1
|
Santos MPF, Junior ECS, Bonomo RCF, Santos LS, Veloso CM. Hydrolysis of Casein by Pepsin Immobilized on Heterofunctional Supports to Produce Antioxidant Peptides. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04988-2. [PMID: 38888698 DOI: 10.1007/s12010-024-04988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
A study was carried out on the immobilization of pepsin in activated carbon functionalized by different techniques (glutaraldehyde, genipin, and metallization) aiming at its application in obtaining bioactive peptides through casein hydrolysis. Studies of the immobilized derivatives were carried out in addition to the evaluation of the antioxidant potential of the peptides. Among the pH range studied, pH 3.0 was selected due to the higher activity of the derivatives at this pH. The support modification by metallization was the method with the best results, providing a 121% increase in enzymatic activity compared to other immobilization methods. In addition, this derivative provided activity closer to the soluble enzyme activity (3.30 U) and better storage stability, and allows reuse for more than 8 cycles. In turn, the peptides from casein hydrolysis showed potential as antioxidant agents, with a DPPH radical scavenging activity higher than 70%, maximum protection against β-carotene oxidation close to 70%, and a maximum reducing power of Fe(III) into Fe(II) of 400 uM by the FRAP assay. The results showed that the new techniques for modification of activated carbon can be a promising approach for pepsin immobilization.
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
- Applied Microbiology Laboratory - Agroindustry, Santa Cruz State University, Rod. Jorge Amado, Km 16, S/N, Ilhéus, BA, 45662-900, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Leandro Soares Santos
- Laboratory of Packaging and Agro-Industrial Projects, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil.
| |
Collapse
|
2
|
Sousa NFC, Santos MPF, Barbosa RP, Bonomo RCF, Veloso CM, Souza Júnior EC. Pepsin immobilization on activated carbon and functionalized with glutaraldehyde and genipin for the synthesis of antioxidant peptides of goat casein. Food Res Int 2024; 186:114161. [PMID: 38729685 DOI: 10.1016/j.foodres.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 05/12/2024]
Abstract
In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, β-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.
Collapse
Affiliation(s)
- Núbina F C Sousa
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Raiza P Barbosa
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil.
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Evaldo C Souza Júnior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil.
| |
Collapse
|
3
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
4
|
Santos MPF, Ferreira MA, Junior ECS, Bonomo RCF, Veloso CM. Functionalized activated carbon as support for trypsin immobilization and its application in casein hydrolysis. Bioprocess Biosyst Eng 2023; 46:1651-1664. [PMID: 37728765 DOI: 10.1007/s00449-023-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to immobilize trypsin on activated carbon submitted to different surface modifications and its application in casein hydrolysis. With the aim of determining which support can promote better maintenance of the immobilized enzyme. Results showed that pH 5.0 was obtained as optimal for immobilization and pH 9.0 for the casein hydrolysis reaction for activated carbon and glutaraldehyde functionalized carbon. Among the supports used, activated carbon modified with iron ions in the presence of a chelating agent was the one that showed best results, under the conditions evaluated in this study. Presenting an immobilization yield of 95.15% and a hydrolytic activity of 4.11 U, same as soluble enzyme (3.76 U). This derivative kept its activity stable at temperatures above 40 °C for1 h and when stored for 30 days at 5 °C. Furthermore, it was effective for more than 6 reuse cycles (under the same conditions as the 1st cycle). In general, immobilization of trypsin on metallized activated carbon can be an alternative to biocatalysis, highlighting the advantages of protease immobilization.
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Matheus A Ferreira
- Graduate Program in Agronomy, State University of Southwest Bahia, Estrada Bem Querer, km-04 s/n, Vitória da Conquista, BA, 45083-900, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil.
| |
Collapse
|
5
|
Liu JJ, Kim JG, Kim HB, Abeysinghe S, Lin YW, Baek K. Covalent immobilizing horseradish peroxidase on electrochemically-functionalized biochar for phenol removal. CHEMOSPHERE 2023; 312:137218. [PMID: 36370757 DOI: 10.1016/j.chemosphere.2022.137218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Enzyme-based biocatalytic treatment has been known as an effective measure to biologically degrade organic pollutants. Advantageously, enzymes could be immobilized on solid supports, and such fact enables reuse/prolong the enzymatic capability. It could be of great importance to functionalize a support material for enhancing the immobilization efficiency/stability of enzymes. As such, this study laid great emphasis on covalent bonding to immobilize horseradish peroxidase (HRP) on a functionalized rice straw biochar with glutaraldehyde (GA) as a crosslinker. Biochar was pretreated by the electrochemical method and the acid treatment respectively to enrich the oxygen-containing functional groups. These led to the enhanced immobilizing ability of biochar. The HRP immobilized on the electrochemically-functionalized biochar (HRP-EBC) showed three times as much enzyme activity as the HRP directly adsorbed onto biochar. The HRP immobilized on the acid-functionalized biochar (HRP-ABC) showed activity similar to that of HRP-EBC. It was concluded that both the (acid/electrochemical) pretreatments are effective to enhance enzyme immobilization. Nevertheless, the electrochemical functionalized method of biochar is chemical oxidant-free, and one important lesson from a series of tests was that the pretreatment of biochar through the electrochemical method could be more environmentally benign. Moreover, employing HRP-EBC could be beneficial from a perspective of a real environmental practice considering its higher pH, thermal stability, and good reusability. 80% of phenol was degraded in 1 h in the presence of HRP-EBC when pH was 7.0 and a ratio of H2O2 to phenol was 1:1.5.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea; School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Jong-Gook Kim
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea
| | - Shakya Abeysinghe
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Kitae Baek
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea.
