1
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
2
|
Zhang L, Li Z, Kong H, Ban X, Gu Z, Hong Y, Cheng L, Li C. Advances in microbial exopolysaccharides as α-amylase inhibitors: Effects, structure-activity relationships, and anti-diabetic effects in vivo. Int J Biol Macromol 2024; 281:136174. [PMID: 39366595 DOI: 10.1016/j.ijbiomac.2024.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
The rapid digestion of starch, as the main source of energy in the human diet, causes an acute increase in blood sugar levels that will affect blood glucose homeostasis. The inhibition of α-amylase activity is an effective way of reducing starch digestibility, thereby controlling postprandial glycemia. As a class of carbohydrate polymers, microbial exopolysaccharides (EPSs) have garnered widespread attention for their inhibitory effects on α-amylase, but there is a lack of comprehensive review in this area. This paper aimed to review the inhibitory activity of microbial EPSs on α-amylase and their interaction mechanisms, and the effect of microbial EPSs on lowering blood glucose levels and regulating glycolipid metabolism in vivo were also discussed. Numerous studies have reported that EPSs with α-amylase inhibition activity are primarily produced by lactic acid bacteria. Microbial EPSs with an appropriate range of molecular weight, high proportion of glucose or mannose or arabinose residues, and high uronic acid content might be acceptable to inhibit α-amylase activity. Additionally, microbial EPSs exhibited potential anti-diabetic effects in mice, reducing blood glucose levels, and regulating glycolipid metabolism and gut microbiota. The information covered in this review may enhance the development and application of EPSs in functional food and pharmaceutical research.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
3
|
Li H, Wang K, Tan M, Zhu B, Wang H. Carboxymethylation of paramylon derived from Euglena gracilis and its hypoglycemic mechanism in diabetic mice. Int J Biol Macromol 2024; 278:134891. [PMID: 39214839 DOI: 10.1016/j.ijbiomac.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Paramylon is a polysaccharide primarily composed of β-1,3-glucan, characterized by its high crystallinity and insolubility in water. Enhancing its water solubility through structural modifications presents an effective strategy to unlock its biological activity. In this study, carboxymethylation was employed to produce carboxymethylated paramylon (CEP) with varying carboxyl concentrations. The successful introduction of carboxyl groups led to a notable improvement in water solubility. In vivo experiments demonstrated that CEP reduced fasting blood glucose levels by 24.42 %, improved oral glucose tolerance, and enhanced insulin sensitivity in diabetic mice. Additionally, CEP regulated lipid homeostasis and ameliorated liver damage. Through modulation of the adenosine monophosphate-activated protein kinase/phosphoinositide 3-kinase/protein kinase B pathway and the glucose-6-phosphatase/phosphoenolpyruvate carboxykinase pathway, CEP effectively regulated hepatic glucose absorption and production. Furthermore, CEP mitigated diabetes-induced lipid metabolism disorders. These findings suggest that CEP holds significant promise in ameliorating glucose metabolism disorder, indicating its potential as a novel hypoglycemic functional food.
Collapse
Affiliation(s)
- Hongliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Haitao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
5
|
Gu P, Xu P, Zhu Y, Zhao Q, Zhao X, Fan Y, Wang X, Ma N, Bao Y, Shi W. Structural characterization and adjuvant activity of a water soluble polysaccharide from Poria cocos. Int J Biol Macromol 2024; 273:133067. [PMID: 38866287 DOI: 10.1016/j.ijbiomac.2024.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Adjuvants, as the essential component of vaccines, are crucial in enhancing the magnitude, breadth and durability of immune responses. Unfortunately, commonly used Alum adjuvants predominantly provoke humoral immune response, but fail to evoke cellular immune response, which is crucial for the prevention of various chronic infectious diseases and cancers. Thus, it is necessary to develop effective adjuvants to simultaneously induce humoral and cellular immune response. In this work, we obtained a water soluble polysaccharide isolated and purified from Poria cocos, named as PCP, and explored the possibility of PCP as a vaccine adjuvant. The PCP, with Mw of 20.112 kDa, primarily consisted of →6)-α-D-Galp-(1→, with a small amount of →3)-β-D-Glcp-(1 → and →4)-β-D-Glcp-(1→. Our results demonstrated that the PCP promoted the activation of dendritic cells (DCs) and macrophages in vitro. As the adjuvant to ovalbumin, the PCP facilitated the activation of DCs in lymph nodes, and evoked strong antibody response with a combination of Th1 and Th2 immune responses. Moreover, compared to Alum adjuvant, the PCP markedly induced a potent cellular response, especially the cytotoxic T lymphocytes response. Therefore, we confirmed that the PCP has great potential to be an available adjuvant for simultaneously inducing humoral and cellular immune responses.
