1
|
Yasui K, Hamamoto K. Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5134. [PMID: 39459840 PMCID: PMC11509499 DOI: 10.3390/ma17205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes is relatively low when mechanical properties are relatively good. In the present review, mechanisms of ionic conduction in soft matter electrolytes are discussed in order to achieve higher ionic conductivity with sufficient mechanical properties where soft matter electrolytes are defined as polymer electrolytes and polymeric or inorganic gel electrolytes. They could also be defined by Young's modulus from about 105 Pa to 109 Pa. Many soft matter electrolytes exhibit VFT (Vogel-Fulcher-Tammann) type temperature dependence of ionic conductivity. VFT behavior is explained by the free volume model or the configurational entropy model, which is discussed in detail. Mostly, the amorphous phase of polymer is a better ionic conductor compared to the crystalline phase. There are, however, some experimental and theoretical reports that the crystalline phase is a better ionic conductor. Some methods to increase the ionic conductivity of polymer electrolytes are discussed, such as cavitation under tensile deformation and the microporous structure of polymer electrolytes, which could be explained by the conduction mechanism of soft matter electrolytes.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan;
| | | |
Collapse
|
2
|
Abdollahi M, Baharian A, Mohamadhoseini M, Hassanpour M, Makvandi P, Habibizadeh M, Jafari B, Nouri R, Mohamadnia Z, Nikfarjam N. Advances in ionic liquid-based antimicrobial wound healing platforms. J Mater Chem B 2024; 12:9478-9507. [PMID: 39206539 DOI: 10.1039/d4tb00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wound infections, marked by the proliferation of microorganisms at surgical sites, necessitate the development of innovative wound dressings with potent bactericidal properties to curb microbial growth and prevent bacterial infiltration. This study explores the recent strides in utilizing ionic liquid-based polymers as highly promising antimicrobial agents for advanced wound healing applications. Specifically, cationic polymers containing quaternary ammonium, imidazolium, guanidinium, pyridinium, triazolium, or phosphonium groups have emerged as exceptionally effective antimicrobial compounds. Their mechanism of action involves disrupting bacterial membranes, thereby preventing the development of resistance and minimizing toxicity to mammalian cells. This comprehensive review not only elucidates the intricate dynamics of the skin's immune response and the various stages of wound healing but also delves into the synthesis methodologies of ionic liquid-based polymers. By spotlighting the practical applications of antimicrobial wound dressings, particularly those incorporating ionic liquid-based materials, this review aims to lay the groundwork for future research endeavors in this burgeoning field. Through a nuanced examination of these advancements, this article seeks to contribute to the ongoing progress in developing cutting-edge wound healing platforms that can effectively address the challenges posed by microbial infections in surgical wounds.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Aysan Baharian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Masoumeh Mohamadhoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Bahman Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Roya Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA
| |
Collapse
|
3
|
Siam R, Ali A, Abu-Reziq R. Magnetically Separable Chiral Poly(ionic liquid) Microcapsules Prepared Using Oil-in-Oil Emulsions. Polymers (Basel) 2024; 16:2728. [PMID: 39408439 PMCID: PMC11478766 DOI: 10.3390/polym16192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This article presents a method for producing chiral ionic liquid-based polyurea microcapsules that can be magnetically separated. The method involves entrapping hydrophilic magnetic nanoparticles within chiral polyurea microspheres. The synthetic process for creating these magnetic polyurea particles involves oil-in-oil (o/o) nano-emulsification of an ionic liquid-modified magnetite nanoparticle (MNPs-IL) and an ionic liquid-based diamine monomer, which comprises a chiral bis(mandelato)borate anion, in a nonpolar organic solvent, toluene, and contains a suitable surfactant. This is followed by an interfacial polycondensation reaction between the isocyanate monomer, polymethylenepolyphenyl isocyanate (PAPI 27), and the chiral diamine monomer, which generates chiral polyurea microcapsules containing magnetic nanoparticles within their cores. The microcapsules generated from the process are then utilized to selectively adsorb either the R or S enantiomer of tryptophan (Trp) from a racemic mixture that is dissolved in water, in order to evaluate their chiral recognition capabilities. During the experiments, the magnetically separable chiral poly(ionic liquid) microcapsules, which incorporated either the R or S isomer of chiral bis(mandelato)borate, exhibited exceptional enantioselective adsorption performance. Thus, the chiral polymeric microcapsules embedded with the R-isomer of the bis(mandelato)borate anion demonstrated significant selectivity for adsorbing L-Trp, yielding a mixture with 70% enantiomeric excess after 96 h. In contrast, microcapsules containing the S-isomer of the bis(mandelato)borate anion preferentially adsorbed D-Trp, achieving an enantiomeric excess of 73% after 48 h.
