1
|
Govindasamy C, Al-Numair KS, Alsaif MA, Gopalakrishnan AV, Ganesan R. Assessment of metabolic responses following silica nanoparticles in zebrafish models using 1H NMR analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109808. [PMID: 38061618 DOI: 10.1016/j.cbpc.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Silica nanoparticles (SNPs) are widely explored as drug carriers, gene delivery vehicles, and as nanoparticles intended for bone and tissue engineering. SNPs are highly evident through various clinical trials for a wide range of biomedical applications. SNPs are biocompatible and promising nanoparticles for next-generation therapeutics. However, despite the well-established importance of SNPs, metabolomics methods for the SNPs remain elusive which renders its maximal clinical translation. We applied 1H nuclear magnetic resonance (1H NMR) spectroscopy to investigate the metabolomics profile in Zebrafish (Danio rerio) exposed to SNPs. Zebrafish were exposed to the SNPs (10.0, 25.0, and 50.0 μg/mL) for 72 h and whole-body samples were subjected for targeted profiling. Pattern recognition of 1H NMR spectral data depicted alterations in the metabolomic profiles between control and SNPs exposed zebrafish. We found that tryptophane, lysine, methionine, phenylalanine, tyrosine, sn-glycero-3-phosphocholine (G3PC), and o-phosphocholine were decreased. The metabolic expression of niacinamide, nicotinamide adenine dinucleotide (NAD+), citrate, adenosine triphosphate (ATP), and xanthine were increased in zebrafish with SNPs treatment. We are report for the first time on metabolite alterations and phenotypic expression in zebrafish via 1H NMR. These results demonstrate that SNPs can adversely affect the significant metabolic pathways involved in energy, amino acids, cellular membrane, lipids, and fatty acid metabolisms. Metabolomics profiling may be able to detect metabolic dysregulation in SNPs-treated zebrafish and establish a foundation for further toxicological studies.
Collapse
Affiliation(s)
- Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed A Alsaif
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Mukherjee AG, Gopalakrishnan AV, Jayaraj R, Ganesan R, Renu K, Vellingiri B, Dey A, Parveen M. Recent advances in understanding brain cancer metabolomics: a review. Med Oncol 2023; 40:220. [PMID: 37402029 DOI: 10.1007/s12032-023-02109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Regardless of the significant progress made in surgical techniques and adjuvant therapies, brain tumors are a major contributor to cancer-related morbidity and mortality in both pediatric and adult populations. Gliomas represent a significant proportion of cerebral neoplasms, exhibiting diverse levels of malignancy. The etiology and mechanisms of resistance of this malignancy are inadequately comprehended, and the optimization of patient diagnosis and prognosis is a challenge due to the diversity of the disease and the restricted availability of therapeutic options. Metabolomics refers to the comprehensive analysis of endogenous and exogenous small molecules, both in a targeted and untargeted manner, that enables the characterization of an individual's phenotype and offers valuable insights into cellular activity, particularly in the context of cancer biology, including brain tumor biology. Metabolomics has garnered attention in current years due to its potential to facilitate comprehension of the dynamic spatiotemporal regulatory network of enzymes and metabolites that enables cancer cells to adapt to their environment and foster the development of tumors. Metabolic changes are widely acknowledged as a significant characteristic for tracking the advancement of diseases, treatment efficacy, and identifying novel molecular targets for successful medical management. Metabolomics has emerged as an exciting area for personalized medicine and drug discovery, utilizing advanced analytical techniques such as nuclear magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) to achieve high-throughput analysis. This review examines and highlights the latest developments in MRS, MS, and other technologies in studying human brain tumor metabolomics.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Mohamudha Parveen
- Faculty of Medicine, University of Texas Rio Grande Valley, Harlingen, USA
| |
Collapse
|
3
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
4
|
Zhai S, Liu C, Vimalraj S, Subramanian R, Abullais SS, Arora S, Saravanan S. Glucagon-like peptide-1 receptor promotes osteoblast differentiation of dental pulp stem cells and bone formation in a zebrafish scale regeneration model. Peptides 2023; 163:170974. [PMID: 36775021 DOI: 10.1016/j.peptides.2023.170974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Bone cells express the glucagon-like peptide 1 receptor (GLP-1R). However, its presence and role in human dental pulp derived stem cells (hDPSCs) remains elusive. Hence, in the current study, we isolated hDPSCs and differentiated them into osteoblasts, where GLP-1R expression was found to be upregulated during osteoblast differentiation. GLP-1 receptor agonist, liraglutide peptide treatment, increased osteoblast differentiation in hDPSCs by increasing calcium deposition, ALP activity, and osteoblast marker genes, Runx2, type 1 col, osteonectin, and osteocalcin. Furthermore, activation of long non-coding RNA (LncRNA) LINC00968 and microRNA-3658 signalling increased Runx2 expression. Specifically, liraglutide increased LncRNA-LINC00968 expression while decreasing miR-3658 expression. LINC00968 targets miR-3658, and miR-3658 targets Runx2. Additionally, in an in-vivo study, zebrafish scale regeneration model, liraglutide promoted calcium deposition, osteoblastic cell count, collagen 1α, osteonectin, osteocalcin, runx2a MASNA isoform expression (transcribed from promoter P1), and Ca/P ratio in scales. Overall, GLP-1R activation promotes osteoblast differentiation via Runx2/LncRNA-LINC00968/miR-3658 signalling in hDPSCs and promotes bone formation in zebrafish scale regeneration.
