1
|
Paulinetti AP, Guerieri FF, Augusto IMG, Lazaro CZ, Albanez R, Lovato G, Ratusznei SM, Domingues Rodrigues JA. Thermophilic and mesophilic anaerobic digestion of soybean molasses: A performance vs. stability trade-off. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122508. [PMID: 39366238 DOI: 10.1016/j.jenvman.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
One of the factors that has a direct impact on anaerobic digestion is the applied organic loading rate (OLRA). Increasing OLRA can boost methane production but can also cause process failure. As a result, establishing the appropriate OLRA for the procedure is critical. This study evaluated the effect of increasing the OLRA using soybean molasses in a thermophilic anaerobic reactor (R-Thermo), as well as the effect of feeding strategy and co-processing with okara. Furthermore, the performance versus stability trade-off between R-Thermo and mesophilic anaerobic digestion (R-Meso) was investigated. The increase of OLRA from 10 to 15 and 20 kg-COD/m³/d led to a decrease in COD removal efficiency (90, 86, and 75%), methane yield (12.0, 11.6, and 9.9 mol-CH4/kg-COD) and an increase in total volatile acids concentration (251, 456, and 1393 mg-HAc/L, respectively). At 15 kg-COD/m³/d, R-Meso performed similarly to R-Thermo, and at 20 kg-COD/m3/d, R-Meso outperformed (81% COD removal efficiency, 9.3 mol-CH4/kg-CODrem and 154.5 mol-CH4/m3/d). Temperature greatly influenced the distribution of metabolic pathways, as shown by thermodynamic and kinetic analyses, thus impacting bacterial diversity. At 55 °C, amongst the bacterial genera, Tepidiphilus stood out (>28.2%), followed by Acetomicrobium, Coprothermobacter and Candidatus_Caldatribacterium. The OLRA clearly impacted the archaeal community; Methanothermobacter (77.4%) was favored over Methanosarcina (14.8%). Under thermophilic temperature, it seems that syntrophic acetate oxidation (SAO) bacteria might have competed for substrate with acetoclastic methanogens, while in R-Meso microorganisms responsible for the initial steps of organic matter breakdown, such as members of the Firmicutes and Proteobacteria phyla (at least 67%), were dominant. In summary, R-Meso, characterized by a more uniform distribution of metabolic pathways, as well as a diverse and well-adapted microbial consortium, have exhibited enhanced stability and outperformed R-Thermo at high-loads.
Collapse
Affiliation(s)
- Ana Paula Paulinetti
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Fernanda Furtunato Guerieri
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Isabela Mehi Gaspari Augusto
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Carolina Zampol Lazaro
- Department of Microbiology, Infectiology and Immunology, University of Montreal, H3C 3J7, Montreal/Quebec, Canada
| | - Roberta Albanez
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Suzana Maria Ratusznei
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil.
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| |
Collapse
|
2
|
Woo S, Han YH, Lee HK, Baek D, Noh MH, Han S, Lim HG, Jung GY, Seo SW. Generation of a Vibrio-based platform for efficient conversion of raffinose through Adaptive Laboratory Evolution on a solid medium. Metab Eng 2024; 86:300-307. [PMID: 39489215 DOI: 10.1016/j.ymben.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Raffinose, a trisaccharide abundantly found in soybeans, is a potential alternative carbon source for biorefineries. Nevertheless, residual intermediate di- or monosaccharides and low catabolic efficiency limit raffinose use through conventional microbial hosts. This study presents a Vibrio-based platform to convert raffinose efficiently. Vibrio sp. dhg was selected as the starting strain for the Adaptive Laboratory Evolution (ALE) strategy to leverage its significantly higher metabolic efficiency. We conducted ALE on a solid minimal medium supplemented with raffinose to prevent the enrichment of undesired phenotypes due to the shared effect of extracellular raffinose hydrolysis among multiple strains. As a result, we generated the VRA10 strain that efficiently utilizes raffinose without leaving behind degraded di- or monosaccharides, achieving a notable growth rate (0.40 h-1) and raffinose consumption rate (1.2 g/gdcw/h). Whole genome sequencing and reverse engineering identified that a missense mutation in the melB gene (encoding a melibiose/raffinose:sodium symporter) and the deletion of the two galR genes (encoding transcriptional repressors for galactose catabolism) facilitated rapid raffinose utilization. The further engineered strain produced 6.2 g/L of citramalate from 20 g/L of raffinose. This study will pave the way for the efficient utilization of diverse raffinose-rich byproducts and the expansion of alternative carbon streams in biorefinery applications.