Collapse
Affiliation(s)
| | | | - Raed Abu-Reziq
- Casali Center of Applied Chemistry, Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (R.S.); (A.A.)
| |
Collapse
|
4
|
Nguyen TKL, Pham-Truong TN. Recent Advancements in Gel Polymer Electrolytes for Flexible Energy Storage Applications. Polymers (Basel) 2024; 16:2506. [PMID: 39274140 PMCID: PMC11398039 DOI: 10.3390/polym16172506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and ionogels) remain the most studied thanks to the ability to tune the physicochemical and mechanical properties by changing the nature of the precursors, the type of interactions, and the formulation. Nevertheless, the exploitation of this category of electrolyte as a possible commercial product is still restrained, due to different issues related to the nature of the gels (ionic conductivity, evaporation of filling solvent, toxicity, etc.). Therefore, this review aims to resume different strategies to tailor the properties of the gel polymer electrolytes as well as to provide recent advancements in the field toward the elaboration of deformable batteries and supercapacitors.
Collapse
Affiliation(s)
- Thi Khanh Ly Nguyen
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| | - Thuan-Nguyen Pham-Truong
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| |
Collapse
|
5
|
Abou-Ezze K, Llevot A, Taton D. Exploiting the Reversible Dimerization of N-Heterocyclic Carbenes to Access Dynamic Polymer Networks with an Organocatalytic Activity. ACS Macro Lett 2024; 13:1008-1015. [PMID: 39052990 DOI: 10.1021/acsmacrolett.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The capability of some N-heterocyclic carbenes (NHCs) to reversibly dimerize is exploited to access dynamic polymer networks. Benzimidazolium motifs serving as NHC precursors have thus been supported onto copolymer chains by reversible addition-fragmentation chain transfer (RAFT) copolymerization of styrene and up to 20 mol % of 4-vinylbenzyl-ethyl-benzimidazolium chloride. Molecular versions of 1,3-dialkyl benzimidazolium salts have been synthesized as models, the deprotonation of which with a strong base yields the NHC dimers in the form of tetraaminoalkenes. The crossover reaction between two distinct NHC homodimers, forming heterodimers, is then evidenced. Applying this deprotonation method to the RAFT-derived copolymers leads to polymer networks with cross-links consisting of labile dimerized NHC motifs. These networks can be subsequently decross-linked using two distinct triggers, namely, a monofunctional NHC precursor as competitor and carbon dioxide (CO2). In the latter case, regeneration of the network occurs by chemically fueling the linear copolymer bearing benzimidazolium motifs with tBuOK in the presence of trace amounts of water. The same networks can also be used as latent precursors of transient polyNHCs to catalyze the benzoin condensation upon heating. The polymer-supported organocatalysts can thus be used in successive catalytic cycles.
