerable economic losses related to outbreak management, production losses and trade impacts. In Tunisia, the last FMD outbreak took place in 2018-2019. The effectiveness of control measures implemented to control FMD depends, in particular, on the human resources used to implement them. Tunisia has the ultimate objective of obtaining OIE status as 'FMD-free with vaccination'. The aim of this study was to determine and compare the necessary and available human resources to control FMD outbreaks in Tunisia using emergency vaccination and to assess the gaps that would play a role in the implementation of the strategy. We developed a resources-requirement grid of necessary human resources for the management of the emergency vaccination campaign launched after the identification of a FMD-infected premises in Tunisia. Field surveys, conducted in the 24 governorates of Tunisia, allowed quantifying the available human resources for several categories of skills considered in the resources-requirement grid. For each governorate, we then compared available and necessary human resources to implement vaccination according to eight scenarios mixing generalised or cattle-targeted vaccination and different levels of human resources. The resources-requirement grid included 11 tasks in three groups: management of FMD-infected premises, organisational tasks and vaccination implementation. The available human resources for vaccination-related tasks included veterinarians and technicians from the public sector and appointed private veterinarians. The comparison of available and necessary human resources showed vaccination-related tasks to be the most time-consuming in terms of managing a FMD outbreak. Increasing the available human resources using appointed private veterinarians allowed performing the emergency vaccination of animals in the governorate in due time, especially if vaccination was targeted on cattle. The overall approach was validated by comparing the predicted and observed durations of a vaccination campaign conducted under the same conditions as during the 2014 Tunisian outbreak. This study could provide support to the Tunisian Veterinary Services or to other countries to optimise the management of a FMD outbreak.
Collapse
|
16
|
Bradhurst R, Garner G, East I, Death C, Dodd A, Kompas T. Management strategies for vaccinated animals after an outbreak of foot-and-mouth disease and the impact on return to trade. PLoS One 2019; 14:e0223518. [PMID: 31603929 PMCID: PMC6788736 DOI: 10.1371/journal.pone.0223518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
An incursion of Foot-and-mouth disease (FMD) in a previously FMD-free country can cause significant economic damage from immediate and prolonged closure of FMD-sensitive markets. Whilst emergency vaccination may help contain disease, the presence of vaccinated animals complicates post-outbreak management and the recovery of FMD-free status for return to trade. We present enhancements to the Australian Animal DISease (AADIS) model that allow comparisons of post-outbreak management strategies for vaccinated animals, for the purposes of securing the earliest possible return to trade. Two case studies are provided that compare the retention of vaccinated animals with removal for waste/salvage, and the impact on recovery of FMD-sensitive markets per OIE guidelines. It was found that a vaccinate-and-retain strategy was associated with lower post-outbreak management costs, however this advantage was outweighed by significantly higher trade losses. Under the assumptions of the study there was no cost advantage to salvaging the removed vaccinated animals.
Collapse
Affiliation(s)
- Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| | - Graeme Garner
- Epidemiology and One Health, Animal Health Policy Branch, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Iain East
- Epidemiology and One Health, Animal Health Policy Branch, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Clare Death
- Epidemiology and One Health, Animal Health Policy Branch, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Aaron Dodd
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, VIC, Australia
| | - Tom Kompas
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Bolzoni L, Bonacini E, Della Marca R, Groppi M. Optimal control of epidemic size and duration with limited resources. Math Biosci 2019; 315:108232. [PMID: 31330135 DOI: 10.1016/j.mbs.2019.108232] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022]
Abstract
The total number of infections (epidemic size) and the time needed for the infection to go extinct (epidemic duration) represent two of the main indicators for the severity of infectious disease epidemics in human and livestock. However, few attempts have been made to address the problem of minimizing at the same time the epidemic size and duration from a theoretical point of view by using optimal control theory. Here, we investigate the multi-objective optimal control problem aiming to minimize, through either vaccination or isolation, a suitable combination of epidemic size and duration when both maximum control effort and total amount of resources available during the entire epidemic period are limited. Application of Pontryagin's Maximum Principle to a Susceptible-Infected-Removed epidemic model, shows that, when the resources are not sufficient to maintain the maximum control effort for the entire duration of the epidemic, the optimal vaccination control admits only bang-bang solutions with one or two switches, while the optimal isolation control admits only bang-bang solutions with one switch. We also find that, especially when the maximum control effort is low, there may exist a trade-off between the minimization of the two objectives. Consideration of this conflict among objectives can be crucial in successfully tackling real-world problems, where different stakeholders with potentially different objectives are involved. Finally, the particular case of the minimum time optimal control problem with limited resources is discussed.
