1
|
Tang R, Xu R, Gao X, Dai C, Qin X, Yang J. Production of α-amylase from gluconate and carbon dioxide by protein synthesis and secretion optimization in Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2025; 416:131744. [PMID: 39500400 DOI: 10.1016/j.biortech.2024.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024]
Abstract
Chemoautotrophic Cupriavidus necator H16 has a strong protein synthesis ability and has been used to produce intracellular protein products. However, studies optimizing its secretion system and the producing extracellular enzyme products (EEPs) are lacking. Here, we focused on investigating the feasibility of synthesizing and secreting EEPs in C. necator H16, using α-amylase as a prototype. α-Amylase expression optimization, genome modification, and secretion system engineering were performed to construct and optimize the α-amylase-producing engineering C. necator H16. Finally, the optimized engineering strain could produce α-amylase, with the α-amylase activity per unit cells reaching up to 5.54 U/OD600 using gluconate as substrate, which was 29.2-fold compared with that of initial engineering strain. Additionally, when using carbon dioxide as substrate, the α-amylase activity per unit cells of engineered strain reached 4.26 U/OD600. Overall, this study demonstrates the feasibility of developing C. necator H16 as a host for autotrophic production of α-amylase.
Collapse
Affiliation(s)
- Ruohao Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China
| | - Rui Xu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Xuemin Gao
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Cunxi Dai
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China.
| |
Collapse
|
2
|
Wei Y, Xu W, Zhang W, Petrova P, Petrov K, Ni D, Mu W. Characterization of Runella zeae D-mannose 2-epimerase and its expression in Bacillus subtilis for D-mannose production from D-glucose. Enzyme Microb Technol 2024; 181:110506. [PMID: 39265454 DOI: 10.1016/j.enzmictec.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
D-Mannose 2-epimerase (MEase) catalyzes the bioconversion between D-glucose and D-mannose. It is an important potential biocatalyst for large-scale production of D-mannose, a functional monosaccharide used in pharmaceutical and food industries. In this study, a new microbial MEase was characterized from Runella zeae DSM 19591. The enzyme was purified by one-step nickel-affinity chromatography and determined to be a dimeric protein with two identical subunits of approximately 86.1 kDa by gel filtration. The enzyme showed the highest activity at pH 8.0 and 40 °C, with a specific activity of 2.99 U/mg on D-glucose and 3.71 U/mg on D-mannose. The melting temperature (Tm) was 49.4 °C and the half-life was 115.14 and 3.23 h at 35 and 40 °C, respectively. The purified enzyme (1 U/mL) produced 115.7 g/L of D-mannose from 500 g/L of D-glucose for 48 h, with a conversion ratio of 23.14 %. It was successfully expressed in Bacillus subtilis WB600 via pP43NMK as the vector. The highest fermentation activity was 10.58 U/mL after fed-batch cultivation for 28 h, and the whole cells of recombinant B. subtilis produced 114.0 g/L of D-mannose from 500 g/L of D-glucose, with a conversion ratio of 22.8 %.
Collapse
Affiliation(s)
- Yuhan Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Zhang Y, Zhou Z, Luan H, Zhang X, Liu M, Wang K, Wang F, Feng W, Xu W, Song P. Advances in the biosynthesis of D-allulose. World J Microbiol Biotechnol 2024; 40:375. [PMID: 39487344 DOI: 10.1007/s11274-024-04166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
D-allulose is a rare monosaccharide and a C-3 epimer of D-fructose. It has physiological functions, such as antihyperglycemic, obesity-preventing, neuroprotective, and reactive oxygen species (ROS) scavenging effects, making it an ideal sugar substitute. The synthesis methods for D-allulose include chemical synthesis and biosynthesis. Chemical synthesis requires strict reaction conditions and tends to produce byproducts. Biosynthesis is mainly an enzymatic process. Enzymatic catalysis for the conversion of starch or glycerol to D-allulose is performed mainly by enzymes such as isoamylase (IA), glucose isomerase (GI), D-allulose 3-epimerase (DPE), D-allulose-6-phosphate 3-epimerase (A6PE), D-allulose 6-phosphate phosphatase (A6PP), ribitol 2-dehydrogenase (RDH), glycerophosphate kinase (GK), glycerophosphate oxidase (GPO), and dihydroxyacetone phosphate (DHAP)-dependent aldolase. Biosynthesis is a more energy-efficient process, producing fewer harmful by-products and pollutants, and significantly reducing negative environmental impacts. Furthermore, the specific catalytic activity of enzymes facilitates the production of compounds of higher purity, thereby facilitating the isolation and purification of the products. It has thus become the main method for producing D-allulose. This article reviews the progress in research on the biosynthetic production of D-allulose, focusing on the enzymes involved and their enzymatic properties, and discusses the production prospects for D-allulose.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Zhengsong Zhou
- Shandong Aocter Biotechnology Co., Ltd, Liaocheng, 252000, China
| | - Haoni Luan
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Xue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Mengyu Liu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Kuiming Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Fei Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Wei Feng
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Wei Xu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Peng Song
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.
| |
Collapse
|
4
|
Zhu X, Luo H, Yu X, Lv H, Su L, Zhang K, Wu J. Genome-Wide CRISPRi Screening of Key Genes for Recombinant Protein Expression in Bacillus Subtilis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404313. [PMID: 38952047 PMCID: PMC11434012 DOI: 10.1002/advs.202404313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.