Collapse
Affiliation(s)
- Karine Abou-Ezze
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| | - Audrey Llevot
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| |
Collapse
|
6
|
Zhang J, Li H, Zhou X, Hu Q, Chen J, Tang L, Yang X, Gao J, Liu B, Zhang Y, Zhao G, Dong S, Zhang S. Adhesive Zwitterionic Poly(ionic liquid) with Unprecedented Organic Solvent Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403039. [PMID: 38805574 DOI: 10.1002/adma.202403039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The resistance of adhesives to organic solvents is of paramount importance in diverse industries. Unfortunately, many currently available adhesives exhibit either weak intermolecular chain interactions, resulting in insufficient resistance to organic solvents, or possess a permanent covalent crosslinked network, impeding recyclability. This study introduces an innovative approach to address this challenge by formulating zwitterionic poly(ionic liquid) (ZPIL) derivatives with robust dipole-dipole interactions, incorporating sulfonic anions and imidazolium cations. Due to its unique dynamic and electrostatic self-crosslinking structure, the ZPIL exhibits significant adhesion to various substrates and demonstrates excellent recyclability even after multiple adhesion tests. Significantly, ZPIL exhibits exceptional adhesion stability across diverse nonpolar and polar organic solvents, including ionic liquids, distinguishing itself from nonionic polymers and conventional poly(ionic liquid)s. Its adhesive performance remains minimally affected even after prolonged exposure to soaking conditions. The study presents a promising solution for the design of highly organic solvent-resistant materials for plastics, coatings, and adhesives.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Hui Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xuan Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Qinyu Hu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Jiayin Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Liang Tang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xiaoqing Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Jie Gao
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Bei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
7
|
Gallastegui A, Lingua G, Lopez-Larrea N, Carfora R, Pasini D, Mantione D, Mecerreyes D. Piperazinium Poly(Ionic Liquid)s as Solid Electrolytes for Lithium Batteries. Macromol Rapid Commun 2024; 45:e2400184. [PMID: 38923196 DOI: 10.1002/marc.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Poly(ionic liquid)s combine the unique properties of ionic liquids (ILs) within ionic polymers holding significant promise for energy storage applications. It is reported here the synthesis and characterization of a new family of poly(ionic liquid)s synthesized from cationic piperazinium ionic liquid monomers. The cationic poly(acrylamide piperazinium) in combination with sulfonamide anions like bis(trifluoromethanesulfonyl) imide (TFSI) and bis(fluorosulfonyl) imide (FSI) are characterized as solid polymer electrolytes. The polymer electrolytes in combination with pyrrolidonium ILs and LiFSI show high ionic conductivity, 5×10-3 S cm-1 at 100 °C. Piperazinium polymer electrolytes show excellent compatibility with lithium metal reversible plating and stripping at high current density and low temperature 40 °C.
Collapse
Affiliation(s)
- Antonela Gallastegui
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa, 20018, Spain
| | - Gabriele Lingua
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa, 20018, Spain
| | - Naroa Lopez-Larrea
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa, 20018, Spain
| | - Raffaele Carfora
- Department of Chemistry and INSTM, University of Pavia, via Taramelli 12, Pavia, 27100, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM, University of Pavia, via Taramelli 12, Pavia, 27100, Italy
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Bilbao, 48013, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Bilbao, 48013, Spain
| |
Collapse
|
8
|
Dias G, Rocca L, Ferrari HZ, Bernard FL, Brandão FG, Pereira L, Einloft S. Cationic Imidazolium-Urethane-Based Poly(Ionic Liquids) Membranes for Enhanced CO 2/CH 4 Separation: Synthesis, Characterization, and Performance Evaluation. MEMBRANES 2024; 14:151. [PMID: 39057659 PMCID: PMC11279342 DOI: 10.3390/membranes14070151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The escalating emissions of CO2 into the atmosphere require the urgent development of technologies aimed at mitigating environmental impacts. Among these, aqueous amine solutions and polymeric membranes, such as cellulose acetate and polyimide are commercial technologies requiring improvement or substitution to enhance the economic and energetic efficiency of CO2 separation processes. Ionic liquids and poly(ionic liquids) (PILs) are candidates to replace conventional CO2 separation technologies. PILs are a class of materials capable of combining the favorable gas affinity exhibited by ionic liquids (ILs) with the processability inherent in polymeric materials. In this context, the synthesis of the IL GLYMIM[Cl] was performed, followed by ion exchange processes to achieve GLYMIM variants with diverse counter anions (NTf2-, PF6-, and BF4). Subsequently, PIL membranes were fabricated from these tailored ILs and subjected to characterization, employing techniques such as SEC, FTIR, DSC, TGA, DMA, FEG-SEM, and CO2 sorption analysis using the pressure decay method. Furthermore, permeability and ideal selectivity assessments of CO2/CH4 mixture were performed to derive the diffusion and solubility coefficients for both CO2 and CH4. PIL membranes exhibited adequate thermal and mechanical properties. The PIL-BF4 demonstrated CO2 sorption capacities of 33.5 mg CO2/g at 1 bar and 104.8 mg CO2/g at 10 bar. Furthermore, the PIL-BF4 membrane exhibited permeability and ideal (CO2/CH4) selectivity values of 41 barrer and 44, respectively, surpassing those of a commercial cellulose acetate membrane as reported in the existing literature. This study underscores the potential of PIL-based membranes as promising candidates for enhanced CO2 capture technologies.
