1
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2024; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
2
|
Yu G, Wen W, Li Q, Chen H, Zhang S, Huang H, Zhang Q, Fu L. Heat-Processed Diet Rich in Advanced Glycation End Products Induced the Onset and Progression of NAFLD via Disrupting Gut Homeostasis and Hepatic Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39635825 DOI: 10.1021/acs.jafc.4c08360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Epidemiologic studies have suggested an association between the consumption of dietary advanced glycation end products (dAGEs) and the incidence of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanism by which dAGEs induce NAFLD development, particularly the pathogenic role of the gut-liver axis, remains poorly understood. In this study, by establishing a high-AGE diet (HAD)-fed C57BL/6 mouse model, we employed multiomics approaches combined with a series of biological analyses to investigate the effect of HAD on NAFLD in vivo. Our results showed that exposure to HAD led to fat accumulation, oxidative stress, inflammation, and fibrosis in the liver of mice. Transcriptome analysis further revealed that HAD exposure disrupted lipid metabolism and activated inflammation-related signaling pathways in the liver. Additionally, exposure to HAD induced perturbations in gut homeostasis, as evidenced by the compromised gut barrier function, reduced probiotic abundance, and increases in pathogenic bacterial proportions. Dysbiosis of gut homeostasis may further act as a trigger for the initiation and progression of NAFLD via the gut-liver axis. This study sheds light on the underlying mechanisms through which dAGEs contribute to the development of NAFLD and helps to understand the detrimental effects of food ultraprocessing products in modern diets. Future studies are needed to explore the in-depth mechanisms related to the gut-liver axis to consolidate our conclusions.
Collapse
Affiliation(s)
- Gang Yu
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Wenjiabao Wen
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Qianqian Li
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Hongbo Chen
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., LTD., Hangzhou 310018, China
| | - Shuifeng Zhang
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., LTD., Hangzhou 310018, China
| | - Hua Huang
- Quzhou Institute for Food and Drug Control, Quzhou 324000, China
| | - Qiaozhi Zhang
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Linglin Fu
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
He Y, Gao W, Zhang Y, Sun M, Kuang H, Sun Y. Progress in the preparation, structure and bio-functionality of Dictyophora indusiata polysaccharides: A review. Int J Biol Macromol 2024; 283:137519. [PMID: 39577539 DOI: 10.1016/j.ijbiomac.2024.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Dictyophora indusiata (D. indusiata) is an elegant fungus known as the "mushroom queen" because of its rich nutritional value and resemblance to dancers wearing clean white dresses. Due to the harsh growth environment, the yield of D. indusiata is relatively low. Polysaccharides are the most abundant component among them and it is valued for its unique physiological function. Multiple extraction and purification methods have been used to separate and purify polysaccharides from D. indusiata. These polysaccharides have demonstrated strong biological activities in vitro and in vivo, including anti-inflammatory, anti-tumour, immunomodulatory, antioxidant and anti-hyperlipidemic effects. In addition, D. indusiata polysaccharides have shown promising potential for development and application in the areas of food, healthcare products, pharmaceuticals, and cosmetics. Recent advances in the extraction, purification, structural characterization, biological activities and application prospects of D. indusiata polysaccharides were summarized. This review may enrich the knowledge about bioactive polysaccharides from D. indusiata and provide a theoretical basis. Due to diverse potential health-promoting properties of D. indusiata polysaccharides, further development for their application in functional foods and pharmaceuticals is expected.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
4
|
Chen Y, Li H, Lai F, Min T, Wu H, Zhan Q. The Influence and Mechanisms of Natural Plant Polysaccharides on Intestinal Microbiota-Mediated Metabolic Disorders. Foods 2024; 13:3882. [PMID: 39682954 DOI: 10.3390/foods13233882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural plant polysaccharides are renowned for their broad spectrum of biological activities, making them invaluable in both the pharmaceutical and food industries. Their safety, characterized by low toxicity and minimal side effects, coupled with their potential therapeutic properties, positions them as crucial elements in health-related applications. The functional effectiveness of these polysaccharides is deeply connected to their structural attributes, including molecular weight, monosaccharide components, and types of glycosidic bonds. These structural elements influence how polysaccharides interact with the gut microbiota, potentially alleviating various metabolic and inflammatory disorders such as inflammatory bowel disease, diabetes, liver-associated pathologies, obesity, and kidney diseases. The polysaccharides operate through a range of biological mechanisms. They enhance the formation of short-chain fatty acids, which are pivotal in keeping intestinal health and metabolic balance. Additionally, they strengthen the intestinal mucosal barrier, crucial for deterring the ingress of pathogens and toxins into the host system. By modulating the immune responses within the gut, they help in managing immune-mediated disorders, and their role in activating specific cellular signaling pathways further underscores their therapeutic potential. The review delves into the intricate structure-activity relationships of various natural polysaccharides and their interactions with the intestinal flora. By understanding these relationships, the scientific community can develop targeted strategies for the use of polysaccharides in therapeutics, potentially leading to innovative treatments for a range of diseases. Furthermore, the insights gained can drive the advancement of research in natural polysaccharide applications, providing direction for novel dietary supplements and functional foods designed to support gut health and overall well-being.