Collapse
Affiliation(s)
- Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yingsai Fan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ning Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Ma Y, Zang R, Chen M, Zhang P, Cheng Y, Hu G. Study on fermentation preparation, physicochemical properties and biological activity of carboxymethylpachymaran with different degrees of substitution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4234-4241. [PMID: 38294266 DOI: 10.1002/jsfa.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Carboxymethylpachymaran (CMP) is created by carboxymethylating pachyman (PM), which increases its water solubility and enhances a number of biological activities. Traditional polysaccharides modified by carboxymethylation employ strong chemical techniques. Carboxymethylcellulose (CMC) has been used previously for liquid fermentation to carboxymethyl modify bacterial polysaccharides. This theory can be applied to fungal polysaccharides because Poria cocos has the ability to naturally utilize cellulose. RESULTS CMC with different degrees of substitution (DS) (0.7, 0.9 and 1.2) were added to P. cocos fermentation medium, and CMPs with different DS (0.38, 0.56 and 0.78, respectively) were prepared by liquid fermentation. The physical and chemical properties and biological activities of the CMPs were determined. Their structures were confirmed by Fourier transform infrared (FTIR) spectroscopy and monosaccharide composition. With the increase of DS, the viscosity and viscosity-average molecular weight of CMPs decreased, whereas polysaccharide content and water solubility increased, although the triple helix structure was not affected. The results of bioactivity assay showed that the higher the DS of CMPs, the higher the 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability, and the stronger the bacterial inhibition ability. CONCLUSION The present study has developed a method for producing CMPs by P. cocos liquid fermentation. The results of the study confirm that enhancing the DS of CMP could effectively enhance its potential biological activity. The findings provide safe and reliable raw materials for creating CMP-related foods and encourage CMP application in the functional food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiming Ma
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruixiang Zang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mo Chen
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Pei Zhang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yaqing Cheng
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Guoyuan Hu
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Hubei Yugo Gu Ye Co., Ltd, Suizhou, China
| |
Collapse
|
7
|
Cheng Y, Tian S, Chen Y, Xie J, Hu X, Wang Y, Xie J, Huang H, Yang C, Si J, Yu Q. Structural characterization and in vitro fermentation properties of polysaccharides from Polygonatum cyrtonema. Int J Biol Macromol 2024; 258:128877. [PMID: 38134995 DOI: 10.1016/j.ijbiomac.2023.128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Polysaccharides, the major active ingredient and quality control indicator of Polygomatum cyrtonema are in need of elucidation for its in vitro fermentation characteristics. This study aimed to investigate the structural characteristics of the homogeneous Polygomatum cyrtonema polysaccharide (PCP-80 %) and its effects on human intestinal bacteria and short chain fatty acids (SCFAs) production during the in vitro fermentation. The results revealed that PCP-80 % was yielded in 10.44 % and the molecular weight was identified to be 4.1 kDa. PCP-80 % exhibited a smooth, porous, irregular sheet structure and provided good thermal stability. The analysis of Gas chromatograph-mass spectrometer (GC-MS) suggested that PCP-80 % contained six glycosidic bonds, with 2,1-linked-Fruf residues accounted for a largest proportion. Nuclear magnetic resonance (NMR) provided additional evidence that the partial structure of PCP-80 % probably consists of →1)-β-D-Fruf-(2 → as the main chain, accompanied by side chains dominated by →6)-β-D-Fruf-(2→. Besides, PCP-80 % promoted the production of SCFAs and increased the relative abundance of beneficial bacteria such as Megamonas, Bifidobacterium and Phascolarctobacterium during in vitro colonic fermentation, which changed the composition of the intestinal microbiota. These findings indicated that Polygomatum cyrtonema polysaccharides were able to modulate the structure and composition of the intestinal bacteria flora and had potential probiotic properties.
Collapse
Affiliation(s)
- Yanan Cheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jingyu Si
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
8
|
Li HF, Pan ZC, Chen JM, Zeng LX, Xie HJ, Liang ZQ, Wang Y, Zeng NK. Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities. Int J Biol Macromol 2024; 254:127579. [PMID: 37918606 DOI: 10.1016/j.ijbiomac.2023.127579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Silver nanoparticles (AgNPs) by green synthesis from fungi polysaccharides are attracting increasing attention owing to their distinctive features and special applications in numerous fields. In this study, a cost-effective and environmentally friendly biosynthesizing AgNPs method with no toxic chemicals involved from the fruiting body polysaccharide of Phlebopus portentosus (PPP) was established and optimized by single factor experiment and response surface methodology. The optimum synthesis conditions of polysaccharide-AgNPs (PPP-AgNPs) were identified to be the reaction time of 140 min, reaction temperature of 94 °C, and the PPP: AgNO3 ratio of 1:11.5. Formation of PPP-AgNPs was indicated by visual detection of colour change from yellowish to yellowish brown. PPP-AgNPs were characterized by different methods and further evaluated for biological activities. That the Ultraviolet-visible (UV-Vis.) spectroscopy displayed a sharp absorption peak at 420 nm confirmed the formation of AgNPs. Fourier transform infrared (FTIR) analysis detected the presence of various functional groups. The lattice indices of (111), (200), (220), and (331), which indicated a faced-centered-cubic of the Ag crystal structure of PPP-AgNPs, was confirmed by X-ray diffraction (XRD) and the particles were found to be spherical through high resolution transmission electron microscopy (HRTEM). Energy dispersive X-ray spectroscopy (EDS) determined the presence of silver in PPP-AgNPs. The percentage relative composition of elements was determined as silver (Ag) 82.5 % and oxygen (O) 17.5 % for PPP-AgNPs, and did not exhibit any nitrogen peaks. The specific surface area of PPP-AgNPs was calculated to be 0.5750 m2/g with an average pore size of 24.33 nm by BET analysis. The zeta potential was -4.32 mV, which confirmed the stability and an average particle size of 64.5 nm was calculated through dynamic light scattering (DLS). PPP-AgNPs exhibited significant free radical scavenging activity against DPPH with an IC50 value of 0.1082 mg/mL. The MIC values of PPP-AgNPs for E. coli, S. aureus, C. albicans, C. glabrata, and C. parapsilosis are 0.05 mg/mL. The IC50 value of the inhibition of PPP-AgNPs against α-glucosidase was 11.1 μg/mL, while the IC50 values of PPP-AgNPs against HepG2 and MDA-MB-231 cell lines were calculated to be 14.36 ± 0.43 μg/mL and 40.05 ± 2.71 μg/mL, respectively. According to the evaluation, it can be concluded that these green-synthesized and eco-friendly PPP-AgNPs are helpful to improve therapeutics because of significant antioxidant, antimicrobial, antidiabetic, and anticancer properties to provide new possibilities for clinic applications.