Collapse
Affiliation(s)
- Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Hye Kyung Lee
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dongyeop Baek
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myung Hyun Noh
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jonggaro, Junggu, Ulsan, 44429, South Korea
| | - Sukjae Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and Bioengineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon, 22212, South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, South Korea; Institute of Chemical Processes, South Korea; Bio-MAX Institute, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Guo Y, Tang Y, Zhang L, Liu Y, Ma Q, Zhao L. Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. Int J Biol Macromol 2024; 260:129664. [PMID: 38266837 DOI: 10.1016/j.ijbiomac.2024.129664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Zearalenone (ZEN) is a notorious mycotoxin commonly found in Fusarium-contaminated crops, which causes great loss in livestock farming and serious health problems to humans. In the present work, we found that crude peroxidase extraction from soybean hulls could use H2O2 as a co-substate to oxidize ZEN. Molecular docking and dynamic simulation also supported that ZEN could bind to the active site of soybean hull peroxidase (SHP). Subsequently, SHP extracted from soybean hulls was purified using a combined purification protocol involving ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography. The purified SHP showed wide pH resistance and high thermal stability. This peroxidase could degrade 95 % of ZEN in buffer with stepwise addition of 100 μM H2O2 in 1 h. The two main ZEN degradation products were identified as 13-OH-ZEN and 13-OH-ZEN-quinone. Moreover, SHP-catalyzed ZEN degradation products displayed much less cytotoxicity to human liver cells than ZEN. The application of SHP in various food matrices obtained 54 % to 85 % ZEN degradation. The findings in this study will promote the utilization of SHP as a cheap and renewable biocatalyst for degrading ZEN in food.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Wang Q, Shao J, Shen L, Xiu J, Shan S, Ma K. Pretreatment of straw using filamentous fungi improves the remediation effect of straw biochar on bivalent cadmium contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60933-60944. [PMID: 35435554 DOI: 10.1007/s11356-022-20177-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Carbonized products of waste agricultural straws used for soil remediation can reduce impact of heavy metals on soil ecology and crop growth. Here, we demonstrated straw fermentation residues to be suitable for preparation of soil remediation agents by pyrolysis. Lignocellulose degradability of filamentous fungi during fermentation was found to significantly enhance properties of biochar for cadmium (Cd (II))-contaminated paddy soil remediation. Obtained biochars were indicated to have rich oxygen-containing groups, thus showing enhanced removal ability of Cd (II). Adsorption capacity of biochar (BaWS) prepared from wheat straw, which has been fermented by Trichoderma asperellum T-1, reached 105.9 mg g-1, 372.8% higher than that from natural wheat straw (BWS). Fermentation of straws by Trichoderma reesei QM6a can also improve the adsorption performance of biochar, but the effect is much weaker. The content of bioavailable Cd (II) in paddy soil reduced 83.7% within 15 days after addition of 1% BaWS. Significantly, adding 1% BaWS had better effect on increasing soil pH and removing available Cd (II) , than adding 3% BWS. These results suggest that the used dosage of microbial pretreated straw biochar for the remediation of Cd (II)-contaminated paddy soil was only 1/3 of that of conventional biochar. The enhanced property of biochar was attributed to deconstruction of straws by filamentous fungi before being pyrolyzed. Thus, fermented straws were indicated more suitable for the preparation of biochar used as effective soil remediation agents.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Juncheng Shao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Linpei Shen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Jianghui Xiu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Kangting Ma
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| |
Collapse
|
5
|
Silva NC, Esposto BS, Maniglia BC, Tapia‐Blácido DR, Martelli‐Tosi M. Using Experimental Design and Response Surface Methodology to optimize nanocellulose production from two types of pretreated soybean straw. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia C. Silva
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Rua Duque de Caxias Norte 225, CEP 13635‐900 Pirassununga SP Brazil
| | - Bruno S. Esposto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| | - Bianca C. Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| | - Delia R. Tapia‐Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| | - Milena Martelli‐Tosi
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Rua Duque de Caxias Norte 225, CEP 13635‐900 Pirassununga SP Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| |
Collapse
|
6
|
A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes (Basel) 2022. [DOI: 10.3390/pr10020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipases are enzymes that, in aqueous or non-aqueous media, act on water-insoluble substrates, mainly catalyzing reactions on carboxyl ester bonds, such as hydrolysis, aminolysis, and (trans)esterification. Yarrowia lipolytica is a non-conventional yeast known for secreting lipases and other bioproducts; therefore, it is of great interest in various industrial fields. The production of lipases can be carried on solid-state fermentation (SSF) that utilizes solid substrates in the absence, or near absence, of free water and presents minimal problems with microbial contamination due to the low water contents in the medium. Moreover, SSF offers high volumetric productivity, targets concentrated compounds, high substrate concentration tolerance, and has less wastewater generation. In this sense, the present work provides a temporal evolution perspective regarding the main aspects of lipase production in SSF by Y. lipolytica, focusing on the most relevant aspects and presenting the potential of such an approach.