Collapse
Affiliation(s)
- Yong Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Hui Li
- Culinary Institute, Shunde Polytechnic, Foshan 528000, China
| | - Furao Lai
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tian Min
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Wang Y, Ma CM, Yang Y, Wang B, Liu XF, Wang Y, Bian X, Zhang G, Zhang N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res Int 2024; 195:114991. [PMID: 39277253 DOI: 10.1016/j.foodres.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.
Collapse
Affiliation(s)
- Yuan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
6
|
Khalil ASE, Lukasiewicz M. The Optimization of the Hot Water Extraction of the Polysaccharide-Rich Fraction from Agaricus bisporus. Molecules 2024; 29:4783. [PMID: 39407711 PMCID: PMC11478120 DOI: 10.3390/molecules29194783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The optimization of extraction parameters, including the process time, temperature, and liquid-to-solid ratio, was conducted in order to obtain the polysaccharide-rich fraction from the lyophilized Agaricus bisporus fruiting body. The efficiency of extraction for polysaccharides and antioxidant activity was determined by analyzing the extracts for total carbohydrate content, the reducing sugars content, and the antioxidant activity employing DPPH, ABTS, and hydroxyl radical scavenging assays. The results showed that all parameters, except for the extraction time, impacted differently on the extraction efficiency of polysaccharides and antioxidant activity. The highest total carbohydrate content was observed at the longest process time, highest temperature, and a liquid-to-solid ratio of 118 mL/g. To minimize the reducing sugar level, a lower temperature is required, while the highest antioxidant activity requires a moderate temperature and the lowest liquid-to-solid ratio. The optimization of antioxidant activity by means of the DPPH and H2O2 method failed, which shows that the specific mechanism of polysaccharides as antioxidants needs further investigation. The aqueous extraction method demonstrated to be an efficient and simple approach to recover the potentially bioactive polysaccharide fractions from Agaricus bisporus that are also active as antioxidants.