| |
Collapse
|
6
|
Abed KM, Hayyan A, Elgharbawy AAM, Hizaddin HF, Hashim MA, Hasan HA, Hamid MD, Zuki FM, Saleh J, Aldaihani AGH. Palm Raceme as a Promising Biomass Precursor for Activated Carbon to Promote Lipase Activity with the Aid of Eutectic Solvents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248734. [PMID: 36557866 PMCID: PMC9781083 DOI: 10.3390/molecules27248734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
Collapse
Affiliation(s)
- Khalid M. Abed
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad 10071, Iraq
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.H.); (H.F.H.); (H.A.H.)
| | - Amal A. M. Elgharbawy
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
| | - Hanee F. Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.H.); (H.F.H.); (H.A.H.)
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (A.H.); (H.F.H.); (H.A.H.)
| | - Mahar Diana Hamid
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fathiah M. Zuki
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jehad Saleh
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | |
Collapse
|
7
|
Alagöz D, Toprak A, Varan NE, Yildirim D, Tükel SS. Effective immobilization of lactate dehydrogenase onto mesoporous silica. Biotechnol Appl Biochem 2022; 69:2550-2560. [PMID: 34962677 DOI: 10.1002/bab.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
This study presents that covalent immobilization technique has been utilized for the immobilization of l-lactate dehydrogenase (l-LDH) from porcine on mesoporous silica. To develop mesoporous silica as support material for use in l-LDH immobilization, the particle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. The effect of some parameters such as glutaraldehyde concentration, immobilization pH, initial enzyme concentration, and immobilization time was investigated and the optimum conditions for these parameters were determined as 1% (w/v), pH 8.0, 1 mg/ml, and 120 min, respectively. The maximum working pH and temperature for the oxidation of lactate to pyruvate reaction were determined as 10.0 and 35°C for free and 9.0 and 40°C for immobilized l-LDH, respectively. The kinetic parameters (Km and Vmax ) of l-LDH for the oxidation of lactate to pyruvate reaction were examined as 1.02 mM and 7.58 U/mg protein for free and 0.635 mM and 1.7 U/mg protein for immobilized l-LDH, respectively. Moreover, the immobilized l-LDH was 1.3-fold more stable than free l-LDH at 25°C according to calculated t1/2 values. The immobilized l-LDH retained 80% of its initial activity in a batch reactor after 14 reuses.
Collapse
Affiliation(s)
- Dilek Alagöz
- Imamoglu Vocational School, Cukurova University, Adana, Turkey
| | - Ali Toprak
- Acigol Vocational School, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
| | - Nazlı Ece Varan
- Chemistry Department, Sciences & Letters Faculty, Cukurova University, Adana, Turkey
| | - Deniz Yildirim
- Chemical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana, Turkey
| | - S Seyhan Tükel
- Chemistry Department, Sciences & Letters Faculty, Cukurova University, Adana, Turkey
| |
Collapse
|
8
|
Venkatesan SK, Uddin M, Rajasekaran M, Ganesan S. Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120164. [PMID: 36113645 DOI: 10.1016/j.envpol.2022.120164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bioremediation of real-time petroleum refining industry oily waste (PRIOW) is a major challenge due to the poor emulsification potential and oil sludge disintegration efficiency of conventional bioamphiphile molecules. The present study was focused on the design of a covalently engineered supramolecular bioamphiphile complex (SUBC) rich in hydrophobic amino acids for proficient emulsification of hydrocarbons followed by the concomitant degradation of total petroleum hydrocarbons (TPH) in PRIOW using the hydrocarbonoclastic microbial bio-formulation system. The synthesis of SUBC was carried out by pH regulated microbial biosynthesis process and the yield was obtained to be 450.8 mg/g of petroleum oil sludge. The FT-IR and XPS analyses of SUBC revealed the anchoring of hydrophilic moieties of monomeric bioamphiphilic molecules, resulting in the formation of SUBC via covalent interaction. The SUBC was found to be lipoprotein in nature. The maximum loading capacity of SUBC onto surface modified rice hull (SMRH) was achieved to be 45.25 mg/g SMRH at the optimized conditions using RSM-CCD design. The SUBC anchored SMRH was confirmed using SEM, FT-IR, XRD and TGA analyses. The adsorption isotherm models of SUBC onto SMRH were performed. The integrated approach of SUBC-SMRH and hydrocarbonoclastic microbial bio-formulation system, emulsified oil from PRIOW by 92.86 ± 2.26% within 24 h and degraded TPH by 89.25 ± 1.75% within 4 days at the optimum dosage ratio of SUBC-SMRH (0.25 g): PRIOW (1 g): mass of microbial-assisted biocarrier material (0.05 g). The TPH degradation was confirmed by SARA fractional analysis, FT-IR, 1H NMR and GC-MS analyses. The study suggested that the application of covalently engineered SUBC has resulted in the accelerated degradation of real-time PRIOW in a very short duration without any secondary sludge generation. Thus, the SUBC integrated approach can be considered to effectively manage the hydrocarbon contaminants from petroleum refining industries under optimal conditions.