Collapse
Affiliation(s)
- Hong-Fu Li
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zhang-Chao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Jiao-Man Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Lei-Xia Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hui-Jing Xie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Zhi-Qun Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; College of Science, Hainan University, Haikou 570228, China
| | - Yong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
9
|
Niu MM, Guo HX, Shang JC, Meng XC. Structural Characterization and Immunomodulatory Activity of a Mannose-Rich Polysaccharide Isolated from Bifidobacterium breve H4-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19791-19803. [PMID: 38031933 DOI: 10.1021/acs.jafc.3c04916] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In this study, a novel homogeneous mannose-rich polysaccharide named EPS-1 from the fermentation broth of Bifidobacterium breve H4-2 was isolated and purified by anion exchange column chromatography and gel column chromatography. The primary structure of EPS-1 was analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance. The results indicated that EPS-1 had typical functional groups of polysaccharides. EPS-1 with an average molecular weight of 3.99 × 104 Da was mainly composed of mannose (89.65%) and glucose (5.84%). The backbone of EPS-1 was →2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→6)-α-d-Glcp-(1→ simultaneously containing two kinds of branched chains (α-d-Manp-(1→3)-α-d-Manp-(1→ and α-d-Manp-(1→). Besides, EPS-1 had a triple-helical conformation and exhibited excellent thermal stability. Moreover, the immunomodulatory activity of EPS-1 was evaluated by RAW 264.7 cells. Results indicated that EPS-1 significantly enhanced the viability of RAW 264.7 cells. EPS-1 could also be recognized by toll-like receptor 4, thereby activating the nuclear factors-κB (NF-κB) signaling pathway, promoting phosphorylation of related nuclear transcription factors, improving cell phagocytic activity, and promoting the secretion of NO, IL-6, IL-1β, and TNF-α. Thus, EPS-1 could activate the TLR4-NF-κB signaling pathway to emerge immunomodulatory activity on macrophages. The above results indicate that EPS-1 can serve as a potential immune-stimulating polysaccharide.
Collapse
Affiliation(s)
- Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huan-Xin Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Cui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Xue H, Hao Z, Gao Y, Cai X, Tang J, Liao X, Tan J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int J Biol Macromol 2023; 252:126199. [PMID: 37562477 DOI: 10.1016/j.ijbiomac.2023.126199] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
11
|
Qiu Y, Su Y, Song J, Mou F, Gou J, Geng X, Li X, Nie Z, Wang J, Zheng Y, Wang M. Carboxymethylation of the polysaccharide from the fermentation broth of Marasmius androsaceus and its antidepressant mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Wang Y, Wei S, Lian H, Tong L, Yang L, Ren B, Guo D, Huang H. A Neutral Polysaccharide from Spores of Ophiocordyceps gracilis Regulates Oxidative Stress via NRF2/FNIP1 Pathway. Int J Mol Sci 2023; 24:14721. [PMID: 37834168 PMCID: PMC10572349 DOI: 10.3390/ijms241914721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Ophiocordyceps gracilis (O. gracilis) is a parasitic fungus used in traditional Chinese medicine and functional foods. In this study, a neutral heteropolysaccharide (GSP-1a) was isolated from spores of O. gracilis, and its structure and antioxidant capacities were investigated. GSP-1a was found to have a molecular weight of 72.8 kDa and primarily consisted of mannose (42.28%), galactose (35.7%), and glucose (22.02%). The backbone of GSP-1a was composed of various sugar residues, including →6)-α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →2,4,6)-α-D-Manp-(1→, →6)-α-D-Glcp-(1→, and →3,6)-α-D-Glcp-(1→, with some branches consisting of →6)-α-D-Manp-(1→ and α-D-Gal-(1→. In vitro, antioxidant activity assays demonstrated that GSP-1a exhibited scavenging effects on hydroxyl radical (•OH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Moreover, GSP-1a was found to alleviate H2O2-induced oxidative stress in HepG2 cells by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD). Furthermore, GSP-1a upregulated the mRNA expression of antioxidant enzymes such as Ho-1, Gclm, and Nqo1, and regulated the NRF2/KEAP1 and FNIP1/FEM1B pathways. The findings elucidated the structural types of GSP-1a and provided a reliable theoretical basis for its usage as a natural antioxidant in functional foods or medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wen Yuan Road, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wen Yuan Road, Nanjing 210023, China
| |
Collapse
|
13
|