Collapse
Affiliation(s)
- Aya Samy Ewesys Khalil
- Department of Food Engineering and Machinery for Food Industry, Faculty of Food Science, Agricultural University in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Marcin Lukasiewicz
- Department of Food Engineering and Machinery for Food Industry, Faculty of Food Science, Agricultural University in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
7
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Ma G, Li X, Tao Q, Ma S, Du H, Hu Q, Xiao H. Impacts of preparation technologies on biological activities of edible mushroom polysaccharides - novel insights for personalized nutrition achievement. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38821105 DOI: 10.1080/10408398.2024.2352796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xinyi Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Qi Tao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Sai Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Case S, O'Brien T, Ledwith AE, Chen S, Horneck Johnston CJH, Hackett EE, O'Sullivan M, Charles-Messance H, Dempsey E, Yadav S, Wilson J, Corr SC, Nagar S, Sheedy FJ. β-glucans from Agaricus bisporus mushroom products drive Trained Immunity. Front Nutr 2024; 11:1346706. [PMID: 38425482 PMCID: PMC10902450 DOI: 10.3389/fnut.2024.1346706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Macrofungi, such as edible mushrooms, have been used as a valuable medical resource for millennia as a result of their antibacterial and immuno-modulatory components. Mushrooms contain dietary fibers known as β-glucans, a class of polysaccharides previously linked to the induction of Trained Immunity. However, little is known about the ability of mushroom-derived β-glucans to induce Trained Immunity. Methods & results Using various powdered forms of the white button mushroom (Agaricus bisporus), we found that mouse macrophages pre-treated with whole mushroom powder (WMP) displayed enhanced responses to restimulation with TLR ligands, being particularly sensitive to Toll-like receptor (TLR)-2 stimulation using synthetic lipopeptides. This trained response was modest compared to training observed with yeast-derived β-glucans and correlated with the amount of available β-glucans in the WMP. Enriching for β-glucans content using either a simulated in-vitro digestion or chemical fractionation retained and boosted the trained response with WMP, respectively. Importantly, both WMP and digested-WMP preparations retained β-glucans as identified by nuclear magnetic resonance analysis and both displayed the capacity to train human monocytes and enhanced responses to restimulation. To determine if dietary incorporation of mushroom products can lead to Trained Immunity in myeloid cells in vivo, mice were given a regimen of WMP by oral gavage prior to sacrifice. Flow cytometric analysis of bone-marrow progenitors indicated alterations in hematopoietic stem and progenitor cells population dynamics, with shift toward myeloid-committed multi-potent progenitor cells. Mature bone marrow-derived macrophages derived from these mice displayed enhanced responses to restimulation, again particularly sensitive to TLR2. Discussion Taken together, these data demonstrate that β-glucans from common macrofungi can train innate immune cells and could point to novel ways of delivering bio-available β-glucans for education of the innate immune system.
Collapse
Affiliation(s)
- Sarah Case
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Tara O'Brien
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Anna E. Ledwith
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Shilong Chen
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | | | - Emer E. Hackett
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | | | - Elaine Dempsey
- School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | | | | | - Sinead C. Corr
- School of Genetics and Microbiology, Trinity College, Dublin, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shipra Nagar
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
10
|
Almeida CF, Manrique YA, Lopes JCB, Martins FG, Dias MM. Recovery of ergosterol from Agaricus bisporus mushrooms via supercritical fluid extraction: A response surface methodology optimisation. Heliyon 2024; 10:e21943. [PMID: 39676796 PMCID: PMC11639697 DOI: 10.1016/j.heliyon.2023.e21943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2024] Open
Abstract
This work uses the response surface methodology to optimise ergosterol recovery from Agaricus bisporus mushrooms by supercritical fluid extraction. The influence of pressure, temperature, co-solvent use, and solvent-to-mushroom mass ratio was evaluated on yield and extract composition. Considering temperature, pressure, and co-solvent volume percentage, predictive models were regressed for extraction yield, ergosterol purity in the recovered fractions, and ergosterol recovery. The co-solvent volumetric fraction was the most influential factor, increasing the extraction yield and reducing the extract's ergosterol purity. A maximum ergosterol extract purity of (547.27 ± 2.37) mg ergosterol ·g extract -1 was obtained at a pressure of 100 bar, temperature of 50 °C and co-solvent volume percentage of 5 % v/v . The highest ergosterol recovery was (6.23 ± 0.06) mg ergosterol ·g dw -1 for operating conditions of 244 bar, 56 °C, and 8 % v/v of co-solvent. Coefficients of determination close to one were obtained for all models, indicating good agreement with experimental data.