Collapse
Affiliation(s)
- Swathi Krishnan Venkatesan
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Maseed Uddin
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Muneeswari Rajasekaran
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Sekaran Ganesan
- SRM Institute of Science and Technology, Ramapuram Campus, Chennai-600089, India
| |
Collapse
|
9
|
Santos MPF, Porfírio MCP, Junior ECS, Bonomo RCF, Veloso CM. Pepsin immobilization: Influence of carbon support functionalization. Int J Biol Macromol 2022; 203:67-79. [PMID: 35090943 DOI: 10.1016/j.ijbiomac.2022.01.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Among the matrices for enzyme immobilization, activated carbon has been standing out in immobilization processes due to its properties and to its characteristics that provide superficial modification by inserting new functional groups capable of binding the enzymes forming covalent bonds. In this study the effect of different modification methods of activated carbon (functionalization with genipin, metallization, metallization in the presence of chelating agent, and functionalization with glutaraldehyde) on efficiency of pepsin immobilization was evaluated. The effect of immobilization pH and the reaction medium on hydrolysis activity of bovine casein was also evaluated. The functionalization of activated carbon using iron ions allowed an immobilization capacity of 98.93 mg·g-1, with immobilization efficiency greater than 99%, and enzyme activity of 2.30 U, which was higher than the other modifications, and closer to the enzyme in the native form activity (3.32 U). In general, the carbon surface modifications were responsible for forming more stable bonds between support and enzyme, improving its proteolytic activity (from 1.84 to 2.30 U) when compared to traditional immobilization methods by adsorption and covalent binding using glutaraldehyde (from 1.04 to 1.1 U).
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Marjorie C P Porfírio
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil.
| |
Collapse
|
10
|
Uddin M, Swathi KV, Anil A, Boopathy R, Ramani K, Sekaran G. Biosequestration of lignin in municipal landfill leachate by tailored cationic lipoprotein biosurfactant through Bacillus tropicus valorized tannery solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113755. [PMID: 34537555 DOI: 10.1016/j.jenvman.2021.113755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation of municipal landfill leachate (MLL) is often intricate due to presence of refractory lignin. In the present study, it was attempted to tailor the histidine rich protein moiety of cationic lipoprotein biosurfactant (CLB) to sequester the lignin from MLL. Animal fleshing (AF), the solid waste generated in tanning industry was utilized for the production of histidine rich CLB by de novo substrate dependent synthesis pathway involving Bacillus tropicus. The optimum conditions for the maximum production of CLB were determined using response surface methodology. At the optimized conditions, the maximum yield of CLB was 217.4 mg/g AF (on dry basis). The produced histidine rich CLB was purified using Immobilized metal affinity chromatography at the optimum binding and elution conditions. The histidine residues were more pronounced in the CLB, as determined by HPLC analysis. The CLB was further characterized by SDS-PAGE, Zeta potential, XRD, FT-IR, Raman, NMR, GC-MS and TG analyses. The CLB was immobilized onto functionalized nanoporous activated bio carbon (FNABC) and the optimum immobilization capacity was found to be 211.6 mg/g FNABC. The immobilization of CLB onto FNABC was confirmed using SEM, FT-IR, XRD and TG analyses. The isotherm models, kinetic and thermodynamics studies of CLB immobilization onto FNABC were performed to evaluate its field level application. Subsequently, the CLB-FNABC was then applied for the sequestration of lignin in MLL. The maximum lignin sequestration was achieved by 92.5 mg/g CLB-FNABC at the optimized sequestration time, 180 min; pH, 5; temperature, 45 °C and mass of CLB-FNABC, 1.0 g. The sequestration of lignin by CLB- FNABC was confirmed by SEM, FT-IR and UV-Vis analyses. Further, the mechanistic study revealed the anchoring of CLB onto the surface of lignin through electrostatic interaction.