Collapse
|
7
|
Chen L, Mi H, Li B, Liu Y, Zhou C, Ren A, Tan Z, Kong Z, Fang R, Zhang G. Offering soybean molasses adsorbed to agricultural by-products improved lactation performance through modulating plasma metabolic enzyme pool of lactating cows. Food Sci Nutr 2021; 9:6447-6457. [PMID: 34925776 PMCID: PMC8645711 DOI: 10.1002/fsn3.2504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/12/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Agricultural by-products, such as corncob powder (CRP), wheat bran (WB), rice husk (RH), defatted bran (DB), and soybean hulls (SH), were widely used as ruminant feed. However, the combination effect of soybean molasses mixed with agricultural by-products on cow lactating performance remains poorly understood. METHODS In vitro fermentation simulation technique was used to select the high ruminal fermentation performance of agricultural by-products mixed with soybean molasses. The selected mixtures were conducted to further explore the feeding effect on milk performance and blood metabolic enzyme on lactating dairy cows. RESULTS In in vitro simulation, it was confirmed that SH-SM showed better fermentation performance (including higher maximum gas production, acetate, propionate, and total VFA, but less initial fractional rate of degradation) than other four molasses-adsorbents, while WB-SM had the greatest DM and NDF disappearance and NH3-N and butyrate concentrations among substrates. After the simulation selection, we performed the feed experiment with SH-SM and WB-SM compared to the control. For lactating performance, higher (p < .01) milk fat and total milk solid content were observed in WB-SM, and a tendency improvement of milk protein content (p < .01) was observed in both of the cows fed with WB-SM and SH-SM. Among lactating periods, the blood glutamic-pyruvic transaminase, α-amylase, and lactate dehydrogenase which associated with amino acid metabolism and carbohydrate metabolism were improved in lactating dairy cows fed with WB-SM and SH-SM. CONCLUSION Dietary agricultural by-products (like wheat bran and soybean hulls) mixed with soybean molasses enhance the lactating performance of dairy cows by improving the host metabolism process of amino acids and carbohydrates. The mixed strategy for agricultural by-products shows another strong evidence for the resource reuse on dairy industry and reducing the by-product pollution.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Hui Mi
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
| | - Bin Li
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Yong Liu
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
| | - Chuanshe Zhou
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
| | - Ao Ren
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Zhiliang Tan
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
| | - Zhiwei Kong
- Key Laboratory for Agro‐Ecological Processes in Subtropical RegionNational Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessInstitute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
| | - Rejun Fang
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Ge Zhang
- Feng Yi (Shanghai) BiotechnologyR&D Center co. LTDShanghaiChina
| |
Collapse
|
8
|
Amaro Bittencourt G, Porto de Souza Vandenberghe L, Valladares-Diestra K, Wedderhoff Herrmann L, Fátima Murawski de Mello A, Sarmiento Vásquez Z, Grace Karp S, Ricardo Soccol C. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: A review. BIORESOURCE TECHNOLOGY 2021; 339:125594. [PMID: 34311407 DOI: 10.1016/j.biortech.2021.125594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Soybean is one of the major world crops, with an annual production of 359 million tons. Each ton of processed soybean generates 50-80 kg of soybean hulls (SHs), representing 5-8% of the whole seed. Due to environmental concerns and great economic potential, the search of SHs re-use solutions are deeply discussed. The lignocellulosic composition of SHs has attracted the attention of the scientific and productive sector. Recently, some studies have reported the use of SHs in the production of medium to high value-added molecules, with potential applications in food and feed, agriculture, bioenergy, and other segments. This review presents biotechnological approaches and processes for the management and exploitation of SHs, including pre-treatment methods and fermentation techniques, for the production of different biomolecules. Great potentialities and innovations were found concerning SH exploration and valorisation of the soybean chain under a biorefinery and circular bioeconomy optic.
Collapse
Affiliation(s)
- Gustavo Amaro Bittencourt
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil.
| | - Kim Valladares-Diestra
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Leonardo Wedderhoff Herrmann
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Zulma Sarmiento Vásquez
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Culture media based on effluent derived from soy protein concentrate production for Lacticaseibacillus paracasei 90 biomass production: statistical optimisation, mineral characterization, and metabolic activities. Antonie van Leeuwenhoek 2021; 114:2047-2063. [PMID: 34609626 DOI: 10.1007/s10482-021-01660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
The waste and by-products of the soybean industry could be an economic source of nutrients to satisfy the high nutritional demands for the cultivation of lactic acid bacteria. The aims of this work were to maximize the biomass production of Lacticaseibacillus paracasei 90 (L90) in three culture media formulated from an effluent derived from soy protein concentrate production and to assess the effects these media have on the enzymatic activity of L90, together with their influence on its fermentation profile in milk. The presence of essential minerals and fermentable carbohydrates (sucrose, raffinose, and stachyose) in the effluent was verified. L90 reached high levels of microbiological counts (∼ 9 log cfu mL-1) and dry weight (> 1 g L-1) on the three optimized media. Enzymatic activities (lactate dehydrogenase and β-galactosidase) of L90, and its metabolism of lactose and citric acid, as well as lactic acid and pyruvic acid production in milk, were modified depending on the growth media. The ability of the L90 to produce the key flavour compounds (diacetyl and acetoin) was maintained or improved by growing in the optimized media in comparison with MRS.
Collapse
|
10
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Das A, Prakash G, Lali AM. 2,3-Butanediol production using soy-based nitrogen source and fermentation process evaluation by a novel isolate of Bacillus licheniformis BL1. Prep Biochem Biotechnol 2021; 51:1046-1055. [PMID: 33719922 DOI: 10.1080/10826068.2021.1894443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
2,3-Butanediol (2,3-BDO) has varied applications in chemical, pharmaceutical, & food industry. Microorganisms belonging to Klebsiella, Enterobacter & Serratia genera are well-known producers of 2,3-BDO. However, they have limited usage in industrial-scale owing to their pathogenic nature. A nonpathogenic soil isolate identified as Bacillus licheniformis (BL1) was thus investigated for 2,3-BDO production. Soy flakes, soy flour, defatted soy, and soybean meal-based hydrolysates replaced yeast extract and peptone as nitrogen sources. Defatted soy flakes and soybean meal hydrolysate led to an equivalent 2,3-BDO yield and productivity as compared to that of Yeast Extract and peptone. The pH and oxygen variation influenced the proportion of various products of the mixed acid-butanediol pathway. Further, the batch mode fermentation with soy hydrolysate and optimized process parameter resulted in 2,3-BDO titer, yield and productivity of 11.06 g/L, 0.43 g/g and 0.48 g/L h respectively. Glucose concentration above 5% was inhibitory and led to reduction in the specific growth rate of BL1 in batch cultivation. Intermittent glucose feeding in fed-batch mode overcame this substrate limitation resulting in increased titers (49.8 g/L) and productivity (0.62 g/L h). Modified medium containing soy hydrolysate as nitrogen source with fermentation process optimization resulted in 67% decrease in medium cost for 2,3-BDO production.
