1
|
Zie M, Jacquet N, Karamoko G, Alabi T, Richel A, Karoui R, Blecker C. Characterization of a novel natural protein-polysaccharide complex from cashew apple bagasse and its functional implications. Food Chem 2025; 464:141861. [PMID: 39509895 DOI: 10.1016/j.foodchem.2024.141861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Cashew apple bagasse (CAB) constituting about 20 % of the cashew apple's (CA) weight, is often overlooked and considered a waste product. This study aims to valorize CAB by extracting and studying a nutritional and functional compounds from CAB, particularly proteins. Response surface methodology (RSM) design and ultrasound-assisted extraction (UAE) are employed to optimize a protein-enriched fraction extraction process. Analysis of CAB-Protein-Pellet composition reveals that its main constituents are sugars (42.49 %) and proteins (22.10 %). HPSEC analysis confirmed the existence of a new natural protein-polysaccharide complex (PPC), an high level of Ara (11.85 g/100 g) and Gal (17.45 g/100 g) indicating the presence of polysaccharides rich in arabinose and galactose (PRAG) with the main class of polymers in the CAB-PPC being AGPs. MIR-FTIR and 1H NMR spectra allowed new insights into the structural features of the PPC derived from CA. The effects of protein-polysaccharide interactions within CAB-PPC on structure and functionality were investigated, revealing interesting functional properties and their correlation relationship. The findings highlight some similarities between CAB-PPC and gum Arabic with minor differences. The interfacial tension of CAB-PPC (21.32 mN/m) was lower than that of gum Arabic (23.71 mN/m). Therefore, CAB-PPC could be suitable for a range of food applications including thickening, stabilization, gelling, water retention, emulsification, and foaming.
Collapse
Affiliation(s)
- Madinatou Zie
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | - Nicolas Jacquet
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Department of biochemistry-Genetics, University of Pelefero Gon Coulibaly, Côte d'Ivoire
| | - Taofic Alabi
- Department of biochemistry-Genetics, University of Pelefero Gon Coulibaly, Côte d'Ivoire; Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Belgium
| | - Aurore Richel
- Department of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Belgium
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Christophe Blecker
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium
| |
Collapse
|
2
|
Zhou J, Wang W, Zhang Z, Zhu G, Qiao J, Guo S, Bai Y, Zhao C, Teng C, Qin P, Zhang L, Ren G. An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:701-720. [PMID: 38961686 DOI: 10.1002/jsfa.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Zhu
- Wuhan No. 23 Middle School in Hanyang District, Wuhan, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peiyou Qin
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
4
|
Zhang W, Boateng ID, Wang Y, Lin M, Vardhanabhuti B. High-intensity ultrasound-assisted alkaline extraction of soy protein: Optimization, modeling, physicochemical and functional properties. Int J Biol Macromol 2024; 283:137494. [PMID: 39532162 DOI: 10.1016/j.ijbiomac.2024.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study examined the effect of high-intensity ultrasound-assisted alkaline extraction (HUAE) on the extraction yield and the physicochemical and functional properties of soy protein (SP) using the two-pot multivariate method for the first time. Plackett-Burman Design (PBD) coupled with Response Surface Methodology (RSM) was systematically utilized to select and subsequently optimize the HUAE parameters. Based on PBD results, the significant extraction factors were liquid to solid ratio (LSR), temperature, ultrasonic amplitude, and extraction time. The optimum conditions for the maximal extraction yield and minimal energy consumption were 50:1 mL/g LSR, 50 °C, 48 % ultrasonic amplitude, and 10 min extraction time. At optimum conditions, the extraction yield (35.28 %) was significantly improved compared to traditional extraction (26.39 %). Besides, HUAE resulted in modification of the protein secondary and tertiary structures due to the unfolding of protein molecules and the exposure of hydrophobic groups or regions as shown by FTIR spectroscopy, free sulfhydryl analysis, and scanning electron microscopy. These structural changes led to decreased solubility and emulsifying activity but improved emulsion stabilization and antioxidant properties. With future development, HUAE could potentially produce soy protein for targeted applications, broadening its utilization and meeting the need for more sustainable alternative processing.
Collapse
Affiliation(s)
- Wenxue Zhang
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Yun Wang
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Mengshi Lin
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Bongkosh Vardhanabhuti
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
5
|
Huang J, Zhang M, Mujumdar AS, Semenov G, Luo Z. Technological advances in protein extraction, structure improvement and assembly, digestibility and bioavailability of plant-based foods. Crit Rev Food Sci Nutr 2024; 64:11556-11574. [PMID: 37498207 DOI: 10.1080/10408398.2023.2240892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Gennady Semenov
- Laboratory of Freeze-Drying, Russian Biotechnological University, Moscow, Russia
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd, Ninghai, Zhejiang, China
| |
Collapse
|
6
|
Fu G, Zhao M, Wang X, Zheng Z, Shen S, Yan J, Li Q, Gao C, Dong X, Xiao J, Liu L. Effect of ultrasound-assisted pH-shifting treatment on the physicochemical properties of melon seed protein. ULTRASONICS SONOCHEMISTRY 2024; 110:107039. [PMID: 39197192 PMCID: PMC11396366 DOI: 10.1016/j.ultsonch.2024.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Melon seeds have received considerable attention in recent years because of their high protein content, but they have not yet been fully used. The modification of melon seed protein (MSP) using ultrasound-assisted pH-shifting treatment was investigated in this study by analyzing structural characteristics and functional properties. The particle size, free sulfhydryl content, surface hydrophobicity, solubility, secondary structure, water-holding capacity, oil-holding capacity, emulsification activity index, and emulsification stability index of MSP were determined. MSP treated with ultrasound-assisted, pH-shifting had a smaller particle size, lower free sulfhydryl content, higher surface hydrophobicity, and solubility increased from 43.67 % to 89.12 %. The secondary structure of MSP was affected by ultrasonic treatment, manifesting as an α-helix increase and β-helix, β-turn, and random coil content decrease, which may be the reason why the protein structure became more compact after treatment. The water and oil holding capacities of MSP increased from 2.74 g/g and 3.14 g/g in untreated samples to 3.19 g/g and 3.97 g/g for ultrasound-treated samples, and further increased to 3.97 g/g and 5.02 g/g for ultrasound-assisted, pH-shifting treatment at pH 9.0, respectively. The emulsification activity index of MSP was 21.11 m2/g before treatment and reached a maximum of 32.34 m2/g after ultrasound-assisted, pH-shifting treatment at pH 9.0. The emulsification stability of MSP was maximized by ultrasonic treatment at pH 7.0. Ultrasound-assisted, pH-shifting treatment can effectively improve the functional properties of MSP by modifying the protein structure, which improves the potential application of melon seed protein in the food industry.
