1
|
He H, Shi M, Yang X, Zhan J, Lin Y, Guo Z, Liao Z, Lai C, Ren X, Huang B, Pan X. Dissolved organic matter accelerates microbial degradation of 17 alpha-ethinylestradiol in the presence of iron mineral. J Environ Sci (China) 2024; 139:364-376. [PMID: 38105062 DOI: 10.1016/j.jes.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 12/19/2023]
Abstract
Dissolved organic matter (DOM) and iron minerals widely existing in the natural aquatic environment can mediate the migration and transformation of organic pollutants. However, the mechanism of interaction between DOM and iron minerals in the microbial degradation of pollutants deserves further investigation. In this study, the mechanism of 17 alpha-ethinylestradiol (EE2) biodegradation mediated by humic acid (HA) and three kinds of iron minerals (goethite, magnetite, and pyrite) was investigated. The results found that HA and iron minerals significantly accelerated the biodegradation process of EE2, and the highest degradation efficiency of EE2 (48%) was observed in the HA-mediated microbial system with pyrite under aerobic conditions. Furthermore, it had been demonstrated that hydroxyl radicals (HO•) was the main active substance responsible for the microbial degradation of EE2. HO• is primarily generated through the reaction between hydrogen peroxide secreted by microorganisms and Fe(II), with aerobic conditions being more conducive. The presence of iron minerals and HA could change the microbial communities in the EE2 biodegradation system. These findings provide new information for exploring the migration and transformation of pollutants by microorganisms in iron-rich environments.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Min Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Yanting Lin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| |
Collapse
|
2
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Kusumastuti W. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119061. [PMID: 35231541 DOI: 10.1016/j.envpol.2022.119061] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are an emerging category of toxicity that adversely impacts humans and the environment's well-being. Diseases like cancer, cardiovascular risk, behavioral disorders, autoimmune defects, and reproductive diseases are related to these endocrine disruptors. Because these chemicals exist in known sources such as pharmaceuticals and plasticizers, as well as non-point sources such as agricultural runoff and storm water infiltration, the interactive effects of EDCs are gaining attention. However, the efficiency of conventional treatment methods is not sufficient to fully remediate EDCs from aqueous environments as the occurrence of EDC bioremediation and biodegradation is detected in remediated drinking water. Incorporating modification into current remediation techniques has to overcome challenges such as high energy consumption and health risks resulting from conventional treatment. Hence, the use of advanced psychochemical and biological treatments such as carbon-based adsorption, membrane technology, nanostructured photocatalysts, microbial and enzyme technologies is crucial. Intensifying environmental and health concerns about these mixed contaminants are primarily due to the lack of laws about acute concentration limits of these EDCs in municipal wastewater, groundwater, surface water, and drinking water. This review article offers evidence of fragmentary available data for the source, fate, toxicity, ecological and human health impact, remediation techniques, and mechanisms during EDC removal, and supports the need for further data to address the risks associated with the presence of EDCs in the environment. The reviews also provide comprehensive data for biodegradation of EDCs by using microbes such as fungi, bacteria, yeast, filamentous fungi, and their extracellular enzymes.