Collapse
Affiliation(s)
- Arijit Das
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind M Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
12
|
Rakita S, Banjac V, Djuragic O, Cheli F, Pinotti L. Soybean Molasses in Animal Nutrition. Animals (Basel) 2021; 11:ani11020514. [PMID: 33669291 PMCID: PMC7920053 DOI: 10.3390/ani11020514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Soybean molasses is a by-product of the soybean processing industry that is accumulated in large quantities and usually disposed of like liquid manure or in landfills, thus causing severe ecological problems. At the same time, soybean molasses has a promising potential to be included regularly in animal diets because of its high nutritive value and functional properties. It is rich in sugars and is a cheap energy source for animals compared to other energy-rich feed ingredients. This paper reviews current knowledge on the valorization of soybean molasses as an alternative feed ingredient focusing on its composition and application in animal nutrition in general. Abstract Concerning the increasing global demand for food and accumulation of huge amounts of biomass waste from the agro-food industry whose manipulation is usually inadequate, the potential of livestock to convert by-products as alternative feed ingredients into valuable proteins has been proposed as an outstanding option. Soybean molasses present a by-product of soybean protein concentrate production with low commercial cost but high nutritive and functional value. It is a rich source of soluble carbohydrates in the form of sugars and soybean phytochemicals. Therefore, this paper provides a review of published works about the production of soybean molasses, chemical composition, and nutritive value. In addition, the possibility of the application of soybean molasses in animal nutrition as a pelleting aid and functional feed ingredient is also discussed. Special attention is devoted to the influence of the inclusion of soybean molasses in the diets for ruminants, non-ruminants, and aquaculture on animal performance and health.
Collapse
Affiliation(s)
- Sladjana Rakita
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (O.D.)
- Correspondence: ; Tel.: +381-21-485-3808
| | - Vojislav Banjac
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (O.D.)
| | - Olivera Djuragic
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (V.B.); (O.D.)
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milano, Italy; (F.C.); (L.P.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milano, Italy; (F.C.); (L.P.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
13
|
do Nascimento FV, de Castro AM, Secchi AR, Coelho MAZ. Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Kim JH, Jung S, Park YK, Kwon EE. CO 2-cofed catalytic pyrolysis of tea waste over Ni/SiO 2 for the enhanced formation of syngas. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122637. [PMID: 32304851 DOI: 10.1016/j.jhazmat.2020.122637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
To valorize tea waste (TW), catalytic pyrolysis was done as a practical measure for recovering energy as a form of syngas. Considering CO2 as a reactive gas medium in place of conventional pyrolysis gas, a sustainable pyrolysis platform was established. In addition, mechanistic effectiveness of CO2 on TW pyrolysis was examined. In the presence of CO2, homogeneous reaction with volatile organic compounds (VOCs) derived from TW pyrolysis contributed to CO formation. To enhance the formation of syngas at low pyrolysis temperature, catalytic pyrolysis over a Ni/SiO2 was investigated. The synergistic effects of Ni/SiO2 catalyst and CO2 promoted thermal cracking of VOCs and further homogeneous reaction with CO2, thereby resulting in the substantial enhancement (28 times more) of H2 and CO production than non-catalytic pyrolysis. It was also confirmed that CO2 could be considered a reactive gas medium to produce biochar (34-35 wt.% yield), having competitive porosity and surface area, in comparison to that from pyrolysis in N2. Therefore, CO2 can be employed to build a sustainable waste conversion platform for energy and biochar production through pyrolysis instead of using N2.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Sungyup Jung
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
15
|
Ourique LJ, Rocha CC, Gomes RCD, Rossi DM, Ayub MAZ. Bioreactor production of 2,3-butanediol by Pantoea agglomerans using soybean hull acid hydrolysate as substrate. Bioprocess Biosyst Eng 2020; 43:1689-1701. [PMID: 32356215 DOI: 10.1007/s00449-020-02362-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 11/30/2022]
Abstract
Production of 2,3-butanediol (2,3-BD) by Pantoea agglomerans strain BL1 was investigated using soybean hull hydrolysate as substrate in batch reactors. The cultivation media consisted of a mixture of xylose, arabinose, and glucose, obtained from the hemicellulosic fraction of the soybean hull biomass. We evaluated the influence of oxygen supply, pH control, and media supplementation on the growth kinetics of the microorganism and on 2,3-BD production. P. agglomerans BL1 was able to simultaneously metabolize all three monosaccharides present in the broth, with average conversions of 75% after 48 h of cultivation. The influence of aeration conditions employed demonstrated the mixed acid pathway of 2,3-BD formation by enterobacteria. Under fully aerated conditions (2 vvm of air), up to 14.02 g L-1 of 2.3-BD in 12 h of cultivation were produced, corresponding to yields of 0.53 g g-1 and a productivity of 1.17 g L-1 h-1, the best results achieved. These results suggest the production potential of 2,3-BD by P. agglomerans BL1, which has been recently isolated from an environmental consortium. The present work proposes a solution for the usage of the hemicellulosic fraction of agroindustry biomasses, carbohydrates whose utilization are not commonly addressed in bioprocess.