Collapse
Affiliation(s)
- Cláudia F. Almeida
- LSRE-LCM – Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Yaidelin A. Manrique
- LSRE-LCM – Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José Carlos B. Lopes
- LSRE-LCM – Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando G. Martins
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- LSRE-LCM – Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
11
|
Yang XM, Wang SQ, Chen LS, Zhu ZY. Isolation and structural characterization of exopolysaccharide from the Cordyceps cicadae and the immunomodulatory activity on RAW264.7 cells. Biotechnol Appl Biochem 2023; 70:1925-1940. [PMID: 37455564 DOI: 10.1002/bab.2500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A new exopolysaccharide component named as PC-EPS was isolated from Cordyceps cicadae, and its structure was determined. PC-EPS was identified to be constituted of mannose, glucose, and galactose (28.84:1:19.42), with an average molecular weight of 3.72 × 106 Da, according to the results of monosaccharide composition, Fourier transform infrared, nuclear magnetic resonance, periodate oxidation and Smith degradation, and methylation studies. According to structural characterization, PC-EPS's connection type was made up of →6) -α-d-Manp (1→, →2) -β-d-Manp (1→, →4) -α-d-Manp (1→, →2) -α-d-Galf (1→, and →4) -α-d-Galp (1→. PC-EPS may significantly increase phagocytosis and RAW264.7 cell proliferation. Additionally, by boosting intracellular lysozyme, cellular acid phosphatase, and cellular superoxide dismutase enzyme concentrations, as well as by promoting the generation of cellular NO, it is the potential to regulate the immunological activity of RAW264.7 cells. Additionally, the effects of PC-EPS on RAW264.7 cells increased their capacities to create tumor necrosis factor-α and interleukin 6 cytokines, all of which suggested that PC-EPS had the potential to improve immunomodulatory activity.
Collapse
Affiliation(s)
- Xi-Mei Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| | - Si-Qiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| | - Li-Sha Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| |
Collapse
|
12
|
Kim H, Jeon YE, Kim SM, Jung JI, Ko D, Kim EJ. Agaricus bisporus Extract Exerts an Anti-Obesity Effect in High-Fat Diet-Induced Obese C57BL/6N Mice by Inhibiting Pancreatic Lipase-Mediated Fat Absorption. Nutrients 2023; 15:4225. [PMID: 37836509 PMCID: PMC10574374 DOI: 10.3390/nu15194225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Agaricus bisporus is well known as a source of polysaccharides that could improve human health. The objective of this study was to explore the anti-obesity effect of A. bisporus extract (ABE), abundant in polysaccharides, and its underlying mechanism. Pancreatic lipase inhibitory activity in vitro was determined after treatment with ABE and chitosan. Treatment with ABE and chitosan significantly decreased pancreatic lipase activity. Five-week-old male SD rats were randomly divided into three groups for acute feeding with vehicle, ABE at 80 mg/kg body weight (BW)/day, and ABE at 160 mg/kg BW/day. ABE dose-dependently increased plasma lipid clearance in an oral lipid tolerance test. Five-week-old male C57BL/6N mice were fed a control diet (CD), a high-fat diet (HFD), an HFD with ABE at 80 mg/kg BW/day, ABE at 160 mg/kg BW/day, or chitosan at 160 mg/kg BW/day for eight weeks. HFD-fed mice showed significant increases in body weight, fat mass, white adipose tissue, average lipid droplet size, and serum levels of glucose, triglyceride, ALT, and AST compared to those in the CD group. However, ABE or chitosan administration ameliorated these increases. ABE or chitosan significantly reduced dietary efficiency and increased fecal excretion levels of lipids, triglycerides, and total cholesterol. These in vitro and in vivo findings suggest that ABE might act as an anti-obesity agent by inhibiting pancreatic lipase-mediated lipid absorption, at least in part.
