1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Immobilization of lipases onto the halogen & haloalkanes modified SBA-15: Enzymatic activity and glycerolysis performance study. Int J Biol Macromol 2020; 169:239-250. [PMID: 33345972 DOI: 10.1016/j.ijbiomac.2020.12.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
In this study, SBA-15 was modified by halogen & haloalkanes and later used to immobilize lipases. The hydrolysis activity and the glycerolysis performance of the immobilized lipases was carefully studied. Highest activity of the immobilized Candida antarctica lipase B (CALB), Lipase from Aspergillus oryzae (AOL), Lecitase® Ultra (LU) and lipase from Rhizomucor miehei (RML) was respectively at 5577, 12000, 2822 and 11,577 U/g; in addition, the highest activity was obtained from the lowest or moderate lipase loading, at 25.73, 90.72, 89.52 and 30.56 mg/g respectively. The mechanism of lipase immobilization was studied and it was through interfacial activation. The halogen & haloalkanes modification of SBA-15 afforded considerable glycerolysis activity for diacylglycerols (DAG) preparation. CALB@SBA-15-CH2CH2(CF2)5CF3 and CALB@SBA-15-CH2CH2(CF2)7CF3 were suitable for DAG production, they both exhibited good reusability in glycerolysis reaction, with 117.36% and 93.06% of their initial glycerolysis activity retained respectively after ten cycles of reuse. The relationships between temperature with triacylglycerols (TAG) conversion were lnV0 = 3.13-3.07/T and lnV0 = 7.90-4.64/T respectively for CALB@SBA-15-CH2CH2(CF2)5CF3 and CALB@SBA-15-CH2CH2(CF2)7CF3; in addition, their activation energy (Ea) was respectively at 25.50 and 38.54 kJ/mol.
Collapse
|
3
|
Zhao H, Toe C. “Water-like” ammonium-based ionic liquids for lipase activation and enzymatic polymerization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Zhao H. What do we learn from enzyme behaviors in organic solvents? - Structural functionalization of ionic liquids for enzyme activation and stabilization. Biotechnol Adv 2020; 45:107638. [PMID: 33002582 DOI: 10.1016/j.biotechadv.2020.107638] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Enzyme activity in nonaqueous media (e.g. conventional organic solvents) is typically lower than in water by several orders of magnitude. There is a rising interest of developing new nonaqueous solvent systems that are more "water-like" and more biocompatible. Therefore, we need to learn from the current state of nonaqueous biocatalysis to overcome its bottleneck and provide guidance for new solvent design. This review firstly focuses on the discussion of how organic solvent properties (such as polarity and hydrophobicity) influence the enzyme activity and stability, and how these properties impact the enzyme's conformation and dynamics. While hydrophobic organic solvents usually lead to the maintenance of enzyme activity, solvents carrying functional groups like hydroxys and ethers (including crown ethers and cyclodextrins) can lead to enzyme activation. Ionic liquids (ILs) are designable solvents that can conveniently incorporate these functional groups. Therefore, we systematically survey these ether- and/or hydroxy-functionalized ILs, and find most of them are highly compatible with enzymes leading to high activity and stability. In particular, ILs carrying both ether and tert-alcohol groups are among the most enzyme-activating solvents. Future direction is to learn from enzyme behaviors in both water and nonaqueous media to design biocompatible "water-like" solvents.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, United States.
| |
Collapse
|
5
|
Enzymatic preparation of structured triacylglycerides containing γ-linolenic acid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhao H, Kanpadee N, Jindarat C. Ether-functionalized ionic liquids for nonaqueous biocatalysis: Effect of different cation cores. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Ferretti C, Spotti M, Di Cosimo J. Diglyceride-rich oils from glycerolysis of edible vegetable oils. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wang Z, Du W, Dai L, Liu D. Study on Lipozyme TL IM-catalyzed esterification of oleic acid and glycerol for 1,3-diolein preparation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ou G, He B, Halling P. Ionization basis for activation of enzymes soluble in ionic liquids. Biochim Biophys Acta Gen Subj 2016; 1860:1404-8. [PMID: 27060372 DOI: 10.1016/j.bbagen.2016.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/09/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The complex interactions between electrolytes and proteins have been studied for more than a century. However, understanding is not yet complete and does not provide a basis for predicting the activity of enzymes in ionic media. The use of ionic liquids (ILs) as reaction medium has opened up new opportunities for better understanding of the mechanism of enzymatic catalysis. Although a number of properties of ILs have been correlated with enzyme function, these relationships are not completely understood at a molecular level. METHODS We propose that ILs must be able to promote ionization of protein ionizable groups in order to dissolve active enzymes. The biocompatible IL need to possess a functional group with large donor number and acceptor number in both cationic and anionic units, each of which is based on a high dielectric constant lead structure. We designed and synthesized two series of ILs and determined their ionizing-dissociating abilities and activities of lipases soluble in these new ILs. RESULTS The results showed that the ionizing-dissociating abilities of ILs paralleled the catalytic activity trend of lipases dissolved in the ILs. The activities of lipases soluble in the newly designed ILs were comparable to those in water. CONCLUSIONS We can conclude that ionizing-dissociating abilities of an IL can be used as a basis for predicting the activity of enzymes soluble in the IL. General significance Ionization basis for activation of enzymes gives a deeper understanding of the behavior of enzymes in non-aqueous media at a molecular level.