Collapse
Affiliation(s)
- Laura Jensen Ourique
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camille Conte Rocha
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raul Charpinel Diniz Gomes
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Misturini Rossi
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
16
|
Moretti A, Arias CL, Mozzoni LA, Chen P, McNeece BT, Mian MAR, McHale LK, Alonso AP. Workflow for the Quantification of Soluble and Insoluble Carbohydrates in Soybean Seed. Molecules 2020; 25:E3806. [PMID: 32825674 PMCID: PMC7504011 DOI: 10.3390/molecules25173806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/12/2023] Open
Abstract
Soybean seed composition has a profound impact on its market value and commercial use as an important commodity. Increases in oil and protein content have been historically pursued by breeders and genetic engineers; consequently, rapid methods for their quantification are well established. The interest in complete carbohydrate profiles in mature seeds, on the other hand, has recently increased due to numerous attempts to redirect carbohydrates into oil and protein or to offer specialty seed with a specific sugar profile to meet animal nutritional requirements. In this work, a sequential protocol for quantifying reserve and structural carbohydrates in soybean seed was developed and validated. Through this procedure, the concentrations of soluble sugars, sugar alcohols, starch, hemicellulose, and crystalline cellulose can be determined in successive steps from the same starting material using colorimetric assays, LC-MS/MS, and GC-MS. The entire workflow was evaluated using internal standards to estimate the recovery efficiency. Finally, it was successfully applied to eight soybean genotypes harvested from two locations, and the resulting correlations of carbohydrate and oil or protein are presented. This methodology has the potential not only to guide soybean cultivar optimization processes but also to be expanded to other crops with only slight modifications.
Collapse
Affiliation(s)
- Ademar Moretti
- BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; (A.M.); (C.L.A.)
| | - Cintia L. Arias
- BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; (A.M.); (C.L.A.)
| | - Leandro A. Mozzoni
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Pengyin Chen
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873, USA;
| | - Brant T. McNeece
- USDA-ARS, Soybean & Nitrogen Fixation Unit, Raleigh, NC 27607, USA; (B.T.M.); (M.A.R.M.)
| | - M. A. Rouf Mian
- USDA-ARS, Soybean & Nitrogen Fixation Unit, Raleigh, NC 27607, USA; (B.T.M.); (M.A.R.M.)
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Ana P. Alonso
- BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; (A.M.); (C.L.A.)
| |
Collapse
|
17
|
Chen Y, Shan S, Cao D, Tang D. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity. Food Chem 2020; 319:126552. [PMID: 32151898 DOI: 10.1016/j.foodchem.2020.126552] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/08/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
The resource utilization of soybean seed coats is currently poor. In this study, steam flash explosion (SFE) pretreatment was performed to extract valuable phytochemicals from soybean seed coats. The total content of phytochemicals and the antioxidant activity of extracts from SFE-treated soybean seed coat were systematically evaluated. On the basis of the application value of antioxidant activity, we optimized the process parameters of SFE-pretreated soybean seed coat to maximize the antioxidant activity. Additionally, the subsequently obtained ethyl acetate fraction with the highest antioxidant activity was analysed using HPLC-DAD-Q-Orbitrap HRMS/MS analysis. The results indicated that SFE could enhance the release of both aglycone and acetylglucoside forms of isoflavones from the cellular structure and enhance the antioxidant activity of soybean seed coats. This study provides evidence that SFE is a novel thermal processing technology with high efficiency and low energy consumption that improves the phytochemical composition and bioactivity of soybean seed coats.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Sharui Shan
- The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou 510632, China
| | - Dongmin Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Biotechnological potential of soybean molasses for the production of extracellular polymers by diazotrophic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Souza EF, Furtado MR, Carvalho CWP, Freitas-Silva O, Gottschalk LMF. Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. Int J Biol Macromol 2020; 146:285-289. [PMID: 31883899 DOI: 10.1016/j.ijbiomac.2019.12.180] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023]
Abstract
Bacterial cellulose (BC) has been largely used in biomedical and technological fields. The use of agro-industrial byproducts as alternative source of carbon and nitrogen in culture media reduces the BC cost production, adds value to the byproducts and minimizes the environmental impact. In this study, the use of cashew apple juice and soybean molasses were evaluated to produce BC by Gluconacetobacter xylinus in comparison to the usual Hestrin and Schramm medium (HS). BC produced in static cultivation was characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. The BC production (4.50 g L-1) obtained from the medium using cashew apple juice as carbon source (20 g L-1) with soybean molasses as nitrogen source (10 g L-1) was superior than HS medium (4.03 g L-1). Morphological analysis showed that bacterial celluloses produced with agro-industrial byproducts combined were similar to those found for the pellicle obtained from HS medium.
Collapse
Affiliation(s)
- Erika F Souza
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO). Av. Pasteur, 296, 22290-240, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Maraysa R Furtado
- Chemical Institute, Federal University of Rio de Janeiro (PPGCAL/UFRJ). Av. Athos da Silveira Ramos, 149 - Cidade Universitária - 21941-909, Rio de Janeiro, Brazil
| | - Carlos W P Carvalho
- Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Otniel Freitas-Silva
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO). Av. Pasteur, 296, 22290-240, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil.