Collapse
Affiliation(s)
- Guojun Fu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Man Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xinmiao Wang
- Advanced Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Zehao Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Shiyu Shen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jiawen Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qun Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Chao Gao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
7
|
Garcia SR, Orellana-Palacios JC, McClements DJ, Moreno A, Hadidi M. Sustainable proteins from wine industrial by-product: Ultrasound-assisted extraction, fractionation, and characterization. Food Chem 2024; 455:139743. [PMID: 38823135 DOI: 10.1016/j.foodchem.2024.139743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Plant proteins are increasingly being used in the food industry due to their sustainability. They can be isolated from food industry waste and converted into value-added ingredients, promoting a more circular economy. In this study, ultrasound-assisted alkaline extraction (UAAE) was optimized to maximize the extraction yield and purity of protein ingredients from grapeseeds. Grapeseed protein was extracted using UAAE under different pH (9-11), temperature (20-50 °C), sonication time (15-45 min), and solid/solvent ratio (10-20 mL/g) conditions. The structural and functional attributes of grapeseed protein and its major fractions (albumins and glutelins) were investigated and compared. The albumin fractions had higher solubilities, emulsifying properties, and in vitro digestibilities but lower fluid binding capacities and thermal stability than the UAAE and glutelin fraction. These findings have the potential to boost our understanding of the structural and functional characteristics of grapeseed proteins, thereby increasing their potential applications in the food and other industries.
Collapse
Affiliation(s)
- Samuel Rodriguez Garcia
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Jose C Orellana-Palacios
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
8
|
Ravindran N, Kumar Singh S, Singha P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res Int 2024; 190:114575. [PMID: 38945599 DOI: 10.1016/j.foodres.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
9
|
Zhang W, Boateng ID, Xu J, Zhang Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024; 13:1974. [PMID: 38998480 PMCID: PMC11241136 DOI: 10.3390/foods13131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
This review presents a comprehensive analysis of plant-based proteins from soybeans, pulses, cereals, and pseudo-cereals by examining their structural properties, modification techniques, bioactivities, and applicability in food systems. It addresses the critical need for a proper utilization strategy of proteins from various plant sources amidst the rising environmental footprint of animal protein production. The inherent composition diversity among plant proteins, their nutritional profiles, digestibility, environmental impacts, and consumer acceptance are compared. The innovative modification techniques to enhance the functional properties of plant proteins are also discussed. The review also investigates the bioactive properties of plant proteins, including their antioxidant, antimicrobial, and antitumoral activities, and their role in developing meat analogs, dairy alternatives, baked goods, and 3D-printed foods. It underscores the consideration parameters of using plant proteins as sustainable, nutritious, and functional ingredients and advocates for research to overcome sensory and functional challenges for improved consumer acceptance and marketability.
Collapse
Affiliation(s)
- Wenxue Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | | | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
10
|
Zhang H, Liu Y, Gao L, Wang J. Analysis of flavor changes in Huangshan floral mushroom hydrolysates obtained by different enzyme treatments. Food Chem 2024; 443:138554. [PMID: 38306912 DOI: 10.1016/j.foodchem.2024.138554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
This study aimed to investigate the flavor changes in Huangshan floral mushroom by different enzyme treatments. Seven enzyme groups were used to hydrolyze its protein to obtain protein hydrolysates (FPHs). Flavourzyme composite with dispase hydrolysates (FDHs) were selected for ultrafiltration to obtain peptides (FPs) with different molecular weights (Mw). Changes in flavor were investigated using HPLC, LC-MS, GC-MS, amino acid analysis and sensory evaluation. Color parameters and DPPH-scavenging activity were also determined. The results revealed that flavor characteristics of FPHs obtained from different enzyme treatments varied. FDHs presented the highest degree of hydrolysis (DH) (58.61 ± 1.55) %, rich 5'-nucleotides (8.61 ± 0.43 mg/mL), volatile compounds (28.54 ± 0.11 μg/g) and free amino acids (FAAs) (7.73 ± 0.51 mg/g). Further tests suggested that FPs with small Mw (<1K, 1-3 K) were optimal for the development of novel flavors, thus providing application value for rational utilization of Huangshan floral mushroom.
Collapse
Affiliation(s)
- Hui Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Li Gao
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Junhui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
11
|
López-Mártir KU, Armando Ulloa J, Urías-Silvas JE, Rosas-Ulloa P, Ramírez-Ramírez JC, Resendiz-Vazquez JA. Modification of the physicochemical, functional, biochemical and structural properties of a soursop seed (Annona muricata L.) protein isolate treated with high-intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 105:106870. [PMID: 38579570 PMCID: PMC11004696 DOI: 10.1016/j.ultsonch.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % β-sheet, and 43 % β-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.
Collapse
Affiliation(s)
- Kevin Ulises López-Mártir
- Maestría en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Xalisco 63780, Nayarit, Mexico
| | - José Armando Ulloa
- Maestría en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Xalisco 63780, Nayarit, Mexico; Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico.