Collapse
Affiliation(s)
- Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Coastal Disaster Mitigation and Rehabilitation Studies, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Integrated Coastal Zone Management (ICZM Center), Universitas Diponegoro, 50275, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Novia Safinatunnajah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Wulan Kusumastuti
- Department of Health Administration and Policy, Faculty of Public Health, Universitas Diponegoro, 50275, Indonesia
| |
Collapse
|
4
|
Zhan Y, Yang M, Zhang Y, Yang J, Wang W, Yan L, Zhang S. Iron and total organic carbon shape the spatial distribution pattern of sediment Fe(III) reducing bacteria in a volcanic lake, NE China. World J Microbiol Biotechnol 2021; 37:155. [PMID: 34398324 DOI: 10.1007/s11274-021-03125-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Fe(III) reducing bacteria (FeRB) play a vital role in the biogeochemical cycle of Fe, C and N in nature. The volcanic lake can be considered as an ideal habitat for FeRB. Here, we investigated the diversity and spatial distribution of FeRB in sediments of Wenbo lake in Wudalianchi volcano based on culture-dependent and independent methods. A total of 28 isolates affiliated with the genera of Enterobacter, Bacillus, Pseudomonas and Clostridium were obtained from 18 sediment samples. We detected 783 operational taxonomic units (OTUs) belonged to FeRB using high high-throughput sequencing, and the dominant phyla were Proteobacteria (3.65%), Acidobacteria (0.29%), Firmicutes (10.78%). The representative FeRB genera such as Geobacter, Pseudomonas, Thiobacillus and Acinetobacter distributed widely in Wenbo lake. Results showed that the diversity and abundance of FeRB declined along the water-flow direction from Libo to Jingbo. In contrast, the FeRB diversity decreased and the FeRB abundance increased along with depth transect of sediments. It was found that the dominant phylum changed from Firmicutes to Proteobacteria along the water-flow direction, while changed from Proteobacteria to Firmicutes along with the depth of sediments. RDA indicated that the FeRB distribution were driven by soluble total iron, total organic carbon, Fe(II) and Fe(III). These will provide information for understanding the role of FeRB in the elements geochemical cycles in the volcanic environment.
Collapse
Affiliation(s)
- Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Jian Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
5
|
He K, Hain E, Timm A, Blaney L. Bioaccumulation of estrogenic hormones and UV-filters in red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142871. [PMID: 33268253 DOI: 10.1016/j.scitotenv.2020.142871] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Estrogenic hormones and organic ultraviolet-filters (UV-filters) have attracted increased attention as endocrine disrupting chemicals (EDCs) due to their potent estrogenicity and widespread occurrence in the environment. This study investigated the accumulation of three estrogenic hormones and five UV-filters in red swamp crayfish (Procambarus clarkii). Exposure experiments were conducted for 42 days with a mixture of EDCs at two environmentally-relevant design concentrations (i.e., 500 and 5000 ng L-1). The aqueous-phase EDC concentrations decreased over time and were re-established every two days. Within 14 days of exposure, the five UV-filters were measured at 2.2 to 265 ng g-1 (dry weight) in crayfish tail tissue. Only one estrogenic hormone, 17β-estradiol, was detected in the crayfish at 10.4-13.5 ng g-1. No apparent changes were observed for EDC concentrations in the tail tissue over the next four weeks of exposure. The apparent bioaccumulation factors for the EDCs ranged from 23 L (kg tail tissue, dry weight)-1 for 4-methylbenzylidene camphor to 1050 L (kg tail tissue, dry weight)-1 for 2-ethylhexyl-4-methoxycinnamate. EDC input was stopped after 42 days, and the more hydrophobic UV-filters (i.e., octocrylene, 2-ethylhexyl-4-methoxycinnamate, homosalate) were found to be persistent throughout a 14-d elimination period. A lyticase-assisted yeast estrogen screen demonstrated that the residual estrogenic activity of water samples aligned with (or was lower than) predictions from targeted chemical analysis. These results suggest that the transformation products did not contribute significant estrogenicity, although further analysis of endocrine disruption outcomes in crayfish is recommended.
Collapse
Affiliation(s)
- Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Anne Timm
- USDA Forest Service, Northern Research Station, 5523 Research Park Drive, Suite 350, Baltimore, MD 21228, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
6
|
Li Y, Wu S, Wang S, Zhao S, Zhuang X. Anaerobic degradation of xenobiotic organic contaminants (XOCs): The role of electron flow and potential enhancing strategies. J Environ Sci (China) 2021; 101:397-412. [PMID: 33334534 DOI: 10.1016/j.jes.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In groundwater, deep soil layer, sediment, the widespread of xenobiotic organic contaminants (XOCs) have been leading to the concern of human health and eco-environment safety, which calls for a better understanding on the fate and remediation of XOCs in anoxic matrices. In the absence of oxygen, bacteria utilize various oxidized substances, e.g. nitrate, sulphate, metallic (hydr)oxides, humic substance, as terminal electron acceptors (TEAs) to fuel anaerobic XOCs degradation. Although there have been increasing anaerobic biodegradation studies focusing on species identification, degrading pathways, community dynamics, systematic reviews on the underlying mechanism of anaerobic contaminants removal from the perspective of electron flow are limited. In this review, we provide the insight on anaerobic biodegradation from electrons aspect - electron production, transport, and consumption. The mechanism of the coupling between TEAs reduction and pollutants degradation is deconstructed in the level of community, pure culture, and cellular biochemistry. Hereby, relevant strategies to promote anaerobic biodegradation are proposed for guiding to an efficient XOCs bioremediation.