| | - Leda M F Gottschalk
- Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Li Q, Ray CS, Callow NV, Loman AA, Islam SMM, Ju LK. Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme Microb Technol 2020; 134:109476. [PMID: 32044023 DOI: 10.1016/j.enzmictec.2019.109476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Soybean is a most promising sustainable protein source for feed and food to help meet the protein demand of the rapidly rising global population. To enrich soy protein, the environment-friendly enzymatic processing requires multiple carbohydrases including cellulase, xylanase, pectinase, α-galactosidase and sucrase. Besides enriched protein, the processing adds value by generating monosaccharides that are ready feedstock for biofuel/bioproducts. Aspergillus could produce the required carbohydrases, but with deficient pectinase and α-galactosidase. Here we address this critical technological gap by focused evaluation of the suboptimal productivity of pectinase and α-galactosidase. A carbohydrases-productive strain A. niger (NRRL 322) was used with soybean hull as inducing substrate. Temperatures at 20 °C, 25 °C and 30 °C were found to affect cell growth on sucrose with an Arrhenius-law activation energy of 28.7 kcal/mol. The 30 °C promoted the fastest cell growth (doubling time = 2.1 h) and earliest enzyme production, but it gave lower final enzyme yield due to earlier carbon-source exhaustion. The 25 °C gave the highest enzyme yield. pH conditions also strongly affected enzyme production. Fermentations made with initial pH of 6 or 7 were most productive, e.g., giving 1.9- to 2.3-fold higher pectinase and 2.2- to 2.3-fold higher α-galactosidase after 72 h, compared to the fermentation with a constant pH 4. Further, pH must be kept above 2.6 to avoid limitation in pectinase production and, in the later substrate-limiting stage, kept below 5.5 to avoid pectinase degradation. α-Galactosidase production always followed the pectinase production with a 16-24 h lag; presumably, the former relied on pectin hydrolysis for inducers generation. Optimal enzyme production requires controlling the transient availability of inducers.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Christopher S Ray
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Nicholas V Callow
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Abdullah A Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - S M M Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States.
| |
Collapse
|
21
|
Benitez LO, Castagnini JM, Añón MC, Salgado PR. Development of oil-in-water emulsions based on rice bran oil and soybean meal as the basis of food products able to be included in ketogenic diets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Singh R, Wrobel TP, Mukherjee P, Gryka M, Kole M, Harrison S, Bhargava R. Bulk Protein and Oil Prediction in Soybeans Using Transmission Raman Spectroscopy: A Comparison of Approaches to Optimize Accuracy. APPLIED SPECTROSCOPY 2019; 73:687-697. [PMID: 30409030 DOI: 10.1177/0003702818815642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rapid measurements of protein and oil content are important for a variety of uses, from sorting of soybeans at the point of harvest to feedback during soybean meal production. In this study, our goal is to develop a simple protocol to permit rapid and robust quantitative prediction of soybean constituents using transmission Raman spectroscopy (TRS). To develop this approach, we systematically varied the various elements of the measurement process to provide a diverse test bed. First, we utilized an in-house-built benchtop TRS instrument such that suitable optical configurations could be rapidly deployed and analyzed for experimental data collection for individual soybean grains. Second, we also utilized three different soybean varieties with relatively low (33.97%), medium (36.98%), and high protein (41.23%) contents to test the development process. Third, samples from each variety were prepared using whole bean and three different sample treatments (i.e., ground bean, whole meal, and ground meal). In each case, we modeled the data obtained using partial least squares (PLS) regression and assessed spectral metric-based multiple linear regression (metric-MLR) approaches to build robust prediction models. The metric-MLR models showed lower root mean square errors (RMSEPs), and hence better prediction, compared to corresponding classical PLS regression models for both bulk protein and oil for all treatment types. Comparing different sample preparation approaches, a lower RMSEPs was observed for whole meal treatment and thus the metric-MLR modeling with ground meal treatment was considered to be optimal protocol for bulk protein and oil prediction in soybean, with RMSEP values of 1.15 ± 0.04 (R2 = 0.87) and 0.80 ± 0.02 (R2 = 0.87) for bulk protein and oil, respectively. These predictions were nearly two- to threefold better (i.e., lower RMSEPs) than the corresponding NIR spectroscopy measurements (i.e., secondary gold standards in grain industry). For content prediction in whole soybean, incorporating physical attributes of individual grains in metric-MLR approach show up to 22% improvement in bulk protein and a relatively mild (up to ∼5%) improvement in bulk oil prediction. The unique combination of metric-MLR modeling approach (which is rare in the field of grain analysis) and sample treatments resulted in improved prediction models; using the physical attributes of individual grains is suggested as a novel measure for improving accuracy in prediction.
Collapse
Affiliation(s)
- Rajveer Singh
- 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 2 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tomasz P Wrobel
- 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 3 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Prabuddha Mukherjee
- 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark Gryka
- 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 2 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew Kole
- 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 2 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Rohit Bhargava
- 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 2 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 5 Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 6 Department of Electrical & Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Cortivo PRD, Machado J, Hickert LR, Rossi DM, Ayub MAZ. Production of 2,3-butanediol by Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1 cultivated in acid and enzymatic hydrolysates of soybean hull. Biotechnol Prog 2019; 35:e2793. [PMID: 30815989 DOI: 10.1002/btpr.2793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
We investigated the production of 2,3-butanediol by two enterobacteria isolated from an environmental consortium, Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1, in a bioprocess using acid and enzymatic hydrolysates of soybean hull as substrates. Cultivations were carried out in orbital shaker under microaerophilic conditions, at 30°C and 37°C, for both bacteria. Both hydrolysates presented high osmotic pressures, around 2,000 mOsm/kg, with varying concentrations of glucose, xylose, and arabinose. Both bacteria were able to grow in the hydrolysates, at both temperatures, and they efficiently converted sugars into 2,3-butanediol, showing yields varying from 0.25 to 0.51 g/g of sugars and maximum 2,3-butanediol concentrations varying from 6.4 to 21.9 g/L. Other metabolic products were also obtained in lower amounts, notably ethanol, which peaked at 3.6 g/L in cultures using the enzymatic hydrolysate at 30°C. These results suggest the potential use of these recently isolated bacteria to convert lignocellulosic biomass hydrolysates into value-added products.