| | - Judith Esmeralda Urías-Silvas
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Avenida Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Petra Rosas-Ulloa
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico
| | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla Km 3.5, Compostela 63700, Nayarit, Mexico
| | - Juan Alberto Resendiz-Vazquez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
12
|
Natarajan SK, S J, Mathivanan SK, Rajadurai H, M B BAM, Shah MA. Exploring fetal brain tumor glioblastoma symptom verification with self organizing maps and vulnerability data analysis. Sci Rep 2024; 14:8738. [PMID: 38627421 PMCID: PMC11522281 DOI: 10.1038/s41598-024-59111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Brain tumor glioblastoma is a disease that is caused for a child who has abnormal cells in the brain, which is found using MRI "Magnetic Resonance Imaging" brain image using a powerful magnetic field, radio waves, and a computer to produce detailed images of the body's internal structures it is a standard diagnostic tool for a wide range of medical conditions, from detecting brain and spinal cord injuries to identifying tumors and also in evaluating joint problems. This is treatable, and by enabling the factor for happening, the factor for dissolving the dead tissues. If the brain tumor glioblastoma is untreated, the child will go to death; to avoid this, the child has to treat the brain problem using the scan of MRI images. Using the neural network, brain-related difficulties have to be resolved. It is identified to make the diagnosis of glioblastoma. This research deals with the techniques of max rationalizing and min rationalizing images, and the method of boosted division time attribute extraction has been involved in diagnosing glioblastoma. The process of maximum and min rationalization is used to recognize the Brain tumor glioblastoma in the brain images for treatment efficiency. The image segment is created for image recognition. The method of boosted division time attribute extraction is used in image recognition with the help of MRI for image extraction. The proposed boosted division time attribute extraction method helps to recognize the fetal images and find Brain tumor glioblastoma with feasible accuracy using image rationalization against the brain tumor glioblastoma diagnosis. In addition, 45% of adults are affected by the tumor, 40% of children and 5% are in death situations. To reduce this ratio, in this study, the Brain tumor glioblastoma is identified and segmented to recognize the fetal images and find the Brain tumor glioblastoma diagnosis. Then the tumor grades were analyzed using the efficient method for the imaging MRI with the diagnosis result of partially high. The accuracy of the proposed TAE-PIS system is 98.12% which is higher when compared to other methods like Genetic algorithm, Convolution neural network, fuzzy-based minimum and maximum neural network and kernel-based support vector machine respectively. Experimental results show that the proposed method archives rate of 98.12% accuracy with low response time and compared with the Genetic algorithm (GA), Convolutional Neural Network (CNN), fuzzy-based minimum and maximum neural network (Fuzzy min-max NN), and kernel-based support vector machine. Specifically, the proposed method achieves a substantial improvement of 80.82%, 82.13%, 85.61%, and 87.03% compared to GA, CNN, Fuzzy min-max NN, and kernel-based support vector machine, respectively.
Collapse
Affiliation(s)
- Suresh Kumar Natarajan
- School of Computer Science and Engineering, JAIN (Deemed-to-be University), Ramanagara, India
| | - Jayanthi S
- Department of Information Technology, Guru Nanak Institute of Technology, Ibrahimpatnam, Hyderabad, Telangana, India
| | - Sandeep Kumar Mathivanan
- School of Computer Science and Engineering, Galgotias University, Greater Noida, 203201, Uttar Pradesh, India
| | - Hariharan Rajadurai
- School of Computing Science and Engineering, VIT Bhopal University, Bhopal-Indore Highway Kothrikalan, Sehore, MP, India
| | - Benjula Anbu Malar M B
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mohd Asif Shah
- Kebri Dehar University, Kebri Dehar, 250, Somali, Ethiopia.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- Division of Research and Development, Lovely Professional University, Phagwara, 144001, Punjab, India.
| |
Collapse
|
13
|
Bing SJ, Liu FF, Li YQ, Sun GJ, Wang CY, Liang Y, Zhao XZ, Hua DL, Chen L, Mo HZ. The structural characteristics and physicochemical properties of mung bean protein hydrolysate of protamex induced by ultrasound. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3665-3675. [PMID: 38158728 DOI: 10.1002/jsfa.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, β-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of β-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu-Jing Bing
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fen-Fang Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chen-Ying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiang-Zhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dong-Liang Hua
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Chen
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
14
|
Chen H, Bian Z, Wen P, Wang H, Hu Y, Tu Z, Liu G. Insight into the molecular mechanism underlying the enhancement of antioxidant activity in ovalbumin by high-energy electron beam irradiation. Food Chem 2024; 433:137384. [PMID: 37688822 DOI: 10.1016/j.foodchem.2023.137384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The effects of high-energy electron beam irradiation (HE-EBI) at various doses (0, 25, 50, 75, and 100 kGy) on the antioxidant activity of ovalbumin (OVA) were studied, and the molecular mechanism was investigated. The results showed that the antioxidant activity of HE-EBI-treated OVA was significantly enhanced in a dose-dependent manner. The irradiated OVA structure gradually unfolded to form a "honeycomb" structure, exposing the buried hydrophobic and free sulfhydryl groups inside the molecule. Two oxidation sites (M35 and T170), adjacent to the antioxidant peptide were identified by mass spectrometry, possibly exposing the antioxidant peptide through structural deconvolution. In addition, aspartic residues generated dicarbonyl compound under high-energy electron beam stress, and its accumulation further enhanced the antioxidant activity. Conclusively, HE-EBI can enhance the antioxidant activity of OVA through ionization effects, providing valuable information for the potential application of HE-EBI in the food industry.
Collapse
Affiliation(s)
- Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhongyue Bian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Guangxian Liu
- Jiangxi Academy of Agricultural Sciences, Nanchang 330299, China.
| |
Collapse
|
15
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Zhao L, Ouyang D, Cheng X, Zhou X, Lin L, Wang J, Wu Q, Jia J. Multi-frequency ultrasound-assisted cellulase extraction of protein from mulberry leaf: Kinetic, thermodynamic, and structural properties. ULTRASONICS SONOCHEMISTRY 2023; 99:106554. [PMID: 37567039 PMCID: PMC10432955 DOI: 10.1016/j.ultsonch.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The effects of different extraction methods (traditional extraction, ultrasound extraction, cellulase extraction, and ultrasound-assisted cellulase extraction) on the yield of mulberry leaf protein (MLP) were investigated, and the results revealed that multi-frequency ultrasound-assisted cellulase extraction was the most efficient extraction method. The mechanism of the synergistic extraction method used to efficiently extract protein from mulberry leave was investigated, focusing on the kinetics and thermodynamics of the enzymatic process. The results revealed that kinetic parameters KM decreased by 14.07% and kA increased by 5.02%, and the thermodynamic parameters Ea, ΔH, and ΔS decreased by 44.81%, 48.41%, and 21.12 %, respectively, following the process of multi-frequency ultrasound (MFU) pretreatment. The spectral analysis with fluorescence spectra manifested that ultrasound exposed hydrophobic groups and induced molecular unfolding of MLP. Atomic force microscope showed that ultrasound decreased particle size while increasing flexibility of MLP. The effect of ultrasound increases the binding frequency of cellulase and substrates, resulting in greater affinity between the two and promoting the solubilization of MLP. This study provides a theoretical basis to improve the application prospects of MLP.