Collapse
Affiliation(s)
- Maseed Uddin
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - K V Swathi
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ananya Anil
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - R Boopathy
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India
| | - K Ramani
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - G Sekaran
- SRM Institute of Science and Technology, Ramapuram, 600089, Tamil Nadu, India
| |
Collapse
|
11
|
Ferreira Gonçalves GR, Ramos Gandolfi OR, Brito MJP, Bonomo RCF, da Costa Ilhéu Fontan R, Veloso CM. Immobilization of porcine pancreatic lipase on activated carbon by adsorption and covalent bonding and its application in the synthesis of butyl butyrate. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Christopher JM, Mohan M, Sridharan R, Somasundaram S, Ganesan S. Biosurfactant matrix for the environmental clean-up of dichlorophenol from aqueous medium and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64278-64294. [PMID: 34302601 DOI: 10.1007/s11356-021-15265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols are used in many industries for their importance in preservation and herbicide preparation even though they possess high-risk factors. The prolonged usage of these compounds makes it very complicated to remove them from water and soil by conventional treatment methods. Biosurfactant are the promising structures with the ability to remove contaminants effectively. In this work, an attempt has been made to eliminate 2,4-dichlorophenol from soil and water using amino acid-enhanced cationic biosurfactant obtained from Bacillus axarquiensis. The produced BS has the ability to reduce the surface tension to 30.0 mN m-1. From RSM, the optimum conditions for the maximum production of BS were obtained at time 95 h; pH 7; temperature 35 °C, and concentration of substrate 5%. The BS was immobilized using a solid support matrix for the stability. The environmental factors such as temperature and pH have no effect on the matrix used and found to be viable even under extreme conditions. The removal efficiency was achieved in the range of 93-96% from water and 80-85% from soil. Additionally, the recyclability and reusability of the matrix were also analyzed, and it withstands up to 8 cycles. As a result, the significance of biosurfactant by enhancing the amino acid content was explored in remediation technology.
Collapse
Affiliation(s)
- Judia Magthalin Christopher
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Department of Leather Technology, Alagappa College of Technology, Anna University, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Monica Mohan
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Rajalakshmi Sridharan
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Swarnalatha Somasundaram
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India.
- Department of Leather Technology, Alagappa College of Technology, Anna University, Adyar, Chennai, Tamil Nadu, 600020, India.
| | - Sekaran Ganesan
- SRMIST, Ramapuram Campus, Chennai, Tamil Nadu, 600089, India
| |
Collapse
|
13
|
Christopher JM, Sridharan R, Somasundaram S, Ganesan S. Bioremediation of aromatic hydrocarbons contaminated soil from industrial site using surface modified amino acid enhanced biosurfactant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117917. [PMID: 34426191 DOI: 10.1016/j.envpol.2021.117917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Surface modified lipopeptide biosurfactant (BS) with enhancement of amino acids was produced using Bacillus Malacitensis. The aromatic hydrocarbons from contaminated soil were removed by BS soil washing process and bioremediation using activated functionalized carbon-BS matrix (AFC-BS). The Central Composite Design (CCD) showed the optimum time100 h; pH 7; temperature 30°C on maximum yield of BS. The amino acid profiling of BS reveals the enhancement of amino acids especially polar amino acids and its importance in the formation of micellar structure for the tight packing of aromatic hydrocarbons from industrial contaminated soil. AFC-BS matrix was implanted directly into the contaminated soil for 28 days and found 61.80 % of Total Petroleum Hydrocarbon (TPH) removal efficiency which is high compared to the AFC treated soil. The compounds were extracted from contaminated soil and AFC-BS matrix, found similar peaks in high performance liquid chromatography, which reveals the ability of BS to remove aromatic contaminants. The soil toxicity was also analyzed by seed germination and found improvement in the growth of seeds. The germination of seeds increased from 60 % to 100 % and the phytotoxicity of root and shoot was reduced from 89.50 %, 88.45 % to12.55 %, 11.87 % respectively.