Collapse
Affiliation(s)
- Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Huihui Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Lingqia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| |
Collapse
|
5
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
6
|
Xie X, Li C, Ban X, Yang H, Li Z. D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. Crit Rev Biotechnol 2024:1-20. [PMID: 38973014 DOI: 10.1080/07388551.2024.2368517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/15/2023] [Indexed: 07/09/2024]
Abstract
D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, P. R. China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, P. R. China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
7
|
Wang Z, Wang H, Feng T, Li N, Sun Q, Liu J. Simultaneous Enhancement of the Thermostability and Catalytic Activity of D-Allulose 3-Epimerase from Clostridium bolteae ATTC BAA-613 Based on the "Back to Consensus Mutations" Hypothesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38603782 DOI: 10.1021/acs.jafc.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
D-Allulose is a high value rare sugar with multiple physiological functions and commercial potential that can be enzymatically synthesized from D-fructose by D-allulose 3-epimerase (DAEase). Poor catalytic activity and thermostability of DAEase prevent the industrial production of D-allulose. In this work, rational design was applied to a previously identified DAEase from Clostridium bolteae ATCC BAA-613 based on the "back to consensus mutations" hypothesis, and the catalytic activity of the Cb-I265 V variant was enhanced 2.5-fold. Furthermore, the Cb-I265 V/E268D double-site variant displayed 2.0-fold higher specific catalytic activity and 1.4-fold higher thermostability than the wild-type enzyme. Molecular docking and kinetic simulation results indicated increased hydrogen bonds between the active pocket and substrate, possibly contributing to the improved thermal stability and catalytic activity of the double-site mutant. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.
Collapse
Affiliation(s)
- Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Huiyi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Tingting Feng
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qinju Sun
- Guangxi Vocational University of Agriculture, 176 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
8
|
Zhang W, Ren H, Chen J, Ni D, Xu W, Mu W. Enhancement of the d-Allulose 3-Epimerase Expression in Bacillus subtilis through Both Transcriptional and Translational Regulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8052-8059. [PMID: 38563420 DOI: 10.1021/acs.jafc.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
d-Allulose, a functional bulk sweetener, has recently attracted increasing attention because of its low-caloric-ness properties and diverse health effects. d-Allulose is industrially produced by the enzymatic epimerization of d-fructose, which is catalyzed by ketose 3-epimerase (KEase). In this study, the food-grade expression of KEase was studied using Bacillus subtills as the host. Clostridium sp. d-allulose 3-epimerase (Clsp-DAEase) was screened from nine d-allulose-producing KEases, showing better potential for expression in B. subtills WB600. Promoter-based transcriptional regulation and N-terminal coding sequence (NCS)-based translational regulation were studied to enhance the DAEase expression level. In addition, the synergistic effect of promoter and NCS on the Clsp-DAEase expression was studied. Finally, the strain with the combination of a PHapII promoter and gln A-Up NCS was selected as the best Clsp-DAEase-producing strain. It efficiently produced Clsp-DAEase with a total activity of 333.2 and 1860.6 U/mL by shake-flask and fed-batch cultivations, respectively.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hu Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - JiaJun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
9
|
Zhu X, Zhang K, Luo H, Wu J. Overexpression of the class A penicillin-binding protein PonA in Bacillus improves recombinant protein production. BIORESOURCE TECHNOLOGY 2023; 383:129219. [PMID: 37217145 DOI: 10.1016/j.biortech.2023.129219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The bottleneck of recombinant protein production in microbial cell factories is sometimes determined by limited manipulable targets and the lack of gene annotation related to protein expression. PonA is the major class A penicillin-binding protein in Bacillus, which polymerizes and cross-links peptidoglycan. Here, we described its novel functions during recombinant protein expression in Bacillus subtilis and analyzed the mechanism of its chaperone activity. When PonA was overexpressed, the expression of hyperthermophilic amylase significantly increased 3.96- and 1.26-fold in shake flasks and fed-batch processes, respectively. Increased cell diameter and reinforced cell walls were observed in PonA-overexpressing strains. Furthermore, the FN3 structural domain and the natural dimeric structure of PonA may be critical for exerting its chaperone activity. These data suggest that PonA can be an effective target for modification of the expression of recombinant proteins in B. subtilis.
Collapse
Affiliation(s)
- Xuyang Zhu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Feng T, Wang Z, Li H, Li Q, Guo Y, Zhao J, Liu J. Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli. J Biosci Bioeng 2023; 135:433-439. [DOI: 10.1016/j.jbiosc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
|
11
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
12
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Zhao J, Wei H, Chen J, Li L, Li K, Liu J. Efficient biosynthesis of D-allulose in Bacillus subtilis through D-psicose 3-epimerase translation modification. Int J Biol Macromol 2021; 187:1-8. [PMID: 34293357 DOI: 10.1016/j.ijbiomac.2021.07.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The combined catalysis of glucose isomerase (GI) and D-psicose 3-epimerase (DPEase) provided a convenient route for the direct synthesis of D-allulose from d-glucose, whose cost is lower than d-fructose. In the present research, the weak activity of DPEase was the key rate-limiting step and resulted in the accumulation of d-fructose in engineered Bacillus subtilis. Then, the 5'-untranslated region (5'-UTR) structure of the mRNA translational initiation region was optimized for the precise control of DPEase expression. The manipulation of the 5'-UTR region promoted the accessibility to ribosome binding and the stability of mRNA, resulting in a maximum of 1.73- and 1.98-fold increase in DPEase activity and intracellular mRNA amount, respectively. Under the optimal catalytic conditions of 75 °C, pH 6.5, 110 g/L d-glucose, and 1 mmol/L Co2+, the reaction equilibrium time was reduced from 7.6 h to 6.1 h. We hope that our results could provide a facilitated strategy for large-scale production of D-allulose at low-cost.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Hongbei Wei
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jing Chen
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Lihong Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| |
Collapse
|