Collapse
Affiliation(s)
- Paulo R D Cortivo
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jonas Machado
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lilian R Hickert
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Bioprocess Engineering, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniele M Rossi
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco A Z Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Li L, Qing Y, Wang J, Wang Y, Liu J, Mou H. Production of a water-soluble protein powder from anchovy and soybean meal by endogenous enzymatic hydrolysis and solid-state fermentation. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Li Li
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Yingerile Qing
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Jianlei Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Yue Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Jie Liu
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Haijin Mou
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| |
Collapse
|
25
|
Li Q, Loman AA, Callow NV, Islam SM, Ju LK. Leveraging pH profiles to direct enzyme production (cellulase, xylanase, polygalacturonase, pectinase, α-galactosidase, and invertase) by Aspergillus foetidus. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Zhu F, Wang Y, San KY, Bennett GN. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnol Bioeng 2018; 115:1743-1754. [PMID: 29508908 DOI: 10.1002/bit.26584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/17/2023]
Abstract
It is of great economic interest to produce succinate from low-grade carbon sources, which can enhance the competitiveness of the biological route. In this study, succinate producer Escherichia coli CT550/pHL413KF1 was further engineered to efficiently use the mixed sugars from non-food based soybean hydrolysate to produce succinate under anaerobic conditions. Since many common E. coli strains fail to use galactose anaerobically even if they can use it aerobically, the glucose, and galactose related sugar transporters were deactivated individually and evaluated. The PTS system was found to be important for utilization of mixed sugars, and galactose uptake was activated by deactivating ptsG. In the ptsG- strain, glucose, and galactose were used simultaneously. Glucose was assimilated mainly through the mannose PTS system while galactose was transferred mainly through GalP in a ptsG- strain. A new succinate producing strain, FZ591C which can efficiently produce succinate from the mixed sugars present in soybean hydrolysate was constructed by integration of the high succinate yield producing module and the galactose utilization module into the chromosome of the CT550 ptsG- strain. The succinate yield reached 1.64 mol/mol hexose consumed (95% of maximum theoretical yield) when a mixed sugars feedstock was used as a carbon source. Based on the three monitored sugars, a nominal succinate yield of 1.95 mol/mol was observed as the strain can apparently also use some other minor sugars in the hydrolysate. In this study, we demonstrate that FZ591C can use soybean hydrolysate as an inexpensive carbon source for high yield succinate production under anaerobic conditions, giving it the potential for industrial application.
Collapse
Affiliation(s)
- Fayin Zhu
- Department of BioSciences, Rice University, Houston, Texas
| | - Yuanshan Wang
- Department of BioSciences, Rice University, Houston, Texas
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ka-Yiu San
- Department of Bioengineering, Rice University, Houston, Texas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - George N Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| |
Collapse
|
27
|
Single-step enzyme processing of soybeans into intact oil bodies, protein bodies and hydrolyzed carbohydrates. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Yang H, Wang Z, Lin M, Yang ST. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. BIORESOURCE TECHNOLOGY 2018; 250:1-9. [PMID: 29153644 DOI: 10.1016/j.biortech.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Propionic acid (PA) is a specialty chemical; its calcium salt is widely used as food preservative. Soy molasses (SM), a low-value byproduct from soybean refinery, contains sucrose and raffinose-family oligosaccharides (RFO), which are difficult to digest for most animals and industrial microorganisms. The feasibility of using SM for PA production by P. acidipropionici, which has genes encoding enzymes necessary for RFO hydrolysis, was studied. With corn steep liquor as the nitrogen source, stable long-term PA production from SM was demonstrated in sequential batch fermentations, achieving PA productivity of >0.8 g/L h and yield of 0.42 g/g sugar at pH 6.5. Economic analysis showed that calcium propionate as the main component (63.5%) in the product could be produced at US $1.55/kg for a 3000-MT plant with a capital investment of US $10.82 million. At $3.0/kg for the product, the process offers attractive 40% return of investment and is promising for commercial application.
Collapse
Affiliation(s)
- Hopen Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Zhongqiang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Loman AA, Islam SMM, Ju LK. Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation. Appl Microbiol Biotechnol 2018; 102:641-653. [PMID: 29150708 DOI: 10.1007/s00253-017-8626-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022]
Abstract
Arabitol is a low-calorie sugar alcohol with anti-cariogenic properties. Enzymatic hydrolysate of soybean flour is a new renewable biorefinery feedstock containing hexose, pentose, and organic nitrogen sources. Arabitol production by Debaryomyces hansenii using soybean flour hydrolysate was investigated. Effects of medium composition, operating conditions, and culture stage (growing or stationary phase) were studied. Production was also compared at different culture volumes to understand the effect of dissolved oxygen concentration (DO). Main factors examined for medium composition effects were the carbon to nitrogen concentration ratio (C/N), inorganic (ammonium) to organic nitrogen ratio (I/O-N), and sugar composition. Arabitol yield increased with increasing C/N ratio and a high I/O-N (0.8-1.0), suggesting higher yield at stationary phase of low pH (3.5-4.5). Catabolite repression was observed, with the following order of consumption: glucose > fructose > galactose > xylose > arabinose. Arabitol production also favored hexoses and, among hexoses, glucose. DO condition was of critical importance to arabitol production and cell metabolism. The yeast consumed pentoses (xylose and arabinose) only at more favorable DO conditions. Finally, arabitol was produced in fermentors using mixed hydrolysates of soy flour and hulls. The process gave an arabitol yield of 54%, volumetric productivity of 0.90 g/L-h, and specific productivity of 0.031 g/g-h.