Collapse
Affiliation(s)
- Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via dei Mercati 13, Parma 43126, Italy.
| | - Elena Bonacini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 53/A, Parma 43124, Italy
| | - Rossella Della Marca
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 53/A, Parma 43124, Italy
| | - Maria Groppi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 53/A, Parma 43124, Italy
| |
Collapse
|
18
|
Firestone SM, Hayama Y, Bradhurst R, Yamamoto T, Tsutsui T, Stevenson MA. Reconstructing foot-and-mouth disease outbreaks: a methods comparison of transmission network models. Sci Rep 2019; 9:4809. [PMID: 30886211 PMCID: PMC6423326 DOI: 10.1038/s41598-019-41103-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
A number of transmission network models are available that combine genomic and epidemiological data to reconstruct networks of who infected whom during infectious disease outbreaks. For such models to reliably inform decision-making they must be transparently validated, robust, and capable of producing accurate predictions within the short data collection and inference timeframes typical of outbreak responses. A lack of transparent multi-model comparisons reduces confidence in the accuracy of transmission network model outputs, negatively impacting on their more widespread use as decision-support tools. We undertook a formal comparison of the performance of nine published transmission network models based on a set of foot-and-mouth disease outbreaks simulated in a previously free country, with corresponding simulated phylogenies and genomic samples from animals on infected premises. Of the transmission network models tested, Lau’s systematic Bayesian integration framework was found to be the most accurate for inferring the transmission network and timing of exposures, correctly identifying the source of 73% of the infected premises (with 91% accuracy for sources with model support >0.80). The Structured COalescent Transmission Tree Inference provided the most accurate inference of molecular clock rates. This validation study points to which models might be reliably used to reconstruct similar future outbreaks and how to interpret the outputs to inform control. Further research could involve extending the best-performing models to explicitly represent within-host diversity so they can handle next-generation sequencing data, incorporating additional animal and farm-level covariates and combining predictions using Ensemble methods and other approaches.
Collapse
Affiliation(s)
- Simon M Firestone
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Takehisa Yamamoto
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Toshiyuki Tsutsui
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Mark A Stevenson
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
19
|
Rawdon T, Garner M, Sanson R, Stevenson M, Cook C, Birch C, Roche S, Patyk K, Forde-Folle K, Dubé C, Smylie T, Yu Z. Evaluating vaccination strategies to control foot-and-mouth disease: a country comparison study. Epidemiol Infect 2018; 146:1138-1150. [PMID: 29785893 PMCID: PMC9134278 DOI: 10.1017/s0950268818001243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
Vaccination is increasingly being recognised as a potential tool to supplement 'stamping out' for controlling foot-and-mouth disease (FMD) outbreaks in non-endemic countries. Infectious disease simulation models provide the opportunity to determine how vaccination might be used in the face of an FMD outbreak. Previously, consistent relative benefits of specific vaccination strategies across different FMD simulation modelling platforms have been demonstrated, using a UK FMD outbreak scenario. We extended this work to assess the relative effectiveness of selected vaccination strategies in five countries: Australia, New Zealand, the USA, the UK and Canada. A comparable, but not identical, FMD outbreak scenario was developed for each country with initial seeding of Pan Asia type O FMD virus into an area with a relatively high density of livestock farms. A series of vaccination strategies (in addition to stamping out (SO)) were selected to evaluate key areas of interest from a disease response perspective, including timing of vaccination, species considerations (e.g. vaccination of only those farms with cattle), risk area vaccination and resources available for vaccination. The study found that vaccination used with SO was effective in reducing epidemic size and duration in a severe outbreak situation. Early vaccination and unconstrained resources for vaccination consistently outperformed other strategies. Vaccination of only those farms with cattle produced comparable results, with some countries demonstrating that this could be as effective as all species vaccination. Restriction of vaccination to higher risk areas was less effective than other strategies. This study demonstrates consistency in the relative effectiveness of selected vaccination strategies under different outbreak start up conditions conditional on the assumption that each of the simulation models provide a realistic estimation of FMD virus spread. Preferred outbreak management approaches must however balance the principles identified in this study, working to clearly defined outbreak management objectives, while having a good understanding of logistic requirements and the socio-economic implications of different control measures.
Collapse
Affiliation(s)
- T.G. Rawdon
- Diagnostics and Surveillance Services Directorate, Ministry for Primary Industries, Upper Hutt 5140, New Zealand
| | - M.G. Garner
- Department of Agriculture and Water Resources, Epidemiology and One Health Program, Canberra City ACT 2016, Australia
| | - R.L. Sanson
- AsureQuality Limited, Palmerston North 4440, New Zealand
| | - M.A. Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia
| | - C. Cook
- Animal and Plant Health Agency (APHA), Weybridge, UK
| | - C. Birch
- Animal and Plant Health Agency (APHA), Weybridge, UK
| | - S.E. Roche
- Department of Agriculture and Water Resources, Epidemiology and One Health Program, Canberra City ACT 2016, Australia
| | - K.A. Patyk
- United States Department of Agriculture, Science Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, Colorado, USA
| | - K.N. Forde-Folle
- United States Department of Agriculture, Science Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, Colorado, USA
| | - C. Dubé
- Animal Health Risk Assessment Unit, Canadian Food Inspection Agency, Ontario, Canada
| | - T. Smylie
- Foreign Animal Disease Section, Canadian Food Inspection Agency, Ontario, Canada
| | - Z.D. Yu
- Readiness and Response Services Directorate, Ministry for Primary Industries, Wellington 6140, New Zealand
| |
Collapse