Collapse
Affiliation(s)
- Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Zhao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zhang Z, Xu C, Han H, Zheng M, Shi J, Ma W. Effect of low-intensity electric current field and iron anode on biological nitrate removal in wastewater with low COD to nitrogen ratio from coal pyrolysis. BIORESOURCE TECHNOLOGY 2020; 306:123123. [PMID: 32179400 DOI: 10.1016/j.biortech.2020.123123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Mixotrophic nitrate removal in wastewater from coal pyrolysis was achieved in microbial electrolysis cell with iron anode (iron-MEC). The effect of voltage, iron anode and conductivity were investigated. The effluent TN concentration was 8.35 ± 1.94 mg/L in iron-MEC when the conductivity of the wastewater was adjusted to 3.97 ± 0.08 mS/cm, which was lower than that in no-treated reactor. The increase of current density, which was resulted from the elevation of conductivity, promoted the iron corrosion and Fe2+ ion generation. Therefore, more Fe2+ ion was utilized by nitrate reducing ferrous oxidation bacteria (NRFOB) used to reduce nitrate. The microbial community analysis demonstrated that NRFOB, including Acidovorax and Bradyrhizobium, possessed a higher abundance in iron-MEC. The enrichment of Geobacter in iron-MEC might imply that the part of Fe(III) produced by ferrous oxidation was reduced by Geobacter, which established an iron cycle. Moreover, the production of N2O was decreased by the formation of Fe2+ ion.
Collapse
Affiliation(s)
- Zhengwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Mengqi Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jingxin Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
8
|
17 beta-estradiol biodegradation by anaerobic granular sludge: Effect of iron sources. Sci Rep 2020; 10:7777. [PMID: 32385383 PMCID: PMC7210892 DOI: 10.1038/s41598-020-64557-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/26/2020] [Indexed: 12/05/2022] Open
Abstract
Steroid estrogens, as typical endocrine disrupting chemicals (EDCs), have raised an increasing concern due to their endocrine disrupting effects on aquatic animals and potential hazards on human health. Batch experiments were conducted to study 17 beta-estradiol (E2) removal and Estradiol Equivalent Quantity (EEQ) elimination by anaerobic granular sludge (AnGS) combined with different valence iron sources. Results showed that E2 was effectively biodegraded and transformed into E1 by AnGS. The addition of different valence iron sources all promoted E2 degradation, reduced E2 Equivalent Quotient (EEQ) concentration, and increased methane production in the batch experiments. The enhancement effect of zero-valent iron (ZVI) on E2 removal and EEQ elimination was stronger than that of Fe2+ and Fe3+ in our experiments. The enhancement effect proportion of ZVI corrosion, Fe2+, and Fe3+ in the process of E2 degradation by AnGS combined with ZVI were 42.26%, 40.21% and 17.53%, respectively.