Collapse
Affiliation(s)
- Judia Magthalin Christopher
- Environmental Science Lab, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600 020, Tamilnadu, India; Department of Leather Technology, Alagappa College of Technology, Anna University, Chennai, 600 020, India
| | - Rajalakshmi Sridharan
- Environmental Science Lab, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600 020, Tamilnadu, India
| | - Swarnalatha Somasundaram
- Environmental Science Lab, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600 020, Tamilnadu, India; Department of Leather Technology, Alagappa College of Technology, Anna University, Chennai, 600 020, India.
| | | |
Collapse
|
14
|
Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts 2021. [DOI: 10.3390/catal11080936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
Collapse
|
15
|
Madadi R, Bester K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media. MARINE POLLUTION BULLETIN 2021; 166:112247. [PMID: 33735702 DOI: 10.1016/j.marpolbul.2021.112247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The conventional wastewater treatment system such as bacteria, is not able to remove recalcitrant micropollutants effectively. While, fungi have shown high capacity in degradation of recalcitrant compounds. Biochar, on the other hand, has gained attention in water and wastewater treatment as a low cost and sustainable adsorbent. This paper aims to review the recent applications of three major fungal divisions including Basidiomycota, Ascomycota, and Mucoromycotina, in organic micropollutants removal from wastewater. Moreover, it presents an insight into fungal bioreactors, fungal biofilm and immobilization system. Biochar adsorption capacities for organic micropollutants removal under different operating conditions are summarized. Finally, few recommendations for further research are established in the context of the combination of fungal biofilm with the technologies relying on the adsorption by porous carbonaceous materials.
Collapse
Affiliation(s)
- Rozita Madadi
- Department of agricultural biotechnology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Souza Júnior EC, Santos MPF, Sampaio VS, Ferrão SPB, Fontan RCI, Bonomo RCF, Veloso CM. Hydrolysis of casein from different sources by immobilized trypsin on biochar: Effect of immobilization method. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1146:122124. [PMID: 32361468 DOI: 10.1016/j.jchromb.2020.122124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 11/26/2022]
Abstract
The present study aimed to evaluate the effect of the immobilization method of trypsin on biochar on the hydrolysis of casein from different sources, when compared to the process using trypsin in native form, to obtain bioactive peptides. The modification of the surface of biochar with glutaraldehyde was effective, as shown by the results of FTIR assay and the texture profile of the materials. Both activated and functionalized biochar showed high immobilization efficiency (greater than 87%) and high binding capacity (greater than 91 mg/g). During hydrolysis, the biocatalyst obtained by enzyme immobilization on the functionalized biochar presented a higher hydrolysis capacity for the different caseins when compared to the enzyme immobilized by adsorption, with values of 3.05 and 2.73 U/mg for goat casein, 2.36 and 1.85 U/mg for bovine casein, and 2.60 and 2.37 U/mg for buffalo, casein, respectively, with 60 min of reaction. The results of inhibitory activity in this study ranged from 93.5% and 25.5% for trypsin in its free form and immobilized on functionalized activated carbon, respectively, under the same reaction conditions. The immobilization methods were efficient, presenting high immobilization capacity. The proteolytic activity of trypsin immobilized via covalent binding was higher when compared the immobilization by adsorption. Thus, the functionalized biochar has proven to be potential support for enzyme immobilization, and the biocatalyst can be reused for more than 4 cycles. Despite lower ACE inhibition values of hydrolyzed obtained with the immobilized enzymes compared to free enzymes, biocatalysts present advantage due to the possibility of reuse.
Collapse
Affiliation(s)
- Evaldo C Souza Júnior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil; Department of Animal and Rural Technology, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Vanessa S Sampaio
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Sibelli P B Ferrão
- Department of Animal and Rural Technology, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Rafael C I Fontan
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, 45700-000 Itapetinga, BA, Brazil.