Collapse
Affiliation(s)
- Li Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dongyan Ouyang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xinya Cheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaotao Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lebo Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
17
|
Yang J, Zhao Y, Shan B, Duan Y, Zhou J, Cai M, Zhang H. Study on the interaction and functional properties of Dolichos lablab L. protein-tea polyphenols complexes. Int J Biol Macromol 2023; 250:126006. [PMID: 37517754 DOI: 10.1016/j.ijbiomac.2023.126006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Tea polyphenols (TP) and plant proteins are significant materials in the food industry, the interactions between them are beneficial for their stability, functional properties, and biological activity. In this study, the mechanism and interaction between Dolichos lablab L. protein (DLP) obtained from nine treatments and three tea polyphenol monomers (EGCG, ECG, and EGC) were investigated. The results showed that the fluorescence of DLP was noticeably quenched and exhibited static quenching after the addition of polyphenols. DLP exhibited 1-2 binding sites for EGCG and ECG, but weakly binding to EGC (<1). The binding sites of DLP-TP were found to be in close proximity to the tyrosine residues, primarily interacting through hydrophobic interactions, van der Waals forces, and hydrogen bonds. The antioxidant capacity of DLP-TP compound was significantly improved after digestion. ECG showed a strong resistance to intestinal digestion. Compared with ECG (653.456 μg/mL), the content of free tea polyphenols of 20/40 kHz-ECG after digestion was 732.42 μg/mL. DLP-TP complexes significantly improved the storage stability, thermal stability, and bioaccessibility of tea polyphenols. The interaction between TP and DLP, as a protein-polyphenol complex, has great potential for application in preparing emulsion delivery systems due to their antioxidant activity and improved stability.
Collapse
Affiliation(s)
- Jing Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yajing Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Baosen Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Nourse Pet Nutrition Jiangsu Research Institute, Zhenjiang 212013, China.
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Peng F, Zhang L, Li Z, Chen J. Calibration and verification of DEM parameters of wet-sticky feed raw materials. Sci Rep 2023; 13:9246. [PMID: 37286929 DOI: 10.1038/s41598-023-36482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
In order to improve the accuracy of the parameters needed in the discrete element method (DEM) simulation process of wet-sticky feed raw materials, the JKR contact model in DEM was used to calibrate and verify the physical parameters of wet-sticky feed raw materials. Firstly, the parameters that have a significant effect on the angle of repose were screened using a Plackett-Burman design, and the screened parameters were: MM rolling friction coefficient, MM static friction coefficient, and JKR surface energy. Then, the three screened parameters were selected as the influencing factors and the accumulation angle of repose was selected as evaluating indicator; thus, the performance optimization experiments were carried out with the quadratic orthogonal rotation design. Taking the experimentally measured angle of repose value of 54.25°as the target value, the significance parameters were optimized, and the optimal combination was obtained : MM rolling friction factor was 0.21, MM static friction factor was 0.51, and JKR surface energy was 0.65. Finally, the angle of repose and SPP tests were compared under the calibrated parameters. The results showed that the relative error of experimental and simulated tests in angle of repose was 0.57%, and the compression displacement and compression ratio of the experimental and simulated tests in SPP were 1.01% and 0.95%, respectively, which improved the reliability of the simulated results. The research findings provide a reference basis for simulation study and optimal design of related equipment for feed raw materials.
Collapse
Affiliation(s)
- Fei Peng
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China.
| | - Limei Zhang
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiqiang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
20
|
Zhang T, Huang D, Liu X, Chen F, Liu Y, Jiang Y, Li D. Antioxidant activity and semi-solid emulsification of a polysaccharide from coffee cherry peel. Int J Biol Macromol 2023:125207. [PMID: 37276904 DOI: 10.1016/j.ijbiomac.2023.125207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
In order to further improve the economic benefits of the coffee industry chain, we carried out the following systematic research on processing by-products. In this research, the obtained coffee cherry peel polysaccharide (CCP) which was removed from the coffee cherry peel by hot acid method had a galacturonic acid content of 20.50 % and a molecular weight of 3.05 kg/mol. According to the results of monosaccharide analysis, Fourier transform infrared spectroscopy, molecular weight distribution, and thermal analysis, CCP was a typical high methoxy polysaccharide. In vitro antioxidant results showed that CCP had better antioxidant capacity than commercial citrus polysaccharide (APC). When it came to emulsification performance, the water-oil bonding ability and disturbance resistance to the fluid of CCP were also significantly higher than that of APC. Specially, we found that 0.50 % (wt%) CCP could form a solid-liquid gel with very high plasticity at low oil phase fraction. In conclusion, the coffee cherry peel could be used as a natural source of a novel emulsifier, providing a promising alternative for polysaccharide in the food industry.
Collapse
Affiliation(s)
- Tianjun Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Xianyu Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Fabin Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China..
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China..