Collapse
|
9
|
Pratush A, Ye X, Yang Q, Kan J, Peng T, Wang H, Huang T, Xiong G, Hu Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl Microbiol Biotechnol 2020; 104:2385-2409. [PMID: 31993703 DOI: 10.1007/s00253-020-10374-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
The common steroid hormones are estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and testosterone (T). These steroids are reported to contaminate the environment through wastewater treatment plants. Steroid estrogens are widespread in the aquatic environment and therefore pose a potential risk, as exposure to these compounds has adverse impacts on vertebrates. Excessive exposure to steroid estrogens causes endocrine disruption in aquatic vertebrates, which affects the normal sexual life of these animals. Steroid pollutants also cause several health problems in humans and other animals. Microbial degradation is an efficient method for removing hormone pollutants from the environment by remediation. Over the last two decades, microbial metabolism of steroids has gained considerable attention due to its higher efficiency to reduce pollutants from the environment. The present review is focused on the major causes of steroid pollution, concentrations of these pollutants in surface water, groundwater, drinking water, and wastewater, their effect on humans and aquatic animals, as well as recent efforts by various research groups that seek better ways to degrade steroids by aerobic and anaerobic microbial systems. Detailed overview of aerobic and anaerobic microbial biotransformation of steroid estrogens and testosterone present in the environment along with the active enzyme systems involved in these biotransformation reactions is described in the review article, which helps readers to understand the biotransformation mechanism of steroids in depth. Other measures such as co-metabolic degradation, consortia degradation, algal, and fungal steroid biotransformation are also discussed in detail.
Collapse
Affiliation(s)
- Amit Pratush
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Xueying Ye
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Yang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Jie Kan
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tongwang Huang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
10
|
Sims GK, Kanissery RG. Anaerobic Biodegradation of Pesticides. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Removal of the Recalcitrant Artificial Sweetener Sucralose and Its By-Products from Industrial Wastewater Using Microbial Reduction/Oxidation of Iron. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The wastewater of the industrial production of artificial sweetener sucralose contained an average 1100 mg/L of total organic carbon (TOC) with 2100 mg/L of chemical oxygen demand and 10 mg/L of biological oxygen demand. Biodegradability of the wastewater components was low due to chlorinated organic substances. The combined chemical and biological treatment of this wastewater in the bioreactors with hematite iron ore removed up to 70% of TOC. About 20% of TOC was removed quickly by adsorption on iron ore particles, but adsorption/precipitation of others up to 50% of TOC was due to ferrous/ferric ions and hydroxides produced during microbial reduction and dissolution of iron ore. The calculated dosage of iron ore with 150 regeneration cycles could be 46.7 g/L of wastewater. Thus, the treatment of wastewater with iron ore and iron-reducing bacteria diminished the quantity of granulated activated carbon that is used in the treatment of sucralose production wastewater by up to 70%.
Collapse
|
12
|
Blunt SM, Benotti MJ, Rosen MR, Hedlund BP, Moser DP. Reversible Reduction of Estrone to 17β-Estradiol by , , and Isolates from the Las Vegas Wash. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:281-287. [PMID: 28380575 DOI: 10.2134/jeq2016.08.0286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmental endocrine-disrupting compounds (EDCs) are a growing concern as studies reveal their persistence and detrimental effects on wildlife. Microorganisms are known to affect the transformation of steroid EDCs; however, the diversity of estrogen-degrading microorganisms and the range of transformations they mediate remain relatively little studied. In mesocosms, low concentrations of added estrone (E1) and 17β-estradiol (E2) were removed by indigenous microorganisms from Las Vegas Wash water within 2 wk. Three bacterial isolates, sp. strain LVW-9, sp. strain LVW-12, and sp. strain LVW-PC, were enriched from Las Vegas Wash water on E1 and E2 and used for EDC transformation studies. In the presence of alternative carbon sources, LVW-9 and LVW-12 catalyzed near-stoichiometric reduction of E1 to E2 but subsequently reoxidized E2 back to E1; whereas LVW-PC minimally reduced E1 to E2 but effectively oxidized E2 to E1 after a 20-d lag. In the absence of alternative carbon sources, LVW-12 and LVW-PC oxidized E2 to E1. This report documents the rapid and sometimes reversible microbial transformation of E1 and E2 and the slow degradation of 17α-ethinylestradiol in urban stream water and extends the list of known estrogen-transforming bacteria to the genera and . These results suggest that discharge of steroid estrogens via wastewater could be reduced through tighter control of redox conditions and may assist in future risk assessments detailing the environmental fate of estrogens through evidence that microbial estrogen transformations may be affected by environmental conditions or growth status.