| |
Collapse
|
18
|
Aslan Y, Sharif YM, Şahin Ö. Covalent immobilization of Aspergillus niger amyloglucosidase (ANAG) with ethylenediamine-functionalized and glutaraldehyde-activated active carbon (EFGAAC) obtained from sesame seed shell. Int J Biol Macromol 2020; 142:222-231. [DOI: 10.1016/j.ijbiomac.2019.09.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023]
|
19
|
Mahesh M, Swarnalatha S, Gnanamani A, Sekaran G. Preparation and characterization of sulfide: Quinone oxidoreductase immobilized carbon matrix for the treatment of sulphide rich post-tanning wastewater. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Mannacharaju M, Chittybabu S, Sheikh John SB, Somasundaram S, Ganesan S. Bio catalytic oxidation of sulphide laden wastewater from leather industry using sulfide: Quinone oxidoreductase immobilized bio reactor. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1666107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahesh Mannacharaju
- Environmental Science and Engineering Division, CSIR – Central Leather Research Institute (CLRI), Adyar, India
| | - Sridevi Chittybabu
- Department of Nanotechnology, Anna University Regional Campus, Coimbatore, India
| | | | - Swarnalatha Somasundaram
- Environmental Science and Engineering Division, CSIR – Central Leather Research Institute (CLRI), Adyar, India
| | - Sekaran Ganesan
- Environmental Science and Engineering Division, CSIR – Central Leather Research Institute (CLRI), Adyar, India
| |
Collapse
|
21
|
Cea M, González ME, Abarzúa M, Navia R. Enzymatic esterification of oleic acid by Candida rugosa lipase immobilized onto biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:171-177. [PMID: 31035179 DOI: 10.1016/j.jenvman.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/17/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
The immobilization of Candida rugosa lipase (CRL) onto biochar was studied in a series of batch experiments. CRL sorption behavior was evaluated as a function of pH, enzyme concentration, temperature and ionic strength. As the immobilized lipase was used for the catalytic esterification of oleic acid, its resistance to solvents and thermal stability were evaluated. CRL adsorption increased by increasing temperature, and with higher pH, reaching a maximum at pH 7.0. Immobilization increased lipase stability at 40 °C by more than 80% when compared to the free enzyme. Moreover, immobilized CRL showed high stability in the presence of tert-butanol, which prevents premature deactivation of the enzyme caused by alcohols during the reaction. Immobilization of CRL increased the oleic acid conversion rate. Our results suggest that biochar is a highly promising material for the immobilization of CRL lipase for the catalytic production of esters.
Collapse
Affiliation(s)
- Mara Cea
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile; Scientific and Technological Bioresources Nucleus-BIOREN, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile.
| | - María Eugenia González
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile; Scientific and Technological Bioresources Nucleus-BIOREN, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| | - Macarena Abarzúa
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| | - Rodrigo Navia
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile; Scientific and Technological Bioresources Nucleus-BIOREN, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile; Centre for Biotechnology & Bioengineering (CeBiB), Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| |
Collapse
|
22
|
Pounsamy M, Somasundaram S, Palanivel S, Balasubramani R, Chang SW, Nguyen DD, Ganesan S. A novel protease-immobilized carbon catalyst for the effective fragmentation of proteins in high-TDS wastewater generated in tanneries: Spectral and electrochemical studies. ENVIRONMENTAL RESEARCH 2019; 172:408-419. [PMID: 30826663 DOI: 10.1016/j.envres.2019.01.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to degrade proteins in high-total dissolved solids (TDS)-containing wastewater produced during the soaking process in tanneries (tannery-TDS wastewater) using a halotolerant protease-assisted nanoporous carbon catalyst (STPNPAC). A halotolerant protease was obtained from the halophile, Lysinibacillus macroides, using animal fleshing as the substrate. The protease was immobilized using ethylene diamine (EDA)/glutaraldehyde functionalized nanoporous activated carbon (EGNPAC). The optimum conditions for the immobilization of protease were determined as time (120 min), pH (6), protease concentration (575-600 U/g), EGNPAC size, salinity, and temperature (30 °C). The immobilization was confirmed by FTIR, TGA-DSC, SEM, and XRD analyses. The adsorption kinetics was consistent with a pseudo first order rate constant of 1.43 × 10-2 min-1. The thermodynamic parameters (ΔG, ΔH, and ΔS) confirmed the effective immobilization of the protease onto EGNPAC. STPNAPC was found to efficiently degrade the proteins in tannery-TDS wastewater, with a complete fragmentation time of 90 min at pH 6 and 30 °C. Accordingly, the protein fragmentation was confirmed by UV-visible and UV-fluorescence spectroscopy, ESI-mass spectrometric analysis and circular dichroic studies. The formation of protein hydrolysates was confirmed by cyclic voltammetry and electrical impedance studies. BOD5: COD value, 0.426 of treated tannery-TDS wastewater may favor sequential biological treatment processes.
Collapse
Affiliation(s)
- Maharaja Pounsamy
- Advanced Materials Laboratory, Council of Scientific & Industrial Research (CSIR) Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, Tamilnadu, India; Environmental Science and Engineering Division, Council of Scientific & Industrial Research (CSIR) Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, Tamilnadu, India
| | - Swarnalatha Somasundaram
- Environmental Science and Engineering Division, Council of Scientific & Industrial Research (CSIR) Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, Tamilnadu, India
| | - Saravanan Palanivel
- Leather Process Technology Laboratory, Council of Scientific & Industrial Research (CSIR) Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, Tamilnadu, India
| | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Sekaran Ganesan
- Environmental Science and Engineering Division, Council of Scientific & Industrial Research (CSIR) Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, Tamilnadu, India.