Collapse
Affiliation(s)
- Abdullah A Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - S M M Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
30
|
Islam SMM, Li Q, Loman AA, Ju LK. CO 2-H 2O based pretreatment and enzyme hydrolysis of soybean hulls. Enzyme Microb Technol 2017; 106:18-27. [PMID: 28859806 DOI: 10.1016/j.enzmictec.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/18/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
Abstract
The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO2-H2O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO2-H2O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO2-H2O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical.
Collapse
Affiliation(s)
- S M Mahfuzul Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Qian Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Abdullah Al Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA.
| |
Collapse
|
31
|
Al Loman A, Ju LK. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects. Enzyme Microb Technol 2017; 106:35-47. [PMID: 28859808 DOI: 10.1016/j.enzmictec.2017.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing.
Collapse
Affiliation(s)
- Abdullah Al Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA.
| |
Collapse
|
32
|
Loman AA, Islam SMM, Li Q, Ju LK. Enzyme recycle and fed-batch addition for high-productivity soybean flour processing to produce enriched soy protein and concentrated hydrolysate of fermentable sugars. BIORESOURCE TECHNOLOGY 2017; 241:252-261. [PMID: 28575788 DOI: 10.1016/j.biortech.2017.05.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch).
Collapse
Affiliation(s)
- Abdullah Al Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - S M Mahfuzul Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Qian Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA.
| |
Collapse
|
33
|
Salakkam A, Kingpho Y, Najunhom S, Aiamsonthi K, Kaewlao S, Reungsang A. Bioconversion of soybean residue for use as alternative nutrient source for ethanol fermentation. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Yuan C, Chen M, Luo J, Li X, Gao Q, Li J. A novel water-based process produces eco-friendly bio-adhesive made from green cross-linked soybean soluble polysaccharide and soy protein. Carbohydr Polym 2017; 169:417-425. [PMID: 28504164 DOI: 10.1016/j.carbpol.2017.04.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/28/2022]
Abstract
In this study, an eco-friendly soy protein adhesive was developed that utilized two components from soybean meal without addition of any toxic material. A plant-based, water-soluble and inexpensive soybean soluble polysaccharide was used as the novel renewable material to combine with soy protein to produce a soy protein adhesive. Three-plywood was fabricated with the resulting adhesive, and its wet shear strength was measured. The results showed the wet shear strength of plywood bonded by the adhesive reached 0.99MPa, meeting the water resistance requirement for interior use panels. This improvement was attributed to the following reasons: (1) Combination of cross-linked soybean soluble polysaccharide and soy protein formed an interpenetrating network structure, improving the thermal stability and water resistance of the cured adhesive. (2) Adding CL-SSPS decreased the adhesive viscosity to 15.14Pas, which increased the amount of the adhesive that penetrate the wood's surface and formed more interlocks.
Collapse
Affiliation(s)
- Cheng Yuan
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mingsong Chen
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing Luo
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaona Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Li Q, Loman AA, Coffman AM, Ju LK. Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation. J Biotechnol 2017; 248:35-42. [PMID: 28315372 DOI: 10.1016/j.jbiotec.2017.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 11/29/2022]
Abstract
Soybean hull consists mainly of three major plant carbohydrates, i.e., cellulose, hemicellulose and pectin. It is inexpensive and a good potential substrate for carbohydrase production because it is capable of inducing a complete spectrum of activities to hydrolyze complex biomass. Aspergillus is known for carbohydrase production but no studies have evaluated and compared, among Aspergillus species and strains, the soybean hull induced production of various carbohydrases. In this study, A. aculeatus, A. cinnamomeus, A. foetidus, A. phoenicis and 11 A. niger strains were examined together with T. reesei Rut C30, another known carbohydrase producer. The carbohydrases evaluated included pectinase, polygalacturonase, xylanase, cellulase, α-galactosidase and sucrase. Growth morphology and pH profiles were also followed. Among Aspergillus strains, morphology was found to correlate with both carbohydrase production and pH decrease profile. Filamentous strains gave higher carbohydrase production while causing slower pH decrease. The enzyme broths produced were also tested for separation of soy flour carbohydrate and protein. Defatted soy flour contains about 53% protein and 32% carbohydrate. The enzymatic treatment can increase protein content and remove indigestible oligo-/poly-saccharides, and improve use of soy flour in feed and food. Protease production by different strains was therefore also compared for minimizing protein degradation. A. niger NRRL 322 and A. foetidus NRRL 341 were found to be the most potent strains that produced maximal carbohydrases and minimal protease under soybean hull induction.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Abdullah Al Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Anthony M Coffman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States.
| |
Collapse
|
36
|
Cheng C, Zhou Y, Lin M, Wei P, Yang ST. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. BIORESOURCE TECHNOLOGY 2017; 223:166-174. [PMID: 27792926 DOI: 10.1016/j.biortech.2016.10.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid.
Collapse
Affiliation(s)
- Chi Cheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yipin Zhou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Peilian Wei
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Loman AA, Islam SMM, Li Q, Ju LK. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup. Bioprocess Biosyst Eng 2016; 39:1501-14. [PMID: 27207010 DOI: 10.1007/s00449-016-1626-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/14/2016] [Indexed: 01/10/2023]
Abstract
Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process.
Collapse
Affiliation(s)
- Abdullah Al Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, USA
| | - S M Mahfuzul Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, USA
| | - Qian Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, USA.
| |
Collapse
|
38
|
Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study. ENERGIES 2016. [DOI: 10.3390/en9090748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Optimization of Enzymatic Process Condition for Protein Enrichment, Sugar Recovery and Digestibility Improvement of Soy Flour. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2854-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|