|
20
|
Van Andel M, Hollings T, Bradhurst R, Robinson A, Burgman M, Gates MC, Bingham P, Carpenter T. Does Size Matter to Models? Exploring the Effect of Herd Size on Outputs of a Herd-Level Disease Spread Simulator. Front Vet Sci 2018; 5:78. [PMID: 29780811 PMCID: PMC5946670 DOI: 10.3389/fvets.2018.00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Disease spread modeling is widely used by veterinary authorities to predict the impact of emergency animal disease outbreaks in livestock and to evaluate the cost-effectiveness of different management interventions. Such models require knowledge of basic disease epidemiology as well as information about the population of animals at risk. Essential demographic information includes the production system, animal numbers, and their spatial locations yet many countries with significant livestock industries do not have publically available and accurate animal population information at the farm level that can be used in these models. The impact of inaccuracies in data on model outputs and the decisions based on these outputs is seldom discussed. In this analysis, we used the Australian Animal Disease model to simulate the spread of foot-and-mouth disease seeded into high-risk herds in six different farming regions in New Zealand. We used three different susceptible animal population datasets: (1) a gold standard dataset comprising known herd sizes, (2) a dataset where herd size was simulated from a beta-pert distribution for each herd production type, and (3) a dataset where herd size was simplified to the median herd size for each herd production type. We analyzed the model outputs to compare (i) the extent of disease spread, (ii) the length of the outbreaks, and (iii) the possible impacts on decisions made for simulated outbreaks in different regions. Model outputs using the different datasets showed statistically significant differences, which could have serious implications for decision making by a competent authority. Outbreak duration, number of infected properties, and vaccine doses used during the outbreak were all significantly smaller for the gold standard dataset when compared with the median herd size dataset. Initial outbreak location and disease control strategy also significantly influenced the duration of the outbreak and number of infected premises. The study findings demonstrate the importance of having accurate national-level population datasets to ensure effective decisions are made before and during disease outbreaks, reducing the damage and cost.
Collapse
Affiliation(s)
- Mary Van Andel
- Investigation and Diagnostic Centre, Surveillance and Investigation Team (Animal Health), Operations Branch, Ministry for Primary Industries, Wallaceville, New Zealand
| | - Tracey Hollings
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Robinson
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Melbourne, VIC, Australia
| | - Mark Burgman
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Melbourne, VIC, Australia.,Centre for Environmental Policy, Imperial College London, London, United Kingdom
| | - M Carolyn Gates
- Epicentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Paul Bingham
- Investigation and Diagnostic Centre, Surveillance and Investigation Team (Animal Health), Operations Branch, Ministry for Primary Industries, Wallaceville, New Zealand
| | - Tim Carpenter
- Epicentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
Estimation of the transmission dynamics of African swine fever virus within a swine house. Epidemiol Infect 2017; 145:2787-2796. [DOI: 10.1017/s0950268817001613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYThe spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans. This creates a need for estimation of parameters. This study presents a new analysis of a previously published study. A full likelihood framework is presented including the impact of model assumptions on the estimated transmission parameters. As animals were only tested every other day, an interpretation was introduced to cover the weighted infectiousness on unobserved days for the individual animals (WIU). Based on our model and the set of assumptions, the within- and between-pen transmission parameters were estimated to βw = 1·05 (95% CI 0·62–1·72), βb = 0·46 (95% CI 0·17–1·00), respectively, and the WIU = 1·00 (95% CI 0–1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would be detected 13–19 days after introduction.
Collapse
|
22
|
Boklund A, Mortensen S, Johansen MH, Halasa T. Resource Estimations in Contingency Planning for Foot-and-Mouth Disease. Front Vet Sci 2017; 4:64. [PMID: 28553640 PMCID: PMC5425474 DOI: 10.3389/fvets.2017.00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 11/24/2022] Open
Abstract
Preparedness planning for a veterinary crisis is important to be fast and effective in the eradication of disease. For countries with a large export of animals and animal products, each extra day in an epidemic will cost millions of Euros due to the closure of export markets. This is important for the Danish husbandry industry, especially the swine industry, which had an export of €4.4 billion in 2012. The purposes of this project were to (1) develop an iterative tool with the aim of estimating the resources needed during an outbreak of foot-and-mouth disease (FMD) in Denmark, (2) identify areas, which can delay the control of the disease. The tool developed should easily be updated, when knowledge is gained from other veterinary crises or during an outbreak of FMD. The stochastic simulation model DTU-DADS was used to simulate spread of FMD in Denmark. For each task occurring during an epidemic of FMD, the time and personnel needed per herd was estimated by a working group with expertise in contingency and crisis management. By combining this information, an iterative model was created to calculate the needed personnel on a daily basis during the epidemic. The needed personnel was predicted to peak within the first week with a requirement of approximately 123 (65–175) veterinarians, 33 (23–64) technicians, and 36 (26–49) administrative staff on day 2, while the personnel needed in the Danish Emergency Management Agency (responsible for the hygiene barrier and initial cleaning and disinfection of the farm) was predicted to be 174 (58–464), mostly recruits. The time needed for surveillance visits was predicted to be the most influential factor in the calculations. Based on results from a stochastic simulation model, it was possible to create an iterative model to estimate the requirements for personnel during an FMD outbreak in Denmark. The model can easily be adjusted, when new information on resources appears from management of other crisis or from new model runs.