| |
Collapse
|
23
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Saranya P, Selvi PK, Sekaran G. Integrated thermophilic enzyme-immobilized reactor and high-rate biological reactors for treatment of palm oil-containing wastewater without sludge production. Bioprocess Biosyst Eng 2019; 42:1053-1064. [DOI: 10.1007/s00449-019-02104-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/09/2019] [Indexed: 11/28/2022]
|
25
|
Lisboa M, Rodrigues C, Barbosa A, Mattedi S, Freitas L, Mendes A, Dariva C, Franceschi E, Lima ÁS, Soares C. New perspectives on the modification of silica aerogel particles with ionic liquid used in lipase immobilization with platform in ethyl esters production. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Joyce P, Gustafsson H, Prestidge CA. Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Adv Colloid Interface Sci 2018; 260:1-23. [PMID: 30119842 DOI: 10.1016/j.cis.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Nanostructured particle-lipid composites have emerged as state-of-the-art carrier systems for poorly water-soluble bioactive molecules due to their ability to control and enhance the lipase-mediated hydrolysis of encapsulated triglycerides, leading to a subsequent improvement in the solubilisation and absorption of encapsulated species. The first generation of particle-lipid composites (i.e. silica-lipid hybrid (SLH) microparticles) were designed and fabricated by spray drying a silica nanoparticle-stabilised Pickering emulsion, to create a novel three-dimensional architecture, whereby lipid droplets were encapsulated within a porous matrix support. The development of SLH microparticles has acted as a solid foundation for the synthesis of several next generation particle-lipid composites, including polymer-lipid hybrid (PLH) and clay-lipid hybrid systems (CLH), which present lipase with unique lipid microenvironments for optimised lipolysis. This review details the methods utilised to engineer lipid hybrid particles and the strategic investigations that have been performed to determine the influence of key material characteristics on digestion enzyme activity. In doing so, this provides insight into manipulating the mechanism of lipase action through the intelligent design of lipid-based biomaterials for their use in drug delivery formulations and novel functional foods.
Collapse
|
27
|
Badgujar VC, Badgujar KC, Yeole PM, Bhanage BM. Enhanced biocatalytic activity of immobilized steapsin lipase in supercritical carbon dioxide for production of biodiesel using waste cooking oil. Bioprocess Biosyst Eng 2018; 42:47-61. [DOI: 10.1007/s00449-018-2013-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023]
|
28
|
Almeida AFD, Terrasan CRF, Terrone CC, Tauk-Tornisielo SM, Carmona EC. Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: Hydrolysis of triacylglycerol and soy lecithin. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wang J, Zhang W, Gu C, Zhang W, Zhou M, Wang Z, Guo C, Sun L. Step-Up Synthesis of Periodic Mesoporous Organosilicas with a Tyrosine Framework and Performance in Horseradish Peroxidase Immobilization. Chem Asian J 2017; 12:3162-3171. [DOI: 10.1002/asia.201701285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/29/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Wang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Wenqi Zhang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Changqing Gu
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Wenpei Zhang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Man Zhou
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Zhiwei Wang
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Cheng Guo
- College of Chemistry and molecular engineering; Nanjing Tech University; 30 Puzhu South Road, Jiangsu Nanjing 211816 China
| | - Linbing Sun
- College of Chemical engineering; State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| |
Collapse
|
30
|
Torres JA, Nogueira FGE, Silva MC, Lopes JH, Tavares TS, Ramalho TC, Corrêa AD. Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained from agricultural waste. RSC Adv 2017. [DOI: 10.1039/c7ra01309d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Closed cycle of immobilized biocatalyst production with maximum biomass use applicable in several areas.
Collapse
Affiliation(s)
- J. A. Torres
- Department of Chemistry
- Universidade Federal de Lavras
- Lavras
- Brazil
| | - F. G. E. Nogueira
- Department of Chemistry Engineering
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - M. C. Silva
- Department of Chemistry
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - J. H. Lopes
- Department of Physical Chemistry
- Universidade de Campinas
- Campinas
- Brazil
| | - T. S. Tavares
- Department of Chemistry
- Universidade Federal de Lavras
- Lavras
- Brazil
| | - T. C. Ramalho
- Department of Chemistry
- Universidade Federal de Lavras
- Lavras
- Brazil
| | - A. D. Corrêa
- Department of Chemistry
- Universidade Federal de Lavras
- Lavras
- Brazil
| |
Collapse
|
31
|
Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Mahesh M, Arivizhivendhan K, Maharaja P, Boopathy R, Hamsavathani V, Sekaran G. Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Sirisha VL, Jain A, Jain A. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:179-211. [PMID: 27770861 DOI: 10.1016/bs.afnr.2016.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies.