Collapse
Affiliation(s)
- Hyungkeun Kim
- Department of Food Business, SAMOH Pharm Co., Ltd., Seoul 06244, Republic of Korea; (H.K.); (D.K.)
| | - Young-Eun Jeon
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea; (Y.-E.J.); (S.-M.K.); (J.-I.J.)
| | - So-Mi Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea; (Y.-E.J.); (S.-M.K.); (J.-I.J.)
| | - Jae-In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea; (Y.-E.J.); (S.-M.K.); (J.-I.J.)
| | - Donghyeon Ko
- Department of Food Business, SAMOH Pharm Co., Ltd., Seoul 06244, Republic of Korea; (H.K.); (D.K.)
| | - Eun-Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea; (Y.-E.J.); (S.-M.K.); (J.-I.J.)
| |
Collapse
|
13
|
Wu QC, Zhang YY, Li YB, Alitongbieke G, Xue Y, Li XM, Lin ZC, Huang JF, Pan T, Pan XM, You JP, Lin JM, Pan YT. A novel cell-wall polysaccharide derived from the stipe of Agaricus bisporus inhibits mouse melanoma proliferation and metastasis. Arch Biochem Biophys 2023:109678. [PMID: 37356609 DOI: 10.1016/j.abb.2023.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Malignant melanoma is an invasive and highly aggressive skin cancer that-if diagnosed-poses a serious threat to the patient's health and life. In this work, a novel purified cell-wall polysaccharide (termed Abwp) was obtained from the discarded stipe of Agaricus bisporus (A. bisporus) and characterized to be a novel homogeneous polysaccharide consisted of a β-(1 → 4)- glucosyl backbone with β-(1 → 2) and (1 → 6)-d-glucosyl side-chains. The anti-melanoma effects of Abwp and its associated mechanisms in mice were then explored using in vitro and in vivo approaches. In vitro results showed that Abwp inhibited B16 melanoma cell proliferation and promoted their apoptosis in both time- and dose-dependent manners. In B16 cells induced with tumor necrosis factor (TNF-α), Abwp significantly decreased the protein expression of inflammatory-related signaling pathway (e.g., p38 MAPK and NF-κB) in time-, concentration-, and dose-dependent manners. Moreover, Abwp blocked nuclear entry of NF-κB-p65. In an in vivo mouse model featuring neoplasm transplantation with B16 melanoma cells, Abwp significantly inhibited the growth and proliferation of mouse melanoma. Hematoxylin staining showed that the invasion of melanoma cells into the lung tissue of the Abwp-treated group was significantly reduced. Immunohistochemical analysis showed that the expression of proliferation cell nuclear antigen (PCNA), N-cadherin, MMP-9, and Snail in the lung of mouse was significantly inhibited. Immunofluorescence showed that Abwp significantly interfered with the nuclear transcription of NF-κB-p65 in a dose-dependent manner. Collectively, these results showed that Abwp mediated p38 MAPK and NF-κB signaling pathways to inhibit the inflammatory response and malignant proliferation and metastasis of melanoma in mice.
Collapse
Affiliation(s)
- Qi-Ci Wu
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Yin-Ying Zhang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Yun-Bing Li
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Xiu-Min Li
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Zhi-Chao Lin
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Jia-Fu Huang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Tao Pan
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Mendel (Xiamen) Biotechnology Co., Ltd., 361000, Xiamen, China; Fujian Polysaccharide Biotechnology Co., Ltd., 363000, Zhangzhou, China
| | - Xiao-Ming Pan
- Mendel (Xiamen) Biotechnology Co., Ltd., 361000, Xiamen, China
| | - Jing-Ping You
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Jin-Mei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, China.
| | - Yu-Tian Pan
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China.