Collapse
Affiliation(s)
- Guangnan Ou
- School of Bioengineering, Jimei University, Xiamen 361021, PR China; WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XW, UK
| | - Biyan He
- School of Bioengineering, Jimei University, Xiamen 361021, PR China
| | - Peter Halling
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XW, UK
| |
Collapse
|
10
|
Lv S, Zou X, Qian H, Qin J, Jin Q, Wang X. Impact of ionic liquid properties on selective enrichment of glycerides in direct lipase-catalyzed esterification. RSC Adv 2016. [DOI: 10.1039/c6ra24089e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The direct lipase-catalyzed esterification of oleic acid and glycerol was studied in ionic liquids in order to deduce the effects of solvent properties such as viscosity, ENT, log P and Kamlet–Taft parameters on selective enrichment of glycerides.
Collapse
Affiliation(s)
- Songtai Lv
- State Key Laboratory of Food Science and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
| | - Jie Qin
- State Key Laboratory of Food Science and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
| |
Collapse
|
11
|
Zhao H. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2016; 91:25-50. [PMID: 26949281 PMCID: PMC4777319 DOI: 10.1002/jctb.4837] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 05/08/2023]
Abstract
There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the 'specific ion effect' instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
12
|
Yang K, Bi Y, Sun S, Yang G, Ma S, Liu W. Optimisation of Novozym-435-catalysed esterification of fatty acid mixture for the preparation of medium- and long-chain triglycerides (MLCT) in solvent-free medium. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kaizhou Yang
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Yanlan Bi
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Shangde Sun
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Guolong Yang
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Sumin Ma
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Wei Liu
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| |
Collapse
|
13
|
Miranda K, Baeza-Jiménez R, Noriega-Rodríguez JA, García HS, Otero C. Optimization of structured diacylglycerols production containing ω-3 fatty acids via enzyme-catalysed glycerolysis of fish oil. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-012-1889-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Optimization of Enzymatic Synthesis of Tricaprylin in Ionic Liquids by Response Surface Methodology. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2186-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
|
16
|
Martins PF, Carmona C, Martinez EL, Sbaite P, Filho RM, Maciel MRW. Evaluation of methyl chavicol concentration by different evaporation processes using central composite experimental design. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Tang S, Baker GA, Zhao H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev 2012; 41:4030-66. [PMID: 22456483 PMCID: PMC3341508 DOI: 10.1039/c2cs15362a] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews that emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g. hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offers a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and--relative to their potential--virtually untouched fluids. It is abundantly clear that these remarkable fluidic materials are here to stay, just as certain design rules are slowly beginning to emerge. However, in fairness, serendipity also still plays an undeniable role, highlighting the need for both expanded in silico studies and a beacon to attract bright, young researchers to the field (406 references).
Collapse
Affiliation(s)
- Shaokun Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Gary A. Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Hua Zhao
- Chemistry Program, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
18
|
Wang W, Li T, Ning Z, Wang Y, Yang B, Yang X. Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme Microb Technol 2011; 49:192-6. [DOI: 10.1016/j.enzmictec.2011.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
19
|
Feddern V, Yang Z, Xu X, Badiale-Furlong E, de Souza-Soares LA. Synthesis of Octyl Dihydrocaffeate and Its Transesterification with Tricaprylin Catalyzed by Candida antarctica Lipase. Ind Eng Chem Res 2011. [DOI: 10.1021/ie200034y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Zhiyong Yang
- EMBRAPA, BR 153, Km 110, Concórdia 89700-000, Brazil
| | - Xuebing Xu
- EMBRAPA, BR 153, Km 110, Concórdia 89700-000, Brazil
| | | | | |
Collapse
|
20
|
Sangeetha R, Arulpandi I, Geetha A. Bacterial Lipases as Potential Industrial Biocatalysts: An Overview. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jm.2011.1.24] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Duan ZQ, Du W, Liu DH. Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|