Collapse
Affiliation(s)
- Shafei Zhai
- Department of Stomatology, Xi'an Medical University, Xi'an 710021, Shaanxi, China; Department of Periodontology, Hospital of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, Xi'an 710068, Shaanxi, China
| | - Changkui Liu
- Department of Stomatology, Xi'an Medical University, Xi'an 710021, Shaanxi, China; Department of Periodontology, Hospital of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, Xi'an 710068, Shaanxi, China
| | - Selvaraj Vimalraj
- Center for Biotechnology, Anna University, Chennai 600025, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Suraj Arora
- Department of Restorative dental sciences, College of Dentistry, King Khalid University Abha, Kingdom of Saudi Arabia
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
5
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
6
|
Kannampuzha S, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Murali R, Namachivayam A, Renu K, Dey A, Vellingiri B, Madhyastha H, Ganesan R. A Systematic Role of Metabolomics, Metabolic Pathways, and Chemical Metabolism in Lung Cancer. Vaccines (Basel) 2023; 11:vaccines11020381. [PMID: 36851259 PMCID: PMC9960365 DOI: 10.3390/vaccines11020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Lung cancer (LC) is considered as one of the leading causes of cancer-associated mortalities. Cancer cells' reprogrammed metabolism results in changes in metabolite concentrations, which can be utilized to identify a distinct metabolic pattern or fingerprint for cancer detection or diagnosis. By detecting different metabolic variations in the expression levels of LC patients, this will help and enhance early diagnosis methods as well as new treatment strategies. The majority of patients are identified at advanced stages after undergoing a number of surgical procedures or diagnostic testing, including the invasive procedures. This could be overcome by understanding the mechanism and function of differently regulated metabolites. Significant variations in the metabolites present in the different samples can be analyzed and used as early biomarkers. They could also be used to analyze the specific progression and type as well as stages of cancer type making it easier for the treatment process. The main aim of this review article is to focus on rewired metabolic pathways and the associated metabolite alterations that can be used as diagnostic and therapeutic targets in lung cancer diagnosis as well as treatment strategies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (A.V.G.); (R.G.)
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
7
|
Microbiome and Metabolomics in Liver Cancer: Scientific Technology. Int J Mol Sci 2022; 24:ijms24010537. [PMID: 36613980 PMCID: PMC9820585 DOI: 10.3390/ijms24010537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary liver cancer is a heterogeneous disease. Liver cancer metabolism includes both the reprogramming of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment and fluctuations in regular tissue metabolism. Currently, metabolomics and metabolite profiling in liver cirrhosis, liver cancer, and hepatocellular carcinoma (HCC) have been in the spotlight in terms of cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecules, chemicals, and metabolites. Metabolomics technologies can provide critical information about the liver cancer state. Here, we review how liver cirrhosis, liver cancer, and HCC therapies interact with metabolism at the cellular and systemic levels. An overview of liver metabolomics is provided, with a focus on currently available technologies and how they have been used in clinical and translational research. We also list scalable methods, including chemometrics, followed by pathway processing in liver cancer. We conclude that important drivers of metabolomics science and scientific technologies are novel therapeutic tools and liver cancer biomarker analysis.
Collapse
|
8
|
Ganesan R, Mukherjee AG, Gopalakrishnan AV, Prabhakaran VS. Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan. Metabolites 2022; 12:metabo12121263. [PMID: 36557301 PMCID: PMC9785866 DOI: 10.3390/metabo12121263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, we demonstrated that chitosan-applied zebrafish (Danio rerio) tissue metabolite alteration, metabolic discrimination, and metabolic phenotypic expression occurred. The spectroscopy of solid-state 1H nuclear magnetic resonance (ss 1H-NMR) has been used. Chitosan has no, or low, toxicity and is a biocompatible biomaterial; however, the metabolite mechanisms underlying the biological effect of chitosan are poorly understood. The zebrafish is now one of the most popular ecotoxicology models. Zebrafish were exposed to chitosan concentrations of 0, 50, 100, 200, and 500 mg/L, and the body tissue was subjected to metabolites-targeted profiling. The zebrafish samples were measured via solvent-suppressed and T2-filtered methods with in vivo zebrafish metabolites. The metabolism of glutamate, glutamine, glutathione (GSH), taurine, trimethylamine (TMA), and its N-oxide (TMAO) is also significantly altered. Here, we report the quantification of metabolites and the biological application of chitosan. The metabolomics profile of chitosan in zebrafish has been detected, and the results indicated disturbed amino acid metabolism, the TCA cycle, and glycolysis. Our results demonstrate the potential of comparative metabolite profiling for discovering bioactive metabolites and they highlight the power of chitosan-applied chemical metabolomics to uncover new biological insights.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (R.G.); (A.V.G.)