Zhao T, Yang M, Ma L, Liu X, Ding Q, Chai G, Lu Y, Wei H, Zhang S, Ding C. Structural Modification and Biological Activity of Polysaccharides. Molecules 2023; 28:5416. [PMID: 37513287 PMCID: PMC10384959 DOI: 10.3390/molecules28145416] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with a wide range of biological activities. The structural modification of polysaccharides by chemical means can enhance their biological activity. This paper reviews the latest research reports on the chemical modification of natural polysaccharides. At present, the modification methods of polysaccharides mainly include sulfation, phosphorylation, carboxymethylation, socialization, methylation and acetylation. The chemical and physical structures of the modified polysaccharides were detected via ultraviolet spectroscopy, FT-IR, high-performance liquid chromatography, ultraviolet spectroscopy, gas chromatography-mass spectrometry, nuclear magnetic resonance and scanning electron microscopy. Modern pharmacological studies have shown that the modified polysaccharide has various biological activities, such as antioxidant, antitumor, immune regulation, antiviral, antibacterial and anticoagulant functions in vitro. This review provides fresh ideas for the research and application of polysaccharide structure modification.
Collapse
Affiliation(s)
- Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Min Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Lina Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yang Lu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
14
|
Baghel M, Sakure K, Giri TK, Maiti S, Nakhate KT, Ojha S, Sharma C, Agrawal Y, Goyal S, Badwaik H. Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering. Pharmaceuticals (Basel) 2023; 16:ph16050776. [PMID: 37242559 DOI: 10.3390/ph16050776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Natural polysaccharides have been widely exploited in drug delivery and tissue engineering research. They exhibit excellent biocompatibility and fewer adverse effects; however, it is challenging to assess their bioactivities to that of manufactured synthetics because of their intrinsic physicochemical characteristics. Studies showed that the carboxymethylation of polysaccharides considerably increases the aqueous solubility and bioactivities of inherent polysaccharides and offers structural diversity, but it also has some limitations that can be resolved by derivatization or the grafting of carboxymethylated gums. The swelling ratio, flocculation capacity, viscosity, partition coefficient, metal absorption properties, and thermosensitivity of natural polysaccharides have been improved as a result of these changes. In order to create better and functionally enhanced polysaccharides, researchers have modified the structures and properties of carboxymethylated gums. This review summarizes the various ways of modifying carboxymethylated gums, explores the impact that molecular modifications have on their physicochemical characteristics and bioactivities, and sheds light on various applications for the derivatives of carboxymethylated polysaccharides.
Collapse
Affiliation(s)
- Madhuri Baghel
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kalyani Sakure
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yogeeta Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| |
Collapse
|
15
|
Mendes TPS, Santana RA, Cedro PÉP, Miranda ACA, Junior BBN, Júnior GLV. Extraction, characterization, antioxidant and α-amylase inhibitory activities of (1 → 3)(1 → 6)-β-D-glucogalactan from Aspergillus niger ATCC 1004. 3 Biotech 2023; 13:56. [PMID: 36691433 PMCID: PMC9859964 DOI: 10.1007/s13205-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
The optimization of extraction, chemical characterization, and the evaluation of antioxidant activity and α-amylase inhibition capacities of the cell wall polysaccharides extracted from Aspergillus niger ATCC 1004 were studied in this paper. The response surface methodology through a factorial design of three levels indicated the optimal conditions for extraction: pH 13 and 180 min. Characterization results showed that the polysaccharide is glucogalactan, consisting of β-D-galactose-linked units (1 → 6) and β-D-linked glucose (1 → 3). The antioxidant activity was evaluated through three in vitro assays. It could effectively scavenge DPPH, ABTS and hydroxyl radicals with inhibition rates of 82.12%, 75.87% and 79.24, respectively, at 6.4 mg/mL, which were higher than those of the other polysaccharides. For inhibitory activity against α-amylase, a blocking effect of 53.7% was observed at a concentration of 2 mg/mL. Therefore, the cell wall polysaccharides of Aspergillus niger, (1 → 3)(1 → 6)-β-D-glucogalactan, seem to be a promising source for use as an antioxidant, in addition to holding an in vitro hypoglycemic potential.