Collapse
Affiliation(s)
- Guilherme Dias
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
- Post-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Laura Rocca
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
| | - Henrique Z. Ferrari
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
- Post-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Franciele L. Bernard
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
| | - Fernando G. Brandão
- Petrobras/CENPES, Ilha do Fundão Qd. 07, Rio de Janeiro 21941-915, RJ, Brazil; (F.G.B.); (L.P.)
| | - Leonardo Pereira
- Petrobras/CENPES, Ilha do Fundão Qd. 07, Rio de Janeiro 21941-915, RJ, Brazil; (F.G.B.); (L.P.)
| | - Sandra Einloft
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
| |
Collapse
|
9
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
10
|
Haripriya P, Vijayakrishna K. Synthesis of poly(ionic liquid-OH) mediated deacetylated chitin and its hydrogels: A study on their applications in controlled release of paracetamol and urea. Int J Biol Macromol 2024; 266:131230. [PMID: 38574909 DOI: 10.1016/j.ijbiomac.2024.131230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Due to the biodegradable and biocompatible nature of chitin and chitosan, they are extensively used in the synthesis of hydrogels for various applications. In this work, deacetylation of chitin is carried out with alkaline poly(dimethyldiallylammonium-hydroxide) that gave a higher amount of water-soluble chitin (with 84 % of the degree of deacetylation = chitosan0.84) compared to deacetylation using NaOH. The water-soluble chitosan0.84 is used as intercalating chains for the preparation of acrylic acid and vinylimidazole-based hydrogels. The quaternization of imidazole groups is done with 1,ω-dibromoalkanes, which sets off the crosslinking in the above polymer network. A set of three chitosan0.84 intercalated hydrogels, namely Cs-C4-hydrogel, Cs-C5-hydrogel, and Cs-C10-hydrogel are prepared bearing butyl, pentyl, and decyl chains as respective crosslinkers. The swell ratios of these intercalated hydrogels are compared with those of non-intercalated hydrogels (C4-hydrogel, C5-hydrogel, and C10-hydrogel). Chitosan0.84 intercalated Cs-C10-hydrogel has excellent swelling properties (2330 % swelling ratio) among six synthesized hydrogels. SEM analysis reveals that decyl crosslinker-bearing hydrogels are highly porous. The multi-functionality of Cs-C10-hydrogel and C10-hydrogel is explored towards -the controlled release of paracetamol/urea, and methyleneblue dye absorption. These studies disclose that chitosan0.84 intercalated hydrogels are showing superior-swelling behavior, high paracetamol/urea loading capacities and better dye entrapment than their non-intercalated counterparts.
Collapse
Affiliation(s)
- Patra Haripriya
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India
| | - Kari Vijayakrishna
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India.
| |
Collapse
|
11
|
Chen J, Huang H, Gong W, Chen Y, Dong R, Ren L, Qiu T. Fine-Tuning Electron-Donor Capability in the Basic Anion of Poly(ionic liquid) Frameworks for Revolutionizing Catalytic Synthesis of Ethyl Methyl Carbonate with Both Ultrahigh Catalytic Activity and Selectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9233-9243. [PMID: 38623907 DOI: 10.1021/acs.langmuir.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Ethyl methyl carbonate (EMC) is a crucial solvent extensively utilized in lithium-ion battery electrolytes; the transesterification of dimethyl carbonate (DMC) with ethanol is a pivotal reaction for EMC production. However, this reaction faces challenges due to the trade-off between catalytic activity and selectivity from the basic catalysts. In this issue, we report an innovative strategy through fine-tuning the electron-donor capability of the basic phenolate anion ([PhO]) in a novel poly(ionic liquid) (PIL) framework, as synthesized via an alkylation reaction between 1,3,5-tris(bromomethyl)benzene, biphenyldiimidazole, and N,N'-carbonyldiimidazole (CDI) to trigger targeted basicity that can directionally catalyze the transesterification of DMC with ethanol, so as to achieve both ultrahigh catalytic activity and selectivity toward EMC. By varying the substituent groups with electron-withdrawing and electron-donating effects on the phenolate anion, the PILs show expected changes in the catalytic performance, following well with the trend of charge density on these substituted phenolate anions. The optimized catalyst [CPIL-CDI][MeOPhO], induced by p-methoxyphenolate anions, allows an extraordinary EMC yield of 72.19% and an EMC selectivity of 91.48% under mild conditions without any process intensifications, suppressing all of the reported catalysts reported to date. Outcomes and approaches shown in this work have the potential to expedite the systematic design of cations and anions within PILs for industrial-scale EMC production through environmentally friendly transesterification processes.