| |
Collapse
|
14
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Yuan Q, Liu W, Huang L, Wang L, Yu J, Wang Y, Wu D, Wang S. Quality evaluation of immunomodulatory polysaccharides from
Agaricus bisporus
by an integrated fingerprint technique. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ling Huang
- Institute of Food Processing and Safety College of Food Science Sichuan Agricultural University Ya'an China
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ding‐Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering Chengdu University Chengdu China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
- Macau Centre for Research and Development in Chinese Medicine University of Macau Macao China
| |
Collapse
|
16
|
Wang J, Tang S, Guo S, Gu D, Wang Y, Tian J, Yang Y. Fermentation of Agaricus bisporus for antioxidant activity: response surface optimization, chemical components, and mechanism. Prep Biochem Biotechnol 2022:1-11. [PMID: 36345997 DOI: 10.1080/10826068.2022.2142941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agaricus bisporus is one of the most widely cultivated edible mushrooms in the world. The chemical components of A. bisporus have a wide range of biological activities. In order to deeply understand the antioxidant properties of A. bisporus, this study conducted an investigation on the components of A. bisporus fermentation. Through the single factor experiment and response surface optimization, it was found that when the C/N ratio was 45:1, the inoculum concentration was 10%, and the fermentation time was 7 d, the n-butanol extract of the fermentation product had the strongest scavenging capacity for free radical generated through 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS·+). The concentration for 50% of the maximal effect (EC50) was 0.33 ± 0.01 mg/mL. Moreover, in order to identify the two main components, the elution-extrusion counter-current chromatography (EECCC) was employed for separation, where 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) and 5-(butoxymethyl) furfural were obtained. The antioxidant activity of 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) (EC50 = 0.26 ± 0.01 mg/mL) was superior to that of 5-butylmethyl furfural (EC50 = 1.52 ± 0.02 mg/mL), indicating that 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) was the main antioxidant in the fermentation products. The thermodynamic parameters and frontier molecular orbitals of 5,5'-oxy-dimethyl-bis (2-furanaldehyde) was evaluated by density functional theory (DFT). The result indicated 5,5'-oxy-dimethyl-bis(2-furanaldehyde) scavenged free radicals in polar media through single electron transfer followed by proton transfer (SET-PT).
Collapse
Affiliation(s)
- Jifeng Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
17
|
Erdoğan Eliuz EA. Antibacterial activity and antibacterial mechanism of ethanol extracts of Lentinula edodes (Shiitake) and Agaricus bisporus (button mushroom). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1828-1841. [PMID: 33896292 DOI: 10.1080/09603123.2021.1919292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The aim of the present work was the comparison of antimicrobial activity, mechanism and components of the ethanol extract (EE) from Lentinula edodes Berk (Pegler) and Agaricus bisporus Sing (Lange). The main component of EE of A. bisporus was dianhydromannitol (20.1%), while isosorbide/dianhydromannitol (21.8%) was detected at a high rate in L. edodes ethanol extract by GC-MS . The common phenolic acids were determined as chlorogenic acid, syringic acid, rutin, p-coumaric acid, ferulic acid, 2-hydroxy cinnamic acid, protocatechuic acid, abscisic acid, and trans-cinnamic acid in both mushroom extract by HPLC-MWD . The MICs (minimum inhibitory concentration) of L. edodes EE on Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Acinetobacter baumannii were between 5.1 mg ml-1 and 6.01 mg ml-1, while MICs of A. bisporus EE on the pathogens were between 5.8 mg ml-1 and 9.54 mg ml-1. The highest DRA decrease was in E. faecalis (69.1%) for L. edodes and S. aureus (71.0%) for A. bisporus in the 20th minute. As a result, L. edodes and A. bisporus have a similar antibacterial effect on the pathogens, and this inhibition effect caused DNA, protein leakage and destruction of permeability of bacterial cell membrane by bioactive molecules in mushroom extract.