Collapse
Affiliation(s)
- Tátilla P. S. Mendes
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Romário A. Santana
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Pâmala Évelin P. Cedro
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Alana Caise A. Miranda
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | | | | |
Collapse
|
16
|
Yang X, Yang J, Liu H, Ma Z, Guo P, Chen H, Gao D. Extraction, structure analysis and antioxidant activity of Sibiraea laevigata (L.) Maxim polysaccharide. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co.Ltd, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
17
|
Nataraj A, Govindan S, Rajendran A, Ramani P, Subbaiah KA, Munekata PES, Pateiro M, Lorenzo JM. Effects of Carboxymethyl Modification on the Acidic Polysaccharides from Calocybe indica: Physicochemical Properties, Antioxidant, Antitumor and Anticoagulant Activities. Antioxidants (Basel) 2022; 12:antiox12010105. [PMID: 36670967 PMCID: PMC9854956 DOI: 10.3390/antiox12010105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
An acidic polysaccharide fraction was obtained from Calocybe indica (CIP3a) after subjecting it to hot water extraction followed by purification through DEAE-cellulose 52 and Sepaharose 6B column chromatography. The CIP3a was further modified using chloroacetic acid to yield carboxymethylated derivatives (CMCIP3a). The modified polysaccharide was characterized using various spectroscopic methods. In addition, further antioxidant, antitumor and anticoagulant activities were also investigated. The polysaccharides CIP3a and CMCIP3a were heterogeneous in nature and composed of various molar percentages of glucose, arabinose and mannose with molecular weights of 1.456 × 103 and 4.023 × 103 Da, respectively. The NMR and FT-IR data demonstrated that the carboxymethylation on the polysaccharide was successful. In comparison to CIP3a polysaccharides, the modified derivatives had lower sugar and protein contents, and higher levels of uronic acid. The in vitro antioxidant activity showed that CMCIP3a with higher molecular weight displayed an elevated ability in scavenging the DPPH radical, ABTS, superoxide, hydroxyl radical, ferric reducing power, cupric reducing power and erythrocyte hemolysis inhibition with an EC50 value of 2.49, 2.66, 4.10, 1.60, 3.48, 1.41 and 2.30 mg/mL, respectively. The MTT assay results revealed that CMCIP3a displayed a dose-dependent inhibition on five cancer cells (HT29, PC3, HeLa, Jurkat and HepG-2) in the range of 10-320 μg/mL. The APTT, PT and TT were significantly extended by CMCIP3a in relation to dosage, indicating that the anticoagulant effect of CIP was both extrinsic and intrinsic, along with a common coagulation pathway. These findings demonstrated that carboxymethylation might effectively improve the biological potential of the derivatives and offer a theoretical framework for the creation of novel natural antioxidants, low-toxicity antitumor and antithrombotic drugs.
Collapse
Affiliation(s)
- Ambika Nataraj
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636001, India
| | - Sudha Govindan
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636001, India
- Correspondence: (S.G.); (P.R.); (J.M.L.)
| | - Archana Rajendran
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (S.G.); (P.R.); (J.M.L.)
| | | | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence: (S.G.); (P.R.); (J.M.L.)
| |
Collapse
|
18
|
Structural characterization and bioactivities of a novel polysaccharide obtained from Lachnum YM38 together with its zinc and selenium derivatives. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Qian Y, Wang L, Zhang Z, Li X, Niu C, Li X, Ning E, Ma B. Physical-chemical properties of heteropolysaccharides from different processed forms of Rehmanniae Radix. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Yang X, Liu H, Yang J, Ma Z, Guo P, Chen H, Gao D. Purification, structural characterization and immunological activity of Sibiraea laexigata (L.) Maxim polysaccharide. Front Nutr 2022; 9:1013020. [PMID: 36185700 PMCID: PMC9521201 DOI: 10.3389/fnut.2022.1013020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sibiraea laexigata (L.) Maxim (SLM) has been used as an herbal tea for treating stomach discomfort and indigestion for a long time in china. Polysaccharides have been identified as one of the major bioactive compounds in the SLM. In the present paper, ultrasonic-assisted enzymatic extraction (UAEE) method was employed in polysaccharides extraction derived from SLM using polyethylene glycol (PEG) as extraction solvent, two SLM polysaccharides (SLMPs) fractions (SLMPs-1-1 and SLMPs-2-1) were purified by DEAE Cellulose-52 and Sephadex G-100 chromatography in sequence. Then, the preliminarily structure of the two factions were characterized by chemical composition analysis, molecular weight measurement, UVS, HPLC-PMP, FT-IR, nuclear magnetic resonance (NMR) spectra analysis and SEM. The results showed that SLMPs-1-1 and SLMPs-2-1 with different molecular weights of 1.03 and 1.02 kDa, mainly composed of glucose (46.76 and 46.79%), respectively. The results of structural characterization from FT-IR, 1H NMR, and SEM revealed that SLMPs-1-1 and SLMPs-2-1 contained the typical pyranoid polysaccharide with α-glycosidic bond and β-glycosidic bond. Furthermore, it was found that SLMPs-1-1 could increase the levels of tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2), and alleviated the immune organs tissue damage of cyclophosphamide (Cy)-treated mice. RT-qPCR and Western-Blot analysis showed that SLMPs-1-1 could significantly up-regulated the levels of NF-κB, TLR4, which revealed that SLMPs-1-1 could participate in immunosuppressive protection of Cy-treated mice. These findings suggested that the potential of SLMPs-1-1 as an alternative immunostimulator could be used in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co., Ltd., Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
- *Correspondence: Dandan Gao,
| |
Collapse
|
21
|
Zinc insulin hexamer loaded alginate zinc hydrogel: preparation, characterization and in vivo hypoglycemic ability. Eur J Pharm Biopharm 2022; 179:173-181. [PMID: 36087882 DOI: 10.1016/j.ejpb.2022.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Alginate zinc hydrogel loaded with zinc insulin hexamer was prepared and characterized for oral insulin administration. The hydrogel was fabricated by dripping zinc insulin hexamer into sodium alginate solution and followed by crosslinking by zinc chloride. SEM image reveals the zinc insulin hexamer was integrated into the matrix of hydrogel. Zinc insulin hexamer loaded hydrogel shows no obvious cytotoxicity to both HT29 and Caco-2 cells. The developed hydrogel retards the burst release of insulin in simulated gastric fluid but promotes the release when in simulated intestinal fluid. In the diabetic mice, zinc insulin hexamer loaded alginate hydrogel demonstrates significant and prolonged hypoglycemic effect.