Collapse
Affiliation(s)
- Anette Boklund
- Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Sten Mortensen
- The Danish Veterinary and Food Administration, Head Office, Glostrup, Denmark
| | | | - Tariq Halasa
- Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
23
|
Yadav S, Weng HY. Estimating the scale of adverse animal welfare consequences of movement restriction and mitigation strategies in a classical swine fever outbreak. BMC Vet Res 2017; 13:83. [PMID: 28376865 PMCID: PMC5379744 DOI: 10.1186/s12917-017-1008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/28/2017] [Indexed: 11/30/2022] Open
Abstract
Background The study aim was to quantify the impact of movement restriction on the well-being of pigs and the associated mitigation responses during a classical swine fever (CSF) outbreak. We developed a stochastic risk assessment model and incorporated Indiana swine industry statistics to estimate the timing and number of swine premises that would encounter overcrowding or feed interruption resulting from movement restriction. Our model also quantified the amount of on-farm euthanasia and movement of pigs to slaughter plants required to alleviate those conditions. We simulated various single-site (i.e., an outbreak initiated from one location) and multiple-site (i.e., an outbreak initiated from more than one location) outbreak scenarios in Indiana to estimate outputs. Results The study estimated that 14% of the swine premises in Indiana would encounter overcrowding or feed interruption due to movement restriction implemented during a CSF outbreak. The number of premises that would experience animal welfare conditions was about 2.5 fold of the number of infected premises. On-farm euthanasia needed to be performed on 33% of those swine premises to alleviate adverse animal welfare conditions, and more than 90% of on-farm euthanasia had to be carried out within 2 weeks after the implementation of movement restriction. Conversely, movement of pigs to slaughter plants could alleviate 67% of adverse animal welfare conditions due to movement restriction, and only less than 1% of movement of pigs to slaughter plants had to be initiated in the first 2 weeks of movement restrictions. The risk of secondary outbreaks due to movement of pigs from movement restriction areas to slaughter plants was low and only seven pigs from each shipment needed to be tested for CSF infection to prevent a secondary outbreak. Conclusions We found that the scale of adverse animal welfare consequences of movement restriction during a CSF outbreak in Indiana was substantial, and controlled movement of pigs to slaughter plants was an efficient and low-risk alternative mitigation response to on-farm euthanasia. The output estimates generated from this study provide empirical evidence for decision makers to properly incorporate required resources for mitigating adverse animal welfare conditions in CSF outbreak management strategic planning.
Collapse
Affiliation(s)
- Shankar Yadav
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.,Plum Island Animal Disease Center Research Participation Program (ORISE fellow), Orient Point, NY, 11957, USA
| | - Hsin-Yi Weng
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Yadav S, Olynk Widmar N, Lay DC, Croney C, Weng HY. Evaluation of Movement Restriction Zone Sizes in Controlling Classical Swine Fever Outbreaks. Front Vet Sci 2017; 3:124. [PMID: 28119920 PMCID: PMC5222815 DOI: 10.3389/fvets.2016.00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/23/2016] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to compare the impacts of movement restriction zone sizes of 3, 5, 9, and 11 km with that of 7 km (the recommended zone size in the United States) in controlling a classical swine fever (CSF) outbreak. In addition to zone size, different compliance assumptions and outbreak types (single site and multiple site) were incorporated in the study. Three assumptions of compliance level were simulated: baseline, baseline ± 10%, and baseline ± 15%. The compliance level was held constant across all zone sizes in the baseline simulation. In the baseline ± 10% and baseline ± 15% simulations, the compliance level was increased for 3 and 5 km and decreased for 9 and 11 km from the baseline by the indicated percentages. The compliance level remained constant in all simulations for the 7-km zone size. Four single-site (i.e., with one index premises at the onset of outbreak) and four multiple-site (i.e., with more than one index premises at the onset of outbreak) CSF outbreak scenarios in Indiana were simulated incorporating various zone sizes and compliance assumptions using a stochastic between-premises disease spread model to estimate epidemic duration, percentage of infected, and preemptively culled swine premises. Furthermore, a risk assessment model that incorporated the results from the disease spread model was developed to estimate the number of swine premises under movement restrictions that would experience animal welfare outcomes of overcrowding or feed interruption during a CSF outbreak in Indiana. Compared with the 7-km zone size, the 3-km zone size resulted in a longer median epidemic duration, larger percentages of infected premises, and preemptively culled premises (P’s < 0.001) across all compliance assumptions and outbreak types. With the assumption of a higher compliance level, the 5-km zone size significantly (P < 0.001) reduced the epidemic duration and percentage of swine premises that would experience animal welfare outcomes in both outbreak types, whereas assumption of a lower compliance level for 9- and 11-km zone sizes significantly (P < 0.001) increased the epidemic duration and percentage of swine premises with animal welfare outcomes compared with the 7-km zone size. The magnitude of impact due to a zone size varied across the outbreak types (single site and multiple site). Overall, the 7-km zone size was found to be most effective in controlling CSF outbreaks, whereas the 5-km zone size was comparable to the 7-km zone size in some circumstances.