| |
Collapse
|
21
|
Qiu M, Wang N, Pend J, Li Y, Li L, Xie X. Ultrasound-assisted reverse micelle extraction and characterization of tea protein from tea residue. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4068-4076. [PMID: 36495023 DOI: 10.1002/jsfa.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND In this study, ultrasonic-assisted reverse micelles were used to extract tea protein from tea residues. First, the extraction conditions of ultrasonic power, ionic strength and pH were optimized by response surface methodology. Then, structural comparison of ultrasonic-assisted reverse micelle extraction of tea protein (UARME) and ultrasonic-assisted alkali extraction (UAAE) were performed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and amino acid composition. RESULTS The optimum process conditions were determined as follows: ultrasonic power 300 W, KCl 0.15 mol L-1 , pH 8. The extraction rate was 46.29%, which was close to the theoretical value (46.44%). SEM showed that the protein particles extracted by UARME were smaller than those by UAAE. The results of FTIR spectroscopy showed that the protein extracted by UARME had higher α-helix, β-sheet and β-turn, and the contents were 20%, 62.3% and 17.1%, respectively. The content of random coil was 0%, which was significantly lower than that of alkali extraction, indicating that the secondary structure of protein extracted by UARME was more orderly. By comparing the amino acid composition of the two methods, the amino acid content of tea protein extracted by UARME was significantly higher than that of UAAE. CONCLUSION The biological activity of tea protein is closely related to its structure. Compared with alkali extraction, reverse micelles can better protect the secondary structure of proteins, which is of great significance for studying their functional properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minjian Qiu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Nannan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jiamin Pend
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou, China
| |
Collapse
|
22
|
Hu G, Li X, Su R, Corazzin M, Liu X, Dou L, Sun L, Zhao L, Su L, Tian J, Jin Y. Effects of ultrasound on the structural and functional properties of sheep bone collagen. ULTRASONICS SONOCHEMISTRY 2023; 95:106366. [PMID: 36965310 PMCID: PMC10074209 DOI: 10.1016/j.ultsonch.2023.106366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
The study evaluated the effect of an ultrasound-assisted treatment on the structural and functional properties of sheep bone collagen (SBC). The type and distribution of SBC were analyzed by proteome (shotgun) technology combined with liquid chromatography-tandem mass spectrometry. Compared with pepsin extraction, the ultrasound-assisted treatment significantly increased the collagen extraction rate by 17.4 pp (P < 0.05). The characteristic functional groups and structural integrity of collagen extracted by both methods were determined via Fourier transform infrared spectroscopy, ultraviolet absorption spectroscopy, and fluorescence spectroscopy. Circular dichroism spectra revealed that the ultrasound-assisted pretreatment reduced α-helix content by 1.6 pp, β-sheet content by 21.9 pp, and random coils content by 28.4 pp, whereas it increased β-turn content by 51.9 pp (P < 0.05), compared with pepsin extraction. Moreover, ultrasound-assisted treatment collagen had superior functional properties (e.g., solubility, water absorption, and oil absorption capacity) and foaming and emulsion properties, compared with pepsin extraction. Furthermore, the relative content of type I collagen in ultrasound-assisted extracted SBC was highest at 79.66%; only small proportions of type II, VI, X, and XI collagen were present. Peptide activity analysis showed that SBC had potential antioxidant activity, dipeptidyl peptidase 4 inhibitory activity, and angiotensin-converting enzyme inhibitory activity; it also had anticancer, antihypertensive, anti-inflammatory, and immunomodulatory effects.
Collapse
Affiliation(s)
- Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaotong Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010010, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Xuemin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
23
|
Zhang F, Sun Z, Li X, Kong B, Sun F, Cao C, Chen Q, Zhang H, Liu Q. Ultrasound-assisted alkaline extraction of protein from Tenebrio molitor larvae: Extraction kinetics, physiochemical, and functional traits. ULTRASONICS SONOCHEMISTRY 2023; 95:106379. [PMID: 36965311 PMCID: PMC10060266 DOI: 10.1016/j.ultsonch.2023.106379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Currently, as a promising alternative protein source, the interest of edible insect protein has been continuously increased. However, the extraction processing had distinct effects on the physicochemical properties and functionalities of this novel and sustainable protein. In this study, Tenebrio molitor larvae protein (TMLP) was extracted via ultrasound (US)-assisted alkaline extraction. The changes of extraction kinetics, physicochemical characteristics, and functional properties of TMLP as a function of US time (10, 20, 30, 40, 50 min) were investigated. The results showed that 30 min US treatment rendered the maximum protein yield (60.04 %) (P < 0.05). Meanwhile, Peleg's model was considered a suitable model to represent the extraction kinetics of TMLP, with a correlation coefficient of 0.9942. Moreover, the protein secondary structure, particle size, and amino acid profiles of TMLP were changed under the US-assisted alkaline extraction process. Additionally, a significant improvement of the functional properties of TMLP extracted with this method was observed compared to traditional alkaline extraction. In conclusion, the present work suggests that US-assisted alkaline extraction could be considered as a potential method to improve the protein yield, quality profiles, and functional properties of TMLP.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhigang Sun
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
24
|
Gul O, Saricaoglu FT, Atalar I, Gul LB, Tornuk F, Simsek S. Structural Characterization, Technofunctional and Rheological Properties of Sesame Proteins Treated by High-Intensity Ultrasound. Foods 2023; 12:foods12091791. [PMID: 37174329 PMCID: PMC10178585 DOI: 10.3390/foods12091791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Plant-derived proteins, such as those from sesame seeds, have the potential to be used as versatile food ingredients. End-use functionality can be further improved by high-intensity ultrasound treatments. The effects of high-intensity ultrasound on the properties of sesame protein isolates from cold-pressed sesame cake were evaluated. The SDS-PAGE demonstrated no significant changes in the molecular weight of proteins. Ultrasound treatments resulted in decreased particle size with a more uniform distribution, resulting in the exposure of hydrophobicity and free -SH groups and increased zeta potential. Although FTIR spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the amide A band was observed. The ultrasound significantly (p < 0.05) affected the secondary structure of proteins. While optical micrographics revealed a dispersed structure with smaller particles after treatments, microstructural observations indicated more rough and irregular surfaces. Water solubility was improved to 80.73% in the sample subjected to 6 min of ultrasonication. Sesame protein solutions treated for 4 and 6 min exhibited viscoelastic structure (storage modulus (G') > loss modulus (G'')). In addition, the gelation temperature of proteins decreased to about 60-65 °C with increasing treatment time. Overall, ultrasound is a useful technique for the modification of sesame protein isolates.
Collapse
Affiliation(s)
- Osman Gul
- Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ilyas Atalar
- Department of Food Engineering, Faculty of Agriculture, Eskisehir Osmangazi University, 26160 Eskisehir, Turkey
| | - Latife Betul Gul
- Department of Food Engineering, Faculty of Engineering, Giresun University, 28200 Giresun, Turkey
| | - Fatih Tornuk
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
| | - Senay Simsek
- Department of Food Science & Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
26
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties. Molecules 2023; 28:molecules28062554. [PMID: 36985527 PMCID: PMC10059246 DOI: 10.3390/molecules28062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Plant proteins can be an important alternative to animal proteins subject to minor modification to address sustainability issues. The impact of ultrasound application on the yield, techno-functional properties, and molecular characteristics of protein extracted from Moringa oleifera seeds was studied. For this purpose, a central composite design (CCD) was applied to optimize ultrasound-assisted extraction (UAE) parameters such as amplitude (25–75%), solute-to-solvent ratio (1:10–1:30), and pH (9–13) for obtaining the maximum protein yield. At the optimized conditions of 75% amplitude, 1:20 solute-to-solvent ratio, and 11 pH, a protein yield of 39.12% was obtained in the UAE process. Moreover, the best sonication time at optimized conditions was 20 min, which resulted in about 150% more extraction yield in comparison to conventional extraction (CE). The techno-functional properties, for instance, solubility, water (WHC)- and oil-holding capacity (OHC), and emulsifying and foaming properties of the protein obtained from UAE and CE were also compared. The functional properties revealed high solubility, good WHC and OHC, and improved emulsifying properties for protein obtained from UAE. Although protein from UAE provided higher foam formation, foaming stability was significantly lower.