Collapse
|
22
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
23
|
Carboxymethylation of Desmodium styracifolium Polysaccharide and Its Repair Effect on Damaged HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2082263. [PMID: 35993017 PMCID: PMC9391130 DOI: 10.1155/2022/2082263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Desmodium styracifolium is the best traditional medicine for treating kidney calculi in China. This study is aimed at increasing the carboxyl (-COOH) content of D. styracifolium polysaccharide (DSP0) and further increasing its antistone activity. Methods DSP0 was carboxymethylated with chloroacetic acid at varying degrees. Then, oxalate-damaged HK-2 cells were repaired with modified polysaccharide, and the changes in biochemical indices before and after repair were detected. Results Three modified polysaccharides with 7.45% (CDSP1), 12.2% (CDSP2), and 17.7% (CDSP3) -COOH are obtained. Compared with DSP0 (-COOH content = 1.17%), CDSPs have stronger antioxidant activity in vitro and can improve the vitality of damaged HK-2 cells. CDSPs repair the cell morphology and cytoskeleton, increase the cell healing ability, reduce reactive oxygen species and nitric oxide levels, increase mitochondrial membrane potential, limit autophagy level to a low level, reduce the eversion of phosphatidylserine in the cell membrane, weaken the inhibition of oxalate on DNA synthesis, restore cell cycle to normal state, promote cell proliferation, and reduce apoptosis/necrosis. Conclusion The carboxymethylation modification of DSP0 can improve its antioxidant activity and enhance its ability to repair damaged HK-2 cells. Among them, CDSP2 with medium -COOH content has the highest activity of repairing cells, whereas CDSP3 with the highest -COOH content has the highest antioxidant activity. This difference may be related to the active environment of polysaccharide and conformation of the polysaccharide and cell signal pathway. This result suggests that Desmodium styracifolium polysaccharide with increased -COOH content may have improved potential treatment and prevention of kidney calculi.
Collapse
|
24
|
Xiong P, Cheng XY, Sun XY, Chen XW, Ouyang JM. Interaction between nanometer calcium oxalate and renal epithelial cells repaired with carboxymethylated polysaccharides. BIOMATERIALS ADVANCES 2022; 137:212854. [PMID: 35929244 DOI: 10.1016/j.bioadv.2022.212854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Injury of renal tubular epithelial cells (HK-2) is an important cause of kidney stone formation. In this article, the repairing effect of polysaccharide (PCP0) extracted from the traditional Chinese medicine Poria cocos and its carboxymethylated derivatives on damaged HK-2 cells was studied, and the differences in adhesion and endocytosis of the cells to nanometer calcium oxalate monohydrate (COM) before and after repair were explored. METHODS Sodium oxalate (2.8 mmol/L) was used to damage HK-2 cells to establish a damage model, and then Poria cocos polysaccharides (PCPs) with different carboxyl (COOH) contents were used to repair the damaged cells. The changes in the biochemical indicators of the cells before and after the repair and the changes in the ability to adhere to and internalize nano-COM were detected. RESULTS The natural PCPs (PCP0, COOH content = 2.56%) were carboxymethylated, and three carboxylated modified Poria cocos with 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) COOH contents were obtained. PCPs could repair the damaged HK-2 cells, and the cell viability was enhanced after repair. The cell morphology was gradually repaired, the proliferation and healing rate were increased. The ROS production was reduced, and the polarity of the mitochondrial membrane potential was restored. The level of intracellular Ca2+ ions decreased, and the autophagy response was weakened. CONCLUSION The cells repaired by PCPs inhibited the adhesion to nano-COM and simultaneously promoted the endocytosis of nano-COM. The endocytic crystals mainly accumulated in the lysosome. Inhibiting adhesion and increasing endocytosis could reduce the nucleation, growth, and aggregation of cell surface crystals, thereby inhibiting the formation of kidney stones. With the increase of COOH content in PCPs, its ability to repair damaged cells, inhibit crystal adhesion, and promote crystal endocytosis all increased, that is, PCP3 with the highest COOH content showed the best ability to inhibit stone formation.