Collapse
Affiliation(s)
- Shankar Yadav
- Department of Comparative Pathobiology, Purdue University , West Lafayette, IN , USA
| | - Nicole Olynk Widmar
- Department of Agricultural Economics, Purdue University , West Lafayette, IN , USA
| | - Donald C Lay
- USDA-ARS Livestock Behavior Research Unit , West Lafayette, IN , USA
| | - Candace Croney
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Purdue University Center for Animal Welfare Science, West Lafayette, IN, USA
| | - Hsin-Yi Weng
- Department of Comparative Pathobiology, Purdue University , West Lafayette, IN , USA
| |
Collapse
|
25
|
Webb CT, Ferrari M, Lindström T, Carpenter T, Dürr S, Garner G, Jewell C, Stevenson M, Ward MP, Werkman M, Backer J, Tildesley M. Ensemble modelling and structured decision-making to support Emergency Disease Management. Prev Vet Med 2017; 138:124-133. [PMID: 28237227 DOI: 10.1016/j.prevetmed.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application.
Collapse
Affiliation(s)
- Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Matthew Ferrari
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Tom Lindström
- Department of Biology, Colorado State University, Fort Collins, CO, USA; IFM, Theory and Modelling, Linköpings Universitet, Linköping, Sweden
| | - Tim Carpenter
- EpiCentre, Massey University, Palmerston North, New Zealand
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Berne, Switzerland
| | - Graeme Garner
- Animal Health Policy Branch, Department of Agriculture, Canberra, Australia
| | - Chris Jewell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Mark Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael P Ward
- Faculty of Veterinary Science, The University of Sydney, Camden, Australia
| | - Marleen Werkman
- Central Veterinary Institute part of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Jantien Backer
- Central Veterinary Institute part of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Michael Tildesley
- Warwick Infectious Disease Epidemiology Research (WIDER) Group, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK
| |
Collapse
|
26
|
Garner MG, East IJ, Stevenson MA, Sanson RL, Rawdon TG, Bradhurst RA, Roche SE, Van Ha P, Kompas T. Early Decision Indicators for Foot-and-Mouth Disease Outbreaks in Non-Endemic Countries. Front Vet Sci 2016; 3:109. [PMID: 27965969 PMCID: PMC5127847 DOI: 10.3389/fvets.2016.00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
Disease managers face many challenges when deciding on the most effective control strategy to manage an outbreak of foot-and-mouth disease (FMD). Decisions have to be made under conditions of uncertainty and where the situation is continually evolving. In addition, resources for control are often limited. A modeling study was carried out to identify characteristics measurable during the early phase of a FMD outbreak that might be useful as predictors of the total number of infected places, outbreak duration, and the total area under control (AUC). The study involved two modeling platforms in two countries (Australia and New Zealand) and encompassed a large number of incursion scenarios. Linear regression, classification and regression tree, and boosted regression tree analyses were used to quantify the predictive value of a set of parameters on three outcome variables of interest: the total number of infected places, outbreak duration, and the total AUC. The number of infected premises (IPs), number of pending culls, AUC, estimated dissemination ratio, and cattle density around the index herd at days 7, 14, and 21 following first detection were associated with each of the outcome variables. Regression models for the size of the AUC had the highest predictive value (R2 = 0.51-0.9) followed by the number of IPs (R2 = 0.3-0.75) and outbreak duration (R2 = 0.28-0.57). Predictability improved at later time points in the outbreak. Predictive regression models using various cut-points at day 14 to define small and large outbreaks had positive predictive values of 0.85-0.98 and negative predictive values of 0.52-0.91, with 79-97% of outbreaks correctly classified. On the strict assumption that each of the simulation models used in this study provide a realistic indication of the spread of FMD in animal populations. Our conclusion is that relatively simple metrics available early in a control program can be used to indicate the likely magnitude of an FMD outbreak under Australian and New Zealand conditions.
Collapse
Affiliation(s)
- Michael G Garner
- Animal Health Policy Branch, Department of Agriculture and Water Resources , Canberra, ACT , Australia
| | - Iain J East
- Animal Health Policy Branch, Department of Agriculture and Water Resources , Canberra, ACT , Australia
| | - Mark A Stevenson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne , Parkville, VIC , Australia
| | | | - Thomas G Rawdon
- Investigation and Diagnostic Centre and Response Directorate, Ministry for Primary Industries , Wellington , New Zealand
| | - Richard A Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne , Parkville, VIC , Australia
| | - Sharon E Roche
- Animal Health Policy Branch, Department of Agriculture and Water Resources , Canberra, ACT , Australia
| | - Pham Van Ha
- Crawford School of Public Policy, Australian National University , Acton, ACT , Australia
| | - Tom Kompas
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
27
|
Ward M, Cowled B, Garner G. Letter to the editor. Aust Vet J 2016; 94:396-397. [PMID: 27785797 DOI: 10.1111/avj.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Modelling the time at which overcrowding and feed interruption emerge on the swine premises under movement restrictions during a classical swine fever outbreak. Animal 2016; 11:493-499. [PMID: 27481403 DOI: 10.1017/s1751731116001609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A stochastic risk model was developed to estimate the time elapsed before overcrowding (TOC) or feed interruption (TFI) emerged on the swine premises under movement restrictions during a classical swine fever (CSF) outbreak in Indiana, USA. Nursery (19 to 65 days of age) and grow-to-finish (40 to 165 days of age) pork production operations were modelled separately. Overcrowding was defined as the total weight of pigs on premises exceeding 100% to 115% of the maximum capacity of the premises, which was computed as the total weight of the pigs at harvest/transition age. Algorithms were developed to estimate age-specific weight of the pigs on premises and to compare the daily total weight of the pigs with the threshold weight defining overcrowding to flag the time when the total weight exceeded the threshold (i.e. when overcrowding occurred). To estimate TFI, an algorithm was constructed to model a swine producer's decision to discontinue feed supply by incorporating the assumptions that a longer estimated epidemic duration, a longer time interval between the age of pigs at the onset of the outbreak and the harvest/transition age, or a longer progression of an ongoing outbreak would increase the probability of a producer's decision to discontinue the feed supply. Adverse animal welfare conditions were modelled to emerge shortly after an interruption of feed supply. Simulations were run with 100 000 iterations each for a 365-day period. Overcrowding occurred in all simulated iterations, and feed interruption occurred in 30% of the iterations. The median (5th and 95th percentiles) TOC was 24 days (10, 43) in nursery operations and 78 days (26, 134) in grow-to-finish operations. Most feed interruptions, if they emerged, occurred within 15 days of an outbreak. The median (5th and 95th percentiles) time at which either overcrowding or feed interruption emerged was 19 days (4, 42) in nursery and 57 days (4, 130) in grow-to-finish operations. The study findings suggest that overcrowding and feed interruption could emerge early during a CSF outbreak among swine premises under movement restrictions. The outputs derived from the risk model could be used to estimate and evaluate associated mitigation strategies for alleviating adverse animal welfare conditions resulting from movement restrictions.