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (R.G.); (A.V.G.)
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India
| |
Collapse
|
9
|
Ganesan R, Prabhakaran VS, Valsala Gopalakrishnan A. Metabolomic Signatures in Doxorubicin-Induced Metabolites Characterization, Metabolic Inhibition, and Signaling Pathway Mechanisms in Colon Cancer HCT116 Cells. Metabolites 2022; 12:1047. [PMID: 36355130 PMCID: PMC9694538 DOI: 10.3390/metabo12111047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 01/04/2025] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent is used for various cancer cells. To characterize the chemical structural components and metabolic inhibition, we applied a DOX to HCT116 colon cancer cells using an independent metabolites profiling approach. Chemical metabolomics has been involved in the new drug delivery systems. Metabolomics profiling of DOX-applied HCT116 colon cancer cellular metabolisms is rare. We used 1H nuclear magnetic resonance (NMR) spectroscopy in this study to clarify how DOX exposure affected HCT116 colon cancer cells. Metabolomics profiling in HCT116 cells detects 50 metabolites. Tracking metabolites can reveal pathway activities. HCT116 colon cancer cells were evenly treated with different concentrations of DOX for 24 h. The endogenous metabolites were identified by comparison with healthy cells. We found that acetate, glucose, glutamate, glutamine, sn-glycero-3-phosphocholine, valine, methionine, and isoleucine were increased. Metabolic expression of alanine, choline, fumarate, taurine, o-phosphocholine, inosine, lysine, and phenylalanine was decreased in HCT116 cancer cells. The metabolic phenotypic expression is markedly altered during a high dose of DOX. It is the first time that there is a metabolite pool and phenotypic expression in colon cancer cells. Targeting the DOX-metabolite axis may be a novel strategy for improving the curative effect of DOX-based therapy for colon cancer cells. These methods facilitate the routine metabolomic analysis of cancer cells.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
10
|
Nie H, Liu H, Shi Y, Lai W, Liu X, Xi Z, Lin B. Combined multi-omics analysis reveals oil mist particulate matter-induced lung injury in rats: Pathological damage, proteomics, metabolic disturbances, and lung dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113759. [PMID: 35714485 DOI: 10.1016/j.ecoenv.2022.113759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Oil mist particulate matter (OMPM) causes acute and chronic diseases and exacerbations. Owing to the characteristics of poor ventilation, high oil mist concentration, and a relatively closed working environment, the existence of OMPM in the cabin is inevitable, and its impact on the health of occupations on ships cannot be ignored. However, compared with several studies that summarized the health effects of OMPM from traditional sources, few studies have focused on the occupational exposure risk of OMPM from oil pollution sources in ships. In this study, we collected OMPM from oil pollution in cabins and assessed the exposure to OMPM from oil pollution and the corresponding health risks through acute exposure experiments in rats. OMPM exposure induces protein regulation in the extracellular matrix and immune responses, leading to severe inflammatory responses. The abundance and composition of the lung microbial community changed significantly. It interferes with the lung metabolite levels. However, more research is needed to fully understand the extent of health risks associated with OMPM exposure. Further research on vulnerable groups exposed to OMPM from ships is needed to inform public health interventions.