Collapse
Affiliation(s)
- Peng Xiong
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xiao-Yan Cheng
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Xue-Wu Chen
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Deep eutectic solvents boosting solubilization and Se-functionalization of heteropolysaccharide: Multiple hydrogen bonds modulation. Carbohydr Polym 2022; 284:119159. [DOI: 10.1016/j.carbpol.2022.119159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
|
26
|
Lu X, Jing Y, Li Y, Zhang N, Cao Y. Eurotium cristatum produced β-hydroxy acid metabolite of monacolin K and improved bioactive compound contents as well as functional properties in fermented wheat bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Ahmad MM. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Liu Y, Li S, Pu M, Qin H, Wang H, Zhao Y, Chen T. Structural Characterization of Polysaccharides Isolated from Panax notoginseng Medicinal Residue and Its Protective Effect on Myelosuppression Induced by Cyclophosphamide. Chem Biodivers 2021; 19:e202100681. [PMID: 34817123 DOI: 10.1002/cbdv.202100681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
This study aims to establish the isolation and purification method of polysaccharides from medicinal residue of Panax notoginseng (PPN). The structure and protective effect of PPN on myelosuppression mice were investigated. One neutral polysaccharide (NPPN) and five acidic polysaccharides (APPN I, APPN II-A, APPN II-B, APPN III-A, and APPN III-B) were obtained. The results confirmed that NPPN, APPN I and APPN II-A are glycan with 1, 4 main chains. APPN III-A is a glycan. APPN II-B and APPN III-B are homogalacturonan pectin with 1, 4 main chains. This study demonstrated that NPPN played a bone marrow protective role in myelosuppression mice induced by cyclophosphamide. NPPN could relieve cell cycle arrest, reduce the apoptosis rate of marrow cells, and improve granulocyte-macrophage colony-stimulating (GM-CSF), thermoplastic polyolefin (TPO) and erythropoietin (EPO) serum level, which contributes to promoting the proliferation of hematopoietic cells.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China.,Yunnan Maternal and Child Health Hospital, No. 200 Gulou Road, Kunming, 650051, P. R. China
| | - Shuang Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China.,Kunming Children's Hospital, No. 288 Qianxing Road, Kunming, 650034, P. R. China
| | - Mengdi Pu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| | - Huayan Qin
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| | - Hong Wang
- Department of Geriatrics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, P. R. China
| | - Yunqi Zhao
- College of Science and Technology, Wenzhou-Kean University, No. 88 Daxue Road, Wenzhou, 325060, P. R. China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| |
Collapse
|
31
|
Zhou S, Huang G. Preparation, structure and activity of polysaccharide phosphate esters. Biomed Pharmacother 2021; 144:112332. [PMID: 34673422 DOI: 10.1016/j.biopha.2021.112332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides have anti-virus, anti-cancer, anti-oxidation, immune regulation, hypoglycemia and other biological activities. Because of their safety, fewer side effects and other advantages, polysaccharides are considered as ideal raw materials in food and drugs. The biological activity of polysaccharides can be improved by structural modification (such as sulfation, carboxymethylation, phosphorylation, etc.), and even new biological activity can be generated. In this review, the recent advances in the phosphorylation of polysaccharides were reviewed from the perspectives of modification methods, structures, biological activities and structure-activity relationships.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
32
|
Zheng Q, Chen J, Yuan Y, Wan L, Li L, Zhang X, Li B. Effects of different extraction methods on the structure, antioxidant activity, α‐amylase, and α‐glucosidase inhibitory activity of polysaccharides from
Potentilla discolor
Bunge. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Liting Wan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
- School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| |
Collapse
|
33
|
Zou GJ, Huang WB, Sun XY, Tang GH, Ouyang JM. Carboxymethylation of Corn Silk Polysaccharide and Its Inhibition on Adhesion of Nanocalcium Oxalate Crystals to Damaged Renal Epithelial Cells. ACS Biomater Sci Eng 2021; 7:3409-3422. [PMID: 34170660 DOI: 10.1021/acsbiomaterials.1c00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to explore the repair effect of carboxymethyl-modified corn silk polysaccharide (CSP) on oxidatively damaged renal epithelial cells and the difference in adhesion between cells and calcium oxalate crystals. The CSP was degraded and modified through carboxymethylation. An oxidatively damaged cell model was constructed by oxalate damage to human kidney proximal tubular epithelial (HK-2) cells. Then, the damaged cells were repaired by modified polysaccharides, and the changes in biochemical indexes and adhesion ability between cells and crystals before and after repair were detected. Four modified polysaccharides with carboxyl group (-COOH) contents of 3.92% (CSP0), 7.75% (CCSP1), 12.90% (CCSP2), and 16.38% (CCSP3) were obtained. Compared with CSP0, CCSPs had stronger antioxidant activity, could repair damaged HK-2 cells, and could reduce phosphorylated serine eversion on the cell membrane, the expression of osteopontin (OPN) and Annexin A1, and crystal adhesion. However, its effect on the expression of hyaluronic acid synthase was not substantial. The carboxymethyl modification of the CSP can improve its ability to repair cells and inhibit crystal adhesion and aggregation. A high carboxymethylation degree results in strong polysaccharide activity. CCSPs are expected to reduce the risk of kidney stone formation and recurrence.