Collapse
|
29
|
Knight-Jones TJD, Robinson L, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 2 - Epidemiology, Wildlife and Economics. Transbound Emerg Dis 2016; 63 Suppl 1:14-29. [DOI: 10.1111/tbed.12522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport New York USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong Vic Australia
| |
Collapse
|
30
|
Halasa T, Boklund A, Bøtner A, Toft N, Thulke HH. Simulation of Spread of African Swine Fever, Including the Effects of Residues from Dead Animals. Front Vet Sci 2016; 3:6. [PMID: 26870740 PMCID: PMC4735426 DOI: 10.3389/fvets.2016.00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
To study the spread of African swine fever (ASF) within a pig unit and the impact of unit size on ASF spread, a simulation model was created. In the model, an animal can be in one of the following stages: susceptible, latent, subclinical, clinical, or recovered. Animals can be infectious during the subclinical stage and are fully infectious during the clinical stage. ASF virus (ASFV) infection through residues of dead animals in the slurries was also modeled in an exponentially fading-out pattern. Low and high transmission rates for ASFV were tested in the model. Robustness analysis was carried out in order to study the impact of uncertain parameters on model predictions. The results showed that the disease may fade out within the pig unit without a major outbreak. Furthermore, they showed that spread of ASFV is dependent on the infectiousness of subclinical animals and the residues of dead animals, the transmission rate of the virus, and importantly the unit size. Moreover, increasing the duration of the latent or the subclinical stages resulted in longer time to disease fade out. The proposed model is a simple and robust tool simulating the spread of ASFV within a pig house taking into account dynamics of ASFV spread and the unit size. The tool can be implemented in simulation models of ASFV spread between herds.
Collapse
Affiliation(s)
- Tariq Halasa
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Anette Boklund
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Anette Bøtner
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Nils Toft
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Hans-Hermann Thulke
- Department of Ecological Modeling, Helmholtz Center for Environmental Research (UFZ) , Leipzig , Germany
| |
Collapse
|
31
|
East IJ, Martin PAJ, Langstaff I, Iglesias RM, Sergeant ESG, Garner MG. Assessing the delay to detection and the size of the outbreak at the time of detection of incursions of foot and mouth disease in Australia. Prev Vet Med 2015; 123:1-11. [PMID: 26718055 DOI: 10.1016/j.prevetmed.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
The time delay to detection of an outbreak of an emergency animal disease directly affects the size of the outbreak at detection and the likelihood that the disease can be eradicated. This time delay is a direct function of the efficacy of the surveillance system in the country involved. Australia has recently completed a comprehensive review of its general surveillance system examining regional variation in both the behaviour of modelled outbreaks of foot and mouth disease and the likelihood that each outbreak will be detected and reported to government veterinary services. The size of the outbreak and the time delay from introduction to the point where 95% confidence of detection was reached showed significant (p < 0.05) regional variation with the more remote northern areas experiencing smaller outbreaks that are less likely to spread and less likely to be reported to government services than outbreaks in the more developed southern areas of Australia. Outbreaks in the more densely populated areas may take up to 43 days until a 95% confidence of detection is achieved and at that time, the outbreak may involve up to 53 farms.