Collapse
Affiliation(s)
- V L Sirisha
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India.
| | - Ankita Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India; University of Rajasthan, Jaipur, India
| | - Amita Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India; D.Y. Patil University, Navi Mumbai, India
| |
Collapse
|
34
|
Zhan H, Xi J, Zhao K, Bao R, Xiao L. A spectral-mathematical strategy for the identification of edible and swill-cooked dirty oils using terahertz spectroscopy. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Silva MC, Torres JA, Nogueira FGE, Tavares TS, Corrêa AD, Oliveira LCA, Ramalho TC. Immobilization of soybean peroxidase on silica-coated magnetic particles: a magnetically recoverable biocatalyst for pollutant removal. RSC Adv 2016. [DOI: 10.1039/c6ra17167b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Development of a recyclable biocatalystviaimmobilization of soybean peroxidase onto magnetic nanoparticles.
Collapse
Affiliation(s)
- Maria C. Silva
- Department of Chemistry
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | | | | | | | | | - Luiz C. A. Oliveira
- Department of Chemistry
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | | |
Collapse
|
37
|
Facial preparation of magnetic lipase as efficient biocatalyst to resolute esters enantioselectively. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Direct Electrochemistry of Glucose Oxidase on a Three-Dimensional Porous Zirconium Phosphate–Carbon Aerogel Composite. Electrocatalysis (N Y) 2015. [DOI: 10.1007/s12678-015-0249-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
P S, S R, G S. Immobilization of thermotolerant intracellular enzymes on functionalized nanoporous activated carbon and application to degradation of an endocrine disruptor: kinetics, isotherm and thermodynamics studies. RSC Adv 2015. [DOI: 10.1039/c5ra11279f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degradation of 2-nitro phloroglucinol using mixed intracellular enzymes immobilized FNAC matrix
Collapse
Affiliation(s)
- Saranya P
- Environmental Technology Division
- CSIR-Central Leather Research Institute (CLRI)
- Chennai
- India
| | - Ranjitha S
- Environmental Technology Division
- CSIR-Central Leather Research Institute (CLRI)
- Chennai
- India
| | - Sekaran G
- Environmental Technology Division
- CSIR-Central Leather Research Institute (CLRI)
- Chennai
- India
| |
Collapse
|
40
|
Ali Z, Tian L, Zhao P, Zhang B, Nisar A, Li X, Zhang H, Zhang Q. Micron-sized flower-like Fe3O4@GMA magnetic porous microspheres for lipase immobilization. RSC Adv 2015. [DOI: 10.1039/c5ra14524d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flower-like Fe3O4 microspheres prepared by a fast solvothermal method were selected to fabricate micron-sized Fe3O4@glycidyl methacrylate (GMA) magnetic porous microspheres.
Collapse
Affiliation(s)
- Zafar Ali
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Lei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Panpan Zhao
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Baoliang Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Ali Nisar
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Xiangjie Li
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Hepeng Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Qiuyu Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| |
Collapse
|
41
|
|
42
|
Saranya P, Ramani K, Sekaran G. Biocatalytic approach on the treatment of edible oil refinery wastewater. RSC Adv 2014. [DOI: 10.1039/c3ra43668c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
43
|
Chen PC, Huang XJ, Xu ZK. Kinetics-bolstered catalytic study of a high performance lipase-immobilized nanofiber membrane bioreactor. RSC Adv 2014. [DOI: 10.1039/c3ra46779a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Saranya P, Swarnalatha S, Sekaran G. Lipoprotein biosurfactant production from an extreme acidophile using fish oil and its immobilization in nanoporous activated carbon for the removal of Ca2+and Cr3+in aqueous solution. RSC Adv 2014. [DOI: 10.1039/c4ra03101f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lipoprotein biosurfactant from extreme acidophile using fish oil and its immobilization in nanoporous activated carbon for removal of metal ions.
Collapse
Affiliation(s)
- P. Saranya
- Environmental Technology Division
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI)
- Chennai-600 020, India
| | - S. Swarnalatha
- Environmental Technology Division
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI)
- Chennai-600 020, India
| | - G. Sekaran
- Environmental Technology Division
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI)
- Chennai-600 020, India
| |
Collapse
|
45
|
Li X, Xu L, Wang G, Zhang H, Yan Y. Conformation studies on Burkholderia cenocepacia lipase via resolution of racemic 1-phenylethanol in non-aqueous medium and its process optimization. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Yin P, Chen W, Liu W, Chen H, Qu R, Liu X, Tang Q, Xu Q. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol. BIORESOURCE TECHNOLOGY 2013; 140:146-151. [PMID: 23688666 DOI: 10.1016/j.biortech.2013.04.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production.
Collapse
Affiliation(s)
- Ping Yin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Temoçin Z. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1618-35. [DOI: 10.1080/09205063.2013.786970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zülfikar Temoçin
- a Department of Chemistry , Kırıkkale University , Kırıkkale , Turkey
| |
Collapse
|
48
|
|