Collapse
Affiliation(s)
- Jie Chen
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China
| | - Huiyao Huang
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China
| | - Wangquan Gong
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yi Chen
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Rong Dong
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Limei Ren
- Department of Chemical Engineering, Shijiazhuang University, Hebei 050035, China
| | - Ting Qiu
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China
- Fuzhou University International Joint Laboratory of Thermochemical Conversion of Biomass, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
12
|
Lathrop P, Sun R, Beyer FL, Elabd YA. Highly Frustrated Poly(ionic liquid) ABC Triblock Terpolymers with Exceptionally High Morphology Factors. Macromolecules 2024; 57:3776-3797. [PMID: 38681059 PMCID: PMC11044597 DOI: 10.1021/acs.macromol.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In this work, we report the successful synthesis of 17 unique compositions of a poly(ionic liquid) (PIL) ABC triblock terpolymer, poly(S-b-VBMIm-TFSI-b-HA), where S is styrene, VBMIm-TFSI is vinylbenzyl methylimidazolium bis(trifluoromethanesulfonyl)imide, and HA is hexyl acrylate. Nine distinct morphologies were observed, including two-phase and three-phase disordered microphase separated (D2 and D3), two-phase hexagonally packed cylinders (C2), core-shell hexagonally packed cylinders (CCS), three-phase lamellae (L3), two-phase lamellae (L2), core-shell double gyroid (Q230), spheres-in-lamellae (LSI), and a three-phase hexagonal superlattice of cylinders (CSL). The LSI morphology was unambiguously confirmed using small-angle X-ray scattering and transmission electron microscopy. Morphology type significantly impacted the ion conductivity of the PIL ABC triblock terpolymers, where remarkable changes in morphology factor (normalized ion conductivity) were observed with only small changes in the conducting volume fraction, i.e., PIL block composition. An exceptionally high morphology factor of 2.0 was observed from the PIL ABC triblock terpolymer with a hexagonal superlattice morphology due to the three-dimensional narrow, continuous PIL nanodomains that accelerate ion conduction. Overall, this work demonstrates the first systematic study of highly frustrated single-ion conducting ABC triblock terpolymers with a diverse set of morphologies and exceptionally high morphology factors, enabling the exploration of transport-morphology relationships to guide the future design of highly conductive polymer electrolytes.
Collapse
Affiliation(s)
- Patrick
M. Lathrop
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Rui Sun
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Frederick L. Beyer
- U.S.
Army Research Laboratory, Aberdeen
Proving Ground, Maryland 21005, United States
| | - Yossef A. Elabd
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
14
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
15
|
Xin M, Wang Q, Wang Q, Wang H, Muhammad F, Nie G. New adsorbent materials based on PILs for Freon refrigerants. RSC Adv 2024; 14:90-100. [PMID: 38173624 PMCID: PMC10758758 DOI: 10.1039/d3ra07033f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The development of refrigerant adsorbent materials is not only essential for enhancing the efficiency of refrigeration systems but also plays a pivotal role in environmental conservation and addressing global warming challenges. However, traditional adsorbent materials are often limited in widespread applications in industrial scales due to various disadvantages, such as low adsorption efficiency, difficulties in desorption, and poor reusability. In this context, three distinct PILs, P[EVIM][PF6], P[BVIM][PF6] and P[HVIM][PF6], were synthesized and characterized. In addition, their structure as well as adsorption capacities towards three different Freon refrigerants (R12, R22 and R134a) were explored. The results indicated that the synthesized PILs had high thermal stability and exceptional adsorption capabilities, with P[EVIM][PF6] demonstrating the best adsorption performance. These PILs consistently maintain a stable saturated adsorption capacity throughout nine consecutive adsorption-desorption cycles, and the desorption rate of the adsorbent tubes consistently