Collapse
Affiliation(s)
- I J East
- Animal Health Policy Branch, Department of Agriculture and Water Resources, GPO Box 858, Canberra, ACT 2601, Australia.
| | - P A J Martin
- Department of Agriculture and Food, PO Box 1231, Bunbury, Western Australia 6231, Australia
| | - I Langstaff
- Animal Health Australia, 95 Northbourne Avenue, Turner, ACT 2612, Australia
| | - R M Iglesias
- Animal Health Policy Branch, Department of Agriculture and Water Resources, GPO Box 858, Canberra, ACT 2601, Australia
| | - E S G Sergeant
- AusVet Animal Health Services, PO Box 2321, Orange, NSW 2800, Australia
| | - M G Garner
- Animal Health Policy Branch, Department of Agriculture and Water Resources, GPO Box 858, Canberra, ACT 2601, Australia
| |
Collapse
|
32
|
Probert WJM, Shea K, Fonnesbeck CJ, Runge MC, Carpenter TE, Dürr S, Garner MG, Harvey N, Stevenson MA, Webb CT, Werkman M, Tildesley MJ, Ferrari MJ. Decision-making for foot-and-mouth disease control: Objectives matter. Epidemics 2015; 15:10-9. [PMID: 27266845 DOI: 10.1016/j.epidem.2015.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
Formal decision-analytic methods can be used to frame disease control problems, the first step of which is to define a clear and specific objective. We demonstrate the imperative of framing clearly-defined management objectives in finding optimal control actions for control of disease outbreaks. We illustrate an analysis that can be applied rapidly at the start of an outbreak when there are multiple stakeholders involved with potentially multiple objectives, and when there are also multiple disease models upon which to compare control actions. The output of our analysis frames subsequent discourse between policy-makers, modellers and other stakeholders, by highlighting areas of discord among different management objectives and also among different models used in the analysis. We illustrate this approach in the context of a hypothetical foot-and-mouth disease (FMD) outbreak in Cumbria, UK using outputs from five rigorously-studied simulation models of FMD spread. We present both relative rankings and relative performance of controls within each model and across a range of objectives. Results illustrate how control actions change across both the base metric used to measure management success and across the statistic used to rank control actions according to said metric. This work represents a first step towards reconciling the extensive modelling work on disease control problems with frameworks for structured decision making.
Collapse
Affiliation(s)
- William J M Probert
- Center for Infectious Disease Dynamics, Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States; Department of Biology and Intercollege Graduate Degree Program in Ecology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, United States; School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, United Kingdom.
| | - Katriona Shea
- Center for Infectious Disease Dynamics, Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States; Department of Biology and Intercollege Graduate Degree Program in Ecology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, United States
| | | | - Michael C Runge
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Rd, Laurel, MD, United States
| | - Tim E Carpenter
- EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Salome Dürr
- Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - M Graeme Garner
- Animal Health Policy Branch, Australian Government, Department of Agriculture, GPO Box 858, Canberra 2601, ACT, Australia
| | - Neil Harvey
- Department of Computing and Information Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Mark A Stevenson
- Faculty of Veterinary Science, University of Melbourne, Melbourne, VIC, Australia
| | - Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Marleen Werkman
- Central Veterinary Institute, Wageningen University and Research Centre, Houtribweg 39, 8221 RA Lelystad, The Netherlands; School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, United Kingdom
| | - Michael J Tildesley
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, United Kingdom
| | - Matthew J Ferrari
- Center for Infectious Disease Dynamics, Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
33
|
Stärk KD, Häsler B. The value of information: Current challenges in surveillance implementation. Prev Vet Med 2015; 122:229-34. [DOI: 10.1016/j.prevetmed.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/24/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
|
34
|
Species Authentication of Common Meat Based on PCR Analysis of the Mitochondrial COI Gene. Appl Biochem Biotechnol 2015; 176:1770-80. [PMID: 26082039 DOI: 10.1007/s12010-015-1715-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
Adulteration of meat products and costly animal-derived commodities with their inferior/cheaper counterparts is a grievous global problem. Species authentication is still technical challenging, especially to those deep processed products. The present study described the design of seven sets of species-specific primer based on a high heterozygous region of mitochondrial cytochrome c oxidase subunit I (COI) gene. These primers were proven to have high species specificity and no cross-reactions and unexpected products to different DNA source. Multiplex PCR assay was achieved for rapid and economical identification of four commonly consumed meats (pork, beef, chicken, and mutton). The conventional PCR assay was sensitive down to 0.001 ng of DNA template in the reactant. The developed method was also powerful in detecting as low as 0.1-mg adulterated pork (0.05 % in wt/wt) in an artificial counterfeited mutton. Validation test showed that the assay is specific, reproducible, and robust in commercial deep processed meats, leatherware, and feather commodities. This proposed method will be greatly beneficial to the consumers, food industry, leather, and feather commodity manufacture.
Collapse
|
35
|
Martin MK, Helm J, Patyk KA. An approach for de-identification of point locations of livestock premises for further use in disease spread modeling. Prev Vet Med 2015; 120:131-140. [PMID: 25944175 DOI: 10.1016/j.prevetmed.2015.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 03/31/2015] [Accepted: 04/17/2015] [Indexed: 11/27/2022]
Abstract
We describe a method for de-identifying point location data used for disease spread modeling to allow data custodians to share data with modeling experts without disclosing individual farm identities. The approach is implemented in an open-source software program that is described and evaluated here. The program allows a data custodian to select a level of de-identification based on the K-anonymity statistic. The program converts a file of true farm locations and attributes into a file appropriate for use in disease spread modeling with the locations randomly modified to prevent re-identification based on location. Important epidemiological relationships such as clustering are preserved to as much as possible to allow modeling similar to those using true identifiable data. The software implementation was verified by visual inspection and basic descriptive spatial analysis of the output. Performance is sufficient to allow de-identification of even large data sets on desktop computers available to any data custodian.