Collapse
|
28
|
Zhang F, Yue Q, Li X, Kong B, Sun F, Cao C, Zhang H, Liu Q. Mechanisms underlying the effects of ultrasound-assisted alkaline extraction on the structural properties and in vitro digestibility of Tenebrio molitor larvae protein. ULTRASONICS SONOCHEMISTRY 2023; 94:106335. [PMID: 36821935 PMCID: PMC9982000 DOI: 10.1016/j.ultsonch.2023.106335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/13/2023]
Abstract
Edible insects have been considered as a sustainable and novel protein source to replace animal-derived proteins. The present study aimed to extract Tenebrio molitor larvae proteins (TMP) using ultrasound-assisted alkaline extraction (UAE). Effects of different UAE times (10, 20, 30, 40, and 50 min) on the structural properties and in vitro digestibility of TMP were comparatively investigated with the traditional alkaline extraction method. The results revealed that ultrasonication could effectively alter the secondary/tertiary structures and thermal stability of TMP during UAE. The molecular unfolding and subsequent aggregation of TMP during UAE were mainly attributed to the formation of disulfide bonds and hydrophobic interactions. Moreover, TMP extracted by UAE had higher in vitro digestibility and digestion kinetics than those extracted without ultrasound, and the intermediate UAE time (30 min) was the optimal ultrasound parameter. However, longer UAE times (40 and 50 min) lowered the digestibility of TMP due to severe protein aggregation. The present work provides a potential strategy for the extraction of TMP with higher nutritional values.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Yue
- Heilongjiang Open University, Harbin, Heilongjiang 150080, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
29
|
Hadidi M, Orellana Palacios JC, McClements DJ, Mahfouzi M, Moreno A. Alfalfa as a sustainable source of plant-based food proteins. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
30
|
Boateng ID. Application of Graphical Optimization, Desirability, and Multiple Response Functions in the Extraction of Food Bioactive Compounds. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Zhao L, Cheng X, Song X, Ouyang D, Wang J, Wu Q, Jia J. Ultrasonic assisted extraction of mulberry leaf protein: kinetic model, structural and functional properties, in vitro digestion. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
32
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
33
|
Huang D, Li W, Li G, Zhang W, Chen H, Jiang Y, Li D. Effect of high-intensity ultrasound on the physicochemical properties of Tenebrio Molitor Protein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Application of ultrasound-assisted alkaline extraction for improving the solubility and emulsifying properties of pale, soft, and exudative (PSE)-like chicken breast meat protein isolate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
35
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
36
|
Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of ultrasound-assisted extraction (UAE) was evaluated on the functionality of jackfruit leaf protein hydrolysates. Leaf protein concentrate was obtained by ultrasound (LPCU) and conventional extractions by maceration (LPCM). LPCM and LPCU were hydrolyzed with pancreatin (180 min), and hydrolysates by maceration (HM) and ultrasound (HU) were obtained. The composition of amino acids, techno-functional (solubility, foaming, and emulsifying properties), and antioxidant properties of the hydrolysates were evaluated. A higher amount of essential amino acids was found in HU, while HM showed a higher content of hydrophobic amino acids. LPCs exhibited low solubility (0.97–2.89%). However, HM (67.8 ± 0.98) and HU (77.39 ± 0.43) reached maximum solubility at pH 6.0. The foaming and emulsifying properties of the hydrolysates were improved when LPC was obtained by UAE. The IC50 of LPCs could not be quantified. However, HU (0.29 ± 0.01 mg/mL) showed lower IC50 than HM (0.32 ± 0.01 mg/mL). The results reflect that the extraction method had a significant (p < 0.05) effect on the functionality of protein hydrolysates. The UAE is a suitable method for enhancing of quality, techno-functionality, and antioxidant properties of LPC.
Collapse
|
37
|
Liang L, Xiao Y, Zhang J, Liu X, Wen C, Zhang H, Wang J, Ren J, Liu G, Xu X. Physicochemical, functional, and digestive characteristics of tea seed cake protein obtained by ultrafiltration. J Food Sci 2022; 87:4522-4537. [PMID: 36102207 DOI: 10.1111/1750-3841.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Li Liang
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Yali Xiao
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Jixian Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Xiaofang Liu
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Chaoting Wen
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health Beijing Technology & Business University Beijing China
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Technology & Business University Beijing China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health Beijing Technology & Business University Beijing China
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Technology & Business University Beijing China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Guoyan Liu
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Xin Xu
- College of Food Science and Engineering Yangzhou University Yangzhou China
| |
Collapse
|
38
|
Xu Q, Li X, Lv Y, Liu Y, Yin C. Effects of ultrasonic treatment on ovomucin: Structure, functional properties and bioactivity. ULTRASONICS SONOCHEMISTRY 2022; 89:106153. [PMID: 36088894 PMCID: PMC9474920 DOI: 10.1016/j.ultsonch.2022.106153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The effects of ultrasonic treatment on the structure, functional properties and bioactivity of Ovomucin (OVM) were investigated in this study. Ultrasonic treatment could significantly enhance OVM solubility without destroying protein molecules. The secondary structure changes, including β-sheet reduction and random coil increase, indicate more disorder in OVM structure. After ultrasonic treatment, the OVM molecule was unfolded partially, resulting in the exposure of hydrophobic regions. The changes in OVM molecules led to an increase in intrinsic fluorescence and surface hydrophobicity. By detecting the particle size of protein solution, it was confirmed that ultrasonic treatment disassembled the OVM aggregations causing a smaller particle size. Field emission scanning electron microscopy (FE-SEM) images showed that ultrasonic cavitation significantly reduced the tendency of OVM to form stacked lamellar structure. Those changes in structure resulted in the improvement of foaming, emulsification and antioxidant capacity of OVM. Meanwhile, the detection results of ELISA showed that ultrasonic treatment did not change the biological activity of OVM. These results suggested that the relatively gentle ultrasound treatment could be utilized as a potential approach to modify OVM for property improvement.