Collapse
Affiliation(s)
- Elif Ayşe Erdoğan Eliuz
- Department of Food Technology, Mersin University, Technical Sciences Vocational School, Mersin, Turkey
| |
Collapse
|
18
|
Li M, Liu Y, Zhang H, Liu Y, Wang W, You S, Hu X, Song M, Wu R, Wu J. Anti-cancer Potential of Polysaccharide Extracted From Polygonatum sibiricum on HepG2 Cells via Cell Cycle Arrest and Apoptosis. Front Nutr 2022; 9:938290. [PMID: 35903453 PMCID: PMC9320318 DOI: 10.3389/fnut.2022.938290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 01/20/2023] Open
Abstract
Polygonatum sibiricum is one of the most widely used traditional Chinese medicine in China. Polygonatum sibiricum polysaccharide (PSP) is the main functional component of Polygonatum sibiricum. In this study, a water-soluble polysaccharide (PSP-1) was first isolated from Polygonatum sibiricum with a molecular weight of 38.65 kDa. Structural analysis was performed via methylation and FT-IR spectroscopy analyses, which in combination with NMR spectroscopy, revealed that PSP-1 has a → 4-α-D-Glcp-1 → backbone with the substitution at O-6 with the β-D-Glcp-1 → residues. Furthermore, PSP-1 exhibited potent and concentration-dependent anticancer effects, inducing HepG2 cell apoptosis and arresting the cell cycle at the G1 phase. Moreover, PSP-1 also decreased the mitochondrial membrane potential, damaged the nucleus of HepG2 cells, and increased the activity of caspase-9 and−3 in the intrinsic apoptotic pathways to induce HepG2 cell apoptosis. To conclude, PSP-1 might be a good candidate for the treatment of liver cancer, and this work provides important information for understanding the relationship between structure and antitumor activity of PSP-1, which is relevant for the treatment of hepatocellular carcinoma in clinic.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shengbo You
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- *Correspondence: Rina Wu
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- Junrui Wu
| |
Collapse
|
19
|
Weber SS, de Souza ACS, Soares DCL, Lima CC, de Moraes ACR, Gkionis SV, Arenhart T, Rodrigues LGG, Ferreira SRS, Pedrosa RC, Silva DB, Paredes-Gamero EJ, Perdomo RT, Parisotto EB. Chemical profile, antimicrobial potential, and antiaggregant activity of supercritical fluid extract from Agaricus bisporus. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Luo Y, Fang Q, Lai Y, Lei H, Zhang D, Niu H, Wang R, Song C. Polysaccharides from the leaves of Polygonatum sibiricum Red. regulate the gut microbiota and affect the production of short-chain fatty acids in mice. AMB Express 2022; 12:35. [PMID: 35312878 PMCID: PMC8938542 DOI: 10.1186/s13568-022-01376-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Polysaccharides from the rhizome of Polygonatum sibiricum display a variety of biological activities, including the regulation of intestinal microbiota, but the polysaccharides from the leaves of P. sibiricum have not been studied extensively. Here, we extracted crude polysaccharides from the leaves of P. sibiricum and further separated and purified them to study the effects of P. sibiricum polysaccharides (PsPs) on intestinal microbes and short-chain fatty acids (SCFAs). The PsPs had a total sugar content of 97.48% and a monosaccharide composition comprising mannose, rhamnose, galacturonic acid, glucose, xylose, and arabinose, with molar ratios of 6.6:15.4:4.5:8.8:40.7:24, respectively. The effects of PsPs on intestinal microflora in mice were also studied, with 16S sequencing results showing an increase in the relative abundance of Firmicutes and a decrease in Bacteroidetes at the phylum level. The abundance of Lactobacillus increased, while those of Lachnospiraceae and Bacteroides reduced (at the genus level) by PsPs treatment. The composition of microbes changed. Levels of SCFAs in the PsPs group were significantly increased compared with control mice, including acetic acid, propionic acid, and butyric acid. These results suggest that PsPs can act as prebiotics, regulating the intestinal tract probiotics.