Collapse
Affiliation(s)
- Guo-Jun Zou
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Wei-Bo Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Gu-Hua Tang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
34
|
The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. Int J Biol Macromol 2020; 164:4435-4443. [DOI: 10.1016/j.ijbiomac.2020.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
|
35
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity in vitro and chemical structure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Chakka VP, Zhou T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int J Biol Macromol 2020; 165:2425-2431. [PMID: 33132131 DOI: 10.1016/j.ijbiomac.2020.10.178] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Polysaccharides are a structurally diverse class of biomolecules with a wide variety of bioactivities. Natural polysaccharides isolated from plants and fungi are used as raw materials in food and pharmaceutical industries due to their therapeutic properties, non-toxicity, and negligible side effects, but many natural polysaccharides possess low bioactivities when compared to synthetic medicines due to their structure and physicochemical properties. Literature studies revealed that carboxymethylation of polysaccharides enhances the bioactivities and water solubility of native polysaccharides significantly, and provide structural diversity and even the addition of new bioactivities. This review article mainly focuses on the recent research on carboxymethylation of polysaccharides including preparation, characterization, and bioactivities. This article also throws light on future directions and scope to develop new carboxymethylated polysaccharide derivatives for many industries such as food processing, cosmetics, nutraceuticals, and pharmaceutical industry.
Collapse
Affiliation(s)
- Vara Prasad Chakka
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
37
|
Avwioroko OJ, Anigboro AA, Atanu FO, Otuechere CA, Alfred MO, Abugo JN, Omorogie MO. Investigation of the binding interaction of α-amylase with Chrysophyllum albidum seed extract and its silver nanoparticles: A multi-spectroscopic approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 2020; 40:1059-1080. [DOI: 10.1080/07388551.2020.1805405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C. Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L. Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
39
|
Characterization of physicochemical and biological properties of Schizophyllum commune polysaccharide extracted with different methods. Int J Biol Macromol 2020; 156:1425-1434. [DOI: 10.1016/j.ijbiomac.2019.11.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
|
40
|
Song J, Chen H, Wei Y, Liu J. Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus. Carbohydr Polym 2020; 242:116418. [DOI: 10.1016/j.carbpol.2020.116418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
41
|
Li L, Su Y, Feng Y, Hong R. A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species. Int J Biol Macromol 2020; 154:1074-1081. [DOI: 10.1016/j.ijbiomac.2020.02.324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
|
42
|
Duan Z, Zhang Y, Zhu C, Wu Y, Du B, Ji H. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice. Int J Biol Macromol 2020; 162:533-547. [PMID: 32565302 DOI: 10.1016/j.ijbiomac.2020.06.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the basic structural features of phosphorylated Pleurotus ostreatus polysaccharide (PPOP) and study the protective effect of PPOP on liver injury induced by carbon tetrachloride in male Kunming mice. The phosphorylated polysaccharide was prepared from the natural polysaccharide extracted from Pleurotus ostreatus (POP). The structures of PPOP and POP were characterized by FT-IR, ESEM spectroscopy, and Congo red test. Chemical composition analysis revealed that PPOP was mainly composed of rhamnose, galacturonic acid, and xylose in a molar ratio of 0.10: 1.98: 1.00. Structural analysis indicated that PPOP had multi-strand structure and the absorption peaks of PO and P-O-C. Furthermore, animal experiments showed that the hepatoprotective effect of PPOP against liver injury was reflected by decreasing the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, trilaurin, and low-density lipoprotein cholesterol in the serum, increasing the content of high-density lipoprotein cholesterol and albumin in blood, reducing the content of malondialdehyde and promoting the activity of antioxidant enzymes in liver. PPOP exhibited stronger hepatoprotective effect and antioxidant activity in vivo than POP. The final results indicated that PPOP could be used in the treatment of chemical-induced hepatotoxicity based on the above biological research.
Collapse
Affiliation(s)
- Zhen Duan
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Biqi Du
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huijie Ji
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
43
|
Musarurwa H, Tavengwa NT. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr Polym 2020; 237:116142. [DOI: 10.1016/j.carbpol.2020.116142] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022]
|
44
|
Guo H, Feng KL, Zhou J, Liu L, Wei SY, Zhao L, Qin W, Gan RY, Wu DT. Carboxymethylation of Qingke β-glucans and their physicochemical properties and biological activities. Int J Biol Macromol 2020; 147:200-208. [DOI: 10.1016/j.ijbiomac.2020.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|
45
|
|
46
|
Abuduwaili A, Rozi P, Mutailifu P, Gao Y, Nuerxiati R, Aisa HA, Yili A. Effects of different extraction techniques on physicochemical properties and biological activities of polysaccharides from Fritillaria pallidiflora Schrenk. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int J Biol Macromol 2019; 132:970-977. [DOI: 10.1016/j.ijbiomac.2019.03.213] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
|