Collapse
Affiliation(s)
- Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China.
| | - Xuanchen Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yunzheng Lv
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Chunfang Yin
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| |
Collapse
|
39
|
Valorization of Agro-Industrial Wastes by Ultrasound-Assisted Extraction as a Source of Proteins, Antioxidants and Cutin: A Cascade Approach. Antioxidants (Basel) 2022; 11:antiox11091739. [PMID: 36139813 PMCID: PMC9495669 DOI: 10.3390/antiox11091739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
The use of agro-industrial wastes to obtain compounds with a high added-value is increasing in the last few years in accordance with the circular economy concept. In this work, a cascade extraction approach was developed based on ultrasound-assisted extraction (UAE) for tomato, watermelon, and apple peel wastes. The protein and antioxidant compounds were obtained during the first extraction step (NaOH 3 wt.%, 98.6 W, 100% amplitude, 6.48 W/cm2, 6 min). The watermelon peels (WP) showed higher proteins and total phenolic contents (857 ± 1 mg BSA/g extract and 107.2 ± 0.2 mg GAE/100 g dm, respectively), whereas the highest antioxidant activity was obtained for apple peels (1559 ± 20 µmol TE/100 g dm, 1767 ± 5 µmol TE/100 g dm, and 902 ± 16 µmol TE/100 g dm for ABTS, FRAP and DPPH assays, respectively). The remaining residue obtained from the first extraction was subsequently extracted to obtain cutin (ethanol 40 wt.%, 58 W, 100% amplitude, 2 W/cm2, 17 min, 1/80 g/mL, pH 2.5). The morphological studies confirmed the great efficiency of UAE in damaging the vegetal cell walls. WP showed a higher non-hydrolysable cutin content (55 wt.% of the initial cutin). A different monomers’ profile was obtained for the cutin composition by GC-MS, with the cutin from tomato and apple peels being rich in polyhydroxy fatty acids whereas the cutin extracted from WP was mainly based on unsaturated fatty acids. All of the cutin samples showed an initial degradation temperature higher than 200 °C, presenting an excellent thermal stability. The strategy followed in this work has proved to be an effective valorization methodology with a high scaling-up potential for applications in the food, pharmaceutical, nutraceutical, cosmetics and biopolymer sectors.
Collapse
|
40
|
Development of an Effective Sonotrode Based Extraction Technique for the Recovery of Phenolic Compounds with Antioxidant Activities in Cherimoya Leaves. PLANTS 2022; 11:plants11152034. [PMID: 35956511 PMCID: PMC9370491 DOI: 10.3390/plants11152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
The leaves of Annona cherimola Mill (cherimoya) are a potential source of phenolic compounds that have been shown to have beneficial properties. Therefore, this study focuses on establishing an ultrasonic-assisted extraction of phenolic compounds in cherimoya leaves using a sonotrode. For that purpose, a Box-Behnken design based on a response surface methodology (RSM) was used to optimize factors, such as amplitude, extraction time and solvent composition to obtain the maximum content of phenolic compounds by HPLC-MS and the maximum in-vitro antioxidant activity by DPPH, ABTS and FRAP assays in ‘Fino de Jete’ cherimoya leaves. The optimal conditions were 70% amplitude, 10 min and 40:60 ethanol/water (EtOH/H2O) (v/v). The results obtained under these optimum conditions by using a sonotrode were compared with those from an ultrasonic bath; briefly, recovery of phenolic compounds by sonotrode was 2.3 times higher than a bath. Therefore, these optimal conditions were applied to different varieties ‘Campas’, ‘Fino de Jete’ and ‘Negrito Joven’ harvested in the Tropical Coast of Granada (Spain). A total of 39 phenolic compounds were determined in these cherimoya leaf extracts, 24 phenolic compounds by HPLC-MS and 15 proanthocianidins by HPLC-FLD. 5-p-coumaroylquinic acid, lathyroside-7-O-α-l-rhamnopyranoside and quercetin hexose acetate were first identified in cherimoya leaves. The most concentrated phenolic compounds were the flavonoids, such as rutin and quercetin hexoside and proanthocyanidins including monomers. Almost no significant differences in the phenolic content in these cultivars were found (11–13 mg/g d.w. for phenolic compounds and 11–20 mg/g d.w. for proanthocyanidins). In addition, sonotrode ultrasonic-assisted extraction has been shown to be an efficient extraction technique in the phenolic recovery from cherimoya leaves that could be implemented on an industrial scale.
Collapse
|
41
|
Thu Ha Tran T, Khanh Thinh Nguyen P. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2022; 357:127340. [PMID: 35598775 DOI: 10.1016/j.biortech.2022.127340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, hydrogen (H2) production from water hyacinth (WH) was enhanced by the integration of the ultrasonic-assisted alkaline (UAA) pretreatment, dark fermentation (DF), and microbial electrolysis cell (MEC). The results showed that UAA pretreatment improved around 350% in H2 production in the DF stage and nearly 400% in the whole process compared to un-pretreated. The H2 yield in the DF stage reached the maximum value of 110.4 mL/g-VS at a WH concentration of 20 g-TS/L. However, high concentrations of co-produced soluble metabolite products (SMPs) and suspended solid in DF effluent adversely affected the efficiency of the MEC stage. Consequently, a WH concentration of 5 g-TS/L was optimal for the UAA-DF-MEC process that achieved the highest H2 yield of 565.8 mL/g-VS. It suggests that other auxiliary processes (e.g., dilution, centrifugation, effective methanogen inhibition, etc.) need to be developed to further improve the H2 production from WH via the UAA-DF-MEC process.