Collapse
Affiliation(s)
- Huipeng Nie
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
11
|
Mohamed AF, Nasr M, Amer ME, Abuamara TMM, Abd-Elhay WM, Kaabo HF, Matar EER, El Moselhy LE, Gomah TA, Deban MAEF, Shebl RI. Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study. Infect Agent Cancer 2022; 17:4. [PMID: 35120563 PMCID: PMC8817517 DOI: 10.1186/s13027-022-00416-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to antibiotics and anticancer therapy is a serious global health threat particularly in immunosuppressed cancer patients. Current study aimed to estimate the antibacterial and anticancer potentials of short-term exposure to extremely low frequency electromagnetic field (ELF-EMF) and silver nanoparticles (AgNPs) either in sole or combined form. METHODS Antibacterial activity was evaluated via determination of the bacterial viable count reduction percentage following exposure, whereas their ability to induce apoptosis in breast cancer (MCF-7) cell line was detected using annexin V-fluorescein isothiocyanate and cell cycle analysis. Also, oxidative stress potential and molecular profile were investigated. RESULTS ELF-EMF and AgNPs significantly (p < 0.01) reduced K. pneumonia viable count of compared to that of S. aureus in a time dependent manner till reaching 100% inhibition when ELF-EMF was applied in combination to 10 µM/ml AgNPs for 2 h. Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination recording significantly (p < 0.001) induced apoptosis as indicated by elevated level of MCF-7 cells in the Pre G1 phase compared to control. S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively. Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment. CONCLUSIONS The antibacterial and anticancer potentials of these agents might be related to their ability to induce oxidative stress, suggesting their potentials as novel candidates for controlling infections and triggering cancer cells towards self-destruction.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tamer M M Abuamara
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M Abd-Elhay
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Fathy Kaabo
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Emad Eldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Laila E El Moselhy
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | | | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Zone, Banks Complex, 6th October City, Cairo, Egypt.
| |
Collapse
|
12
|
Zhang Z, Su T, Han Y, Yang Z, Wei J, Jin L, Fan H. A convergent synthetic platform for dual anticancer drugs functionalized by reduced graphene nanocomposite delivery for hepatocellular cancer. Drug Deliv 2021; 28:1982-1994. [PMID: 34569406 PMCID: PMC8477966 DOI: 10.1080/10717544.2021.1974606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is widespread cancer with a high degree of morbidity and mortality in individuals worldwide and a serious concern for its resistance to present chemotherapy drugs. In this investigation, the combination of cisplatin (CPT) and metformin (MET) to kill the HepG2 and caco-2 cells was developed into a new pH-responding magnetic nanocomposite based on reduced graphene oxide. Polyhydroxyethyl methacrylic (PHEA) was then linked employing grafting from approach to the reduced graphene oxide by ATRP polymerization (Fe3O4@rGO-G-PSEA). FT-IR, SEM, XRD, DLS, and TGA analyses evaluated physicochemical characteristics of the nanocomposite. In addition, the cellular uptake property of the nanocomposites was examined by the HepG2 cells. The outcomes of cell viability results indicate that the nanoparticles loaded with MET&CPT showed the lowest concentration rate of HepG2 and Caco-2 cells compared to the drug-loaded single nanocomposite groups and free drugs. The histological analysis has demonstrated relatively safe and does not produce different stress such as swelling and inflammation of the mice organs. Our results show the enhancement in cytotoxicity in HepG2 and Cocoa-2 cells by MET and CPT graphene oxide-based nanocomposite by promoting apoptotic response. Moreover, Fe3O4@rGO-G-PSEA showed potent in vivo antitumor efficacy but showed no adverse toxicity to normal tissues. Together, this study can provide insight into how surface embellishment may tune these nanocomposites' tumor specificity and provide the basis for developing anticancer efficacy.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianhao Su
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanjing Han
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zeran Yang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Wei
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Long Jin
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
13
|
Gut microbiome and metabolic response in non-alcoholic fatty liver disease. Clin Chim Acta 2021; 523:304-314. [PMID: 34666025 DOI: 10.1016/j.cca.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Fatty liver disease (FLD) is one of the largest burdens to human health worldwide and is associated with gut microbiome and metabolite stability. Engineered liver tissues have shown promise in restoring liver functions in non-alcoholic FLD (NAFLD), hepatitis and cirrhosis. Fatty liver, largely noted in obesity and hepatic cancer, is highly fatal and has led to a global increase in death rates. It is associated with complex metabolic reprogramming too. A standard approach to therapy in the newly diagnosed setting includes surgery or identification of biomarkers/ metabolites for therapeutic purposes, which ultimately focus on improvement of liver health in patients. As such there are no standard procedures for patient care, but depending on the severity, systemic therapy with either genomic, proteomic or metabolomic profiling form potential options. Better comparisons and study of underlying mechanisms in gut microbiome-based metabolic functions in obesity are urgently required. Today, an emerging field, focusing on metabolomic approaches and metabolic phenotyping, involved in high-throughput identification of metabolome in obesity and gut disorders, is involved in biomarker and metabolite identification. There are supporting technologies and approaches in NAFLD that throw light on the metabolites and gut microbiome, and also on the understanding of the risk factors of obesity along with liver cancer metabolic reaction networks. We discuss the current state of NAFLD metabolites, gut micro-environmental changes, and the further challenges in digital metabolomics profiling. Innovative clinical trial designs, with biomarker-enrichment strategies that are required to improve the outcome of NAFLD in patients are also discussed.
Collapse
|