Collapse
|
13
|
Liu ZH, Lu GN, Yin H, Dang Z, Rittmann B. Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5288-5300. [PMID: 25844648 DOI: 10.1021/acs.est.5b00399] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article reviews studies focusing on the removal performance of natural estrogens in municipal wastewater treatment plants (WWTPs). Key factors influencing removal include: sludge retention time (SRT), aeration, temperature, mixed liquor suspended solids (MLSS), and substrate concentration. Batch studies show that natural estrogens should biodegrade well; however, batch observations do not always agree with observations from full-scale municipal WWTPs. To explain this discrepancy, deconjugation kinetics of estrogen conjugates in lab-scale studies were examined and compared. Most estrogen conjugates with slow deconjugation rates are unlikely to be easily removed; others could be cleaved in WWTP settings. Nevertheless, some estrogens cleaved from their conjugates may be found in treated effluent, because deconjugation requires several hours or longer, and there is insufficient rest time for the biodegradation of the cleaved natural estrogens in the WWTP. Therefore, WWTP removals of natural estrogens are likely to be underestimated when estrogen conjugates are present in raw wastewater. This review suggests that biodeconjugation of estrogen conjugates should be enhanced to more effectively remove natural estrogens in WWTPs.
Collapse
Affiliation(s)
- Ze-hua Liu
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Gui-ning Lu
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Hua Yin
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Zhi Dang
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Bruce Rittmann
- §Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
14
|
Baek G, Kim J, Lee C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor. BIORESOURCE TECHNOLOGY 2014; 166:596-601. [PMID: 24929299 DOI: 10.1016/j.biortech.2014.05.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the potential of enhancing the activity of iron-reducing bacteria (IRBs) to increase the biomethanation rate of waste activate sludge (WAS). The effects of biostimulation by ferric oxyhydroxide (Phase 2) and bioaugmentation with an enriched IRB consortium (Phase 3) were examined in a continuous anaerobic reactor treating WAS. Compared to the control operation (Phase 1), significant rises in methane yield (10.8-59.4%) and production rate (24.5-52.9%) were demonstrated by the biostimulation and bioaugmentation treatments. Visible structural changes were observed in bacterial community with the phases while not in archaeal community. Acinetobacter- and Spirochaetales-related populations were likely the major players driving anaerobic iron respiration and thus leading to enhanced biomethanation performance, in Phases 2 and 3, respectively. Our results suggest an interesting new potential for enhancing biomethanation of WAS.
Collapse
Affiliation(s)
- Gahyun Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
15
|
Yu CP, Deeb RA, Chu KH. Microbial degradation of steroidal estrogens. CHEMOSPHERE 2013; 91:1225-35. [PMID: 23517889 DOI: 10.1016/j.chemosphere.2013.01.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 05/26/2023]
Abstract
Steroidal estrogens, widespread in the environment, are contaminants of potential concern because exposure to these compounds can cause adverse impacts on aquatic life. Intensive research efforts have been undertaken in order to better understand the environmental occurrence of these compounds. In addition to physical/chemical reactions, biological processes - microbial biodegradation of steroidal estrogens - play a vital role in determining the fate and transport of these compounds in built and natural environments. This review summarizes the current state of knowledge on the microbiology of estrogen biodegradation. Aerobic and anaerobic estrogen-degrading microorganisms are phylogenetically diverse; they are mainly isolated from soils, activated sludge, dental plaque and intestines. Estrogens can be degraded via growth-linked and non-growth-linked reactions, as well as through abiotic degradation in the presence of selective microorganisms. Current knowledge on estrogen biodegradation kinetics and pathways is limited. Molecular methods are useful in deciphering estrogen-degrading microbial community and tracking the quantity of known degraders in bioreactors with different operating conditions. Future research efforts aimed at bridging knowledge gaps on estrogen biodegradation are also proposed.
Collapse
Affiliation(s)
- Chang-Ping Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | |
Collapse
|
16
|
Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol 2010; 86:1671-92. [DOI: 10.1007/s00253-010-2547-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/06/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
|