Collapse
|
21
|
Wang P, Yang B, Perumal E, Wu Z. Mechanism and kinetics of 1‐phenyl‐1,2‐ethanediol cleavage catalyzed by Cu/Beta zeolite. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng‐sen Wang
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an Shaanxi China
| | - Bo‐lun Yang
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an Shaanxi China
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi China
| | - Emayavaramban Perumal
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an Shaanxi China
| | - Zhi‐qiang Wu
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
22
|
Feng Y, Qiu Y, Duan Y, He Y, Xiang H, Sun W, Zhang H, Ma H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int 2022; 153:110913. [DOI: 10.1016/j.foodres.2021.110913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
|
23
|
Lin B, Huang G. Extraction, isolation, purification, derivatization, bioactivity, structure-activity relationship and application of polysaccharides from white jellyfungus. Biotechnol Bioeng 2022; 119:1359-1379. [PMID: 35170761 DOI: 10.1002/bit.28064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/07/2022]
Abstract
White jellyfungus is one of the most popular nutritional supplements. The polysaccharide (WJP) is an important active component of white jellyfungus, it not only has a variety of biological activities but also is non-toxic to humans. So, many scholars have carried out different researches on WJP. However, the lack of a detailed summary of WJP limits the scale of industrial development of WJP. Herein, the research progress of WJP in extraction, isolation, structure, derivatization and structure-activity relationship was reviewed. Different extraction methods were compared, the activity and application of WJP were summarized, and the structure-activity relationship of WJP was emphasized in order to provide effective theoretical support for improving the utilization of WJP and promoting the application of related industries. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bobo Lin
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
24
|
Liang YY, Zan XY, Sun L, Fu X, Cui FJ, Tan M, Shao ZY, Sun WJ. A uridine diphosphate-glycosyltransferase GFUGT88A1 derived from edible mushroom Grifola frondosa extends oligosaccharide chains. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Effects of multi-mode divergent ultrasound pretreatment on the physicochemical and functional properties of polysaccharides from Sagittaria sagittifolia L. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Wang YX, Yin JY, Zhang T, Xin Y, Huang XJ, Nie SP. Utilizing relative ordered structure theory to guide polysaccharide purification for structural characterization. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
28
|
Makvandi P, Ashrafizadeh M, Ghomi M, Najafi M, Hossein HHS, Zarrabi A, Mattoli V, Varma RS. Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes. Prog Biomater 2021; 10:77-89. [PMID: 33768486 PMCID: PMC8021662 DOI: 10.1007/s40204-021-00155-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited Tgel below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51666-16471, Tabriz, Iran.,Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, 61537-53843, Ahvaz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, 6715847141, Kermanshah, Iran. .,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
29
|
Kała K, Krakowska A, Szewczyk A, Ostachowicz B, Szczurek K, Fijałkowska A, Muszyńska B. Determining the amount of potentially bioavailable phenolic compounds and bioelements in edible mushroom mycelia of Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes. Food Chem 2021; 352:129456. [PMID: 33711727 DOI: 10.1016/j.foodchem.2021.129456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Release of bioelements and phenolic compounds from edible mushrooms (Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes) enriched with zinc, selenium, l-phenylalanine, alone and as a mixture was examined using a simulated human gastrointestinal digestion method. Due to the extensive amount of data obtained, in order to interpret them more precisely in the work, the methods of chemometric analysis (Cluster Analysis-CA and Principal Compenent Analysis-PCA) were additionally applied. The results showed mycelium of L. edodes has the best health-promoting properties and addition of mixture to the media increased significantly the synthesis of p-hydroxybenzoic and protocatechuic acid (267 and 16.3 mg/100 g d.w.). After extraction into artificial digestive juices, 97.4 mg/100 g d.w. p-hydroxybenzoic acid and 15.6 mg/100 g d.w. of protocatechuic acid were released. The greatest amounts of Se and Zn were extracted from enriched A. bisporus mycelium (32.3 and 342 mg/100 g d.w., respectively). This study confirmed that mycelium might prevent nutritional deficiencies in the diet through use of functional foods.
Collapse
Affiliation(s)
- Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Agata Krakowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Kornelia Szczurek
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Agata Fijałkowska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
30
|
Wang YX, Zhang T, Xin Y, Huang XJ, Yin JY, Nie SP. Comprehensive evaluation of alkali-extracted polysaccharides from Agrocybe cylindracea: Comparison on structural characterization. Carbohydr Polym 2021; 255:117502. [DOI: 10.1016/j.carbpol.2020.117502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
|
31
|
Singhal S, Rasane P, Kaur S, Singh J, Gupta N. Thermal degradation kinetics of bioactive compounds in button mushroom (
Agaricus bisporus
) during tray drying process. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Somya Singhal
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Prasad Rasane
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Jyoti Singh
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Neeru Gupta
- Motiram Baburam Government Postgraduate College Kumaun University Nainital Uttarakhand India
| |
Collapse
|