Collapse
Affiliation(s)
- Thi Thu Ha Tran
- Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, Tan Binh District, Ho Chi Minh City, Viet Nam
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
42
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
43
|
Anwar S, Baig MA, Abbas SQ, Shukat R, Arshad M, Asghar HA, Arshad MK. Dairy ingredients replaced with vegan alternatives: valorization of ice cream. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saba Anwar
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Mirza Aziz Baig
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Syed Qamar Abbas
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Rizwan Shukat
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Mehwish Arshad
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Hafiza Anam Asghar
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Muhammad Kamran Arshad
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| |
Collapse
|
44
|
Huang D, Wu Y, Li W, Zhu X, Liu J, Jiang Y, Huang Q, Li D. Advanced insight into the O/W emulsions stabilising capacity of water‐soluble protein from
Tenebrio molitor. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dongjie Huang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Yuhao Wu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Wenjing Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Xiaoqi Zhu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Jialu Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Qingrong Huang
- Department of Food Science Rutgers, The State University of New Jersey 65 Dudley Road New Brunswick NJ 08901 USA
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| |
Collapse
|
45
|
Wen C, Liu G, Ren J, Deng Q, Xu X, Zhang J. Current Progress in the Extraction, Functional Properties, Interaction with Polyphenols, and Application of Legume Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:992-1002. [PMID: 35067056 DOI: 10.1021/acs.jafc.1c07576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume protein can replace animal-derived protein because of its high protein content, low price, lack of cholesterol, complete amino acids, and requirements of vegetarianism. Legume protein has not only superior functional properties but also high biological activities. Therefore, it is widely used in the food industry. However, there are few studies on the comprehensive overview of legume protein. In this review, the extraction, functional properties, interaction with polyphenols, application of legume protein, and activities of their peptides were comprehensively reviewed. Legume proteins are mainly composed of globulin and albumin. The methods of protein extraction from legumes mainly include wet separation (alkali solution and acid precipitation, salt extraction, enzyme extraction, and ultrasonic-assisted extraction) and dry separation (electrostatic separation). Besides, various factors (heat, pH, and concentration) could significantly affect the functional properties of legume protein. Some potential modification technologies could further improve the functionality and quality of these proteins. Moreover, the application of legume protein and the effects of polyphenols on structural properties of legume-derived protein were concluded. Furthermore, the bioactivities of peptides from legume proteins were discussed. To improve the bioactivity, bioavailability, and commercial availability of legume-derived protein and peptides, future studies need to further explore new preparation methods and potential new activities of legume-derived proteins and active peptides. This review provides a real-time reference for further research on the application of legume protein in the food industry. In addition, this review provides a new reference for the development of legume-derived protein functional foods and potential therapeutic agents.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| |
Collapse
|
46
|
Zhang W, Boateng ID, Zhang W, Jia S, Wang T, Huang L. Effect of ultrasound-assisted ionic liquid pretreatment on the structure and interfacial properties of soy protein isolate. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Zhao Q, Xie T, Hong X, Zhou Y, Fan L, Liu Y, Li J. Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chem 2022; 368:130848. [PMID: 34479088 DOI: 10.1016/j.foodchem.2021.130848] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of ultrasonic treatment on the structural characteristics and functional properties of perilla protein isolate (PPI). Besides, the performance of the emulsions stabilized by ultrasonic-treated PPI was analyzed, aiming at exploring the potential mechanism of ultrasonic technology to improve emulsion stability. Results showed that ultrasonic treatment reduced the particle size, induced the exposure of hydrophobic groups and changes in the secondary structure and tertiary conformation of PPI. However, the molecular weight and the crystalline regions were remained unchanged. Apart from this, ultrasonic treatment improved the solubility, water/oil holding capacity, foaming and emulsifying capacity of PPI. Furthermore, the emulsions prepared by ultrasonic-treated PPI possessed the highest stability, which might be due to the smaller droplets size and reduced droplets attraction by higher proportion of interfacial adsorbed protein. This findings will provide a new insight into the application of ultrasonic to improve the stability of PPI-stabilized emulsions.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Patra A, Abdullah S, Pradhan RC. Optimization of ultrasound‐assisted extraction of ascorbic acid, protein and total antioxidants from cashew apple bagasse using artificial neural network‐genetic algorithm and response surface methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Abhipriya Patra
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - S Abdullah
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Rama Chandra Pradhan
- Department of Food Process Engineering National Institute of Technology Rourkela India
| |
Collapse
|
49
|
Tan SX, Andriyana A, Lim S, Ong HC, Pang YL, Ngoh GC. Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers (Basel) 2021; 13:polym13244398. [PMID: 34960953 PMCID: PMC8705327 DOI: 10.3390/polym13244398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude of 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young’s modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10−8 g m−1 s−1 Pa−1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes.
Collapse
Affiliation(s)
- Shiou Xuan Tan
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Andri Andriyana
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Correspondence: (S.L.); (G.C.N.)
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, Douliou 64002, Taiwan;
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Gek Cheng Ngoh
- Centre of Separation Science and Technology, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.L.); (G.C.N.)
| |
Collapse
|
50
|
Zhang L, Wang X, Hu Y, Abiola Fakayode O, Ma H, Zhou C, Hu Z, Xia A, Li Q. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein. ULTRASONICS SONOCHEMISTRY 2021; 80:105803. [PMID: 34689067 PMCID: PMC8551839 DOI: 10.1016/j.ultsonch.2021.105803] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 05/21/2023]
Abstract
To improve the soybean protein content (SPC), flavor and quality of soymilk, the effects of dual-frequency ultrasound at different angles (40 + 20 kHz 0°, 40 + 20 kHz 30°, 40 + 20 kHz 45°) on physicochemical properties and soybean protein (SP) structure of raw soymilk were mainly studied and compared with the conventional single-frequency (40 kHz, 20 kHz) ultrasound. Furthermore, the intensity of the ultrasonic field in real-time was monitored via the oscilloscope and spectrum analyzer. The results showed that 40 + 20 kHz 45° treatment significantly increased SPC. The ultrasonic field intensity of 40 + 20 kHz 0° treatment was the largest (8.727 × 104 W/m2) and its distribution was the most uniform. The emulsifying stability of SP reached the peak value (233.80 min), and SP also had the largest particle size and excellent thermal stability. The protein solubility of 40 + 20 kHz 30° treatment attained peak value of 87.09%. 20 kHz treatment significantly affected the flavor of okara. The whiteness and brightness of raw soymilk treated with 40 kHz were the highest and the system was stable. Hence, the action mode of ultrasonic technology can be deeply explored and the feasibility for improving the quality of soymilk can be achieved.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Agricultural and Food Engineering, University of Uyo, Uyo 520001, Akwa Ibom State, Nigeria
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhenyuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Aiming Xia
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| | - Qun Li
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| |
Collapse
|