Collapse
Affiliation(s)
- Michael K Martin
- Livestock Poultry Health Division, Clemson University, Columbia, SC 29224, USA.
| | - Julie Helm
- Livestock Poultry Health Division, Clemson University, Columbia, SC 29224, USA
| | - Kelly A Patyk
- U.S Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science Technology and Analysis Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Building B, Fort Collins, CO 80526, USA
| |
Collapse
|
36
|
East IJ, Roche SE, Wicks RM, de Witte K, Garner MG. Options for managing animal welfare on intensive pig farms confined by movement restrictions during an outbreak of foot and mouth disease. Prev Vet Med 2014; 117:533-41. [PMID: 25457134 DOI: 10.1016/j.prevetmed.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
An outbreak of foot and mouth disease in Australia would trigger a major disease control and eradication program that would include restriction of movement of live animals within defined disease control zones. Experiences from outbreaks in other countries show that restrictions that limit the ability to turn off stock can lead to animal welfare compromise on intensively managed farms that are not infected with the disease. Intensive pig farms are considered to be at high risk of developing welfare problems during a control program due to the imposed movement restrictions and limited space available to house growing pigs. This study was designed to investigate strategies that could be used to mitigate animal welfare problems on intensive pig farms during a simulated outbreak of foot and mouth disease in a livestock dense region of Australia. Three strategies for managing farms affected by animal welfare problems were assessed, including on-farm culling of grower and finisher pigs, on-farm culling of finisher pigs only, and permit-based movement of finisher pigs to slaughter at abattoir. Under traditional approaches of giving infected premises (IP) priority over culling of farms with welfare problems (WP), delays of up to 25 days were experienced prior to culling of WPs. Deployment of vaccination did little to reduce the delay to culling of WPs. These delays were sensitive to resources available for control, with reduced resources increasing the time until welfare problems were addressed. Assigning equal priority to all farms requiring culling regardless of status as IP or WP and culling each as they arose reduced the delay to culling of WPs to no more than 4 days without large increases in either the duration or the size of the outbreaks observed.
Collapse
Affiliation(s)
- I J East
- Australian Government Department of Agriculture, GPO Box 858, Canberra, Australian Capital Territory 2601, Australia.
| | - S E Roche
- Australian Government Department of Agriculture, GPO Box 858, Canberra, Australian Capital Territory 2601, Australia.
| | - R M Wicks
- Australian Government Department of Agriculture, GPO Box 858, Canberra, Australian Capital Territory 2601, Australia.
| | - K de Witte
- Animal Health Australia, 26-28 Napier Close, Deakin, Australian Capital Territory 2600, Australia.
| | - M G Garner
- Australian Government Department of Agriculture, GPO Box 858, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
37
|
Evaluating vaccination strategies to control foot-and-mouth disease: a model comparison study. Epidemiol Infect 2014; 143:1256-75. [DOI: 10.1017/s0950268814001927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYSimulation models can offer valuable insights into the effectiveness of different control strategies and act as important decision support tools when comparing and evaluating outbreak scenarios and control strategies. An international modelling study was performed to compare a range of vaccination strategies in the control of foot-and-mouth disease (FMD). Modelling groups from five countries (Australia, New Zealand, USA, UK, The Netherlands) participated in the study. Vaccination is increasingly being recognized as a potentially important tool in the control of FMD, although there is considerable uncertainty as to how and when it should be used. We sought to compare model outputs and assess the effectiveness of different vaccination strategies in the control of FMD. Using a standardized outbreak scenario based on data from an FMD exercise in the UK in 2010, the study showed general agreement between respective models in terms of the effectiveness of vaccination. Under the scenario assumptions, all models demonstrated that vaccination with ‘stamping-out’ of infected premises led to a significant reduction in predicted epidemic size and duration compared to the ‘stamping-out’ strategy alone. For all models there were advantages in vaccinating cattle-only rather than all species, using 3-km vaccination rings immediately around infected premises, and starting vaccination earlier in the control programme. This study has shown that certain vaccination strategies are robust even to substantial differences in model configurations. This result should increase end-user confidence in conclusions drawn from model outputs. These results can be used to support and develop effective policies for FMD control.
Collapse
|
38
|
Garner MG, Bombarderi N, Cozens M, Conway ML, Wright T, Paskin R, East IJ. Estimating Resource Requirements to Staff a Response to a Medium to Large Outbreak of Foot and Mouth Disease in Australia. Transbound Emerg Dis 2014; 63:e109-21. [DOI: 10.1111/tbed.12239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- M. G. Garner
- Department of Agriculture; Australian Government; Canberra ACT Australia
| | - N. Bombarderi
- Government of South Australia; Primary Industries and Regions; Glenside SA Australia
| | - M. Cozens
- Queensland Government; Department of Agriculture, Fisheries and Forestry; Nambour QLD Australia
| | - M. L. Conway
- Tasmanian Government; Department of Primary Industries, Parks, Water and Environment; Hobart TAS Australia
| | - T. Wright
- New South Wales Government; Department of Primary Industries; Orange NSW Australia
| | - R. Paskin
- Government of South Australia; Primary Industries and Regions; Glenside SA Australia
| | - I. J. East
- Department of Agriculture; Australian Government; Canberra ACT Australia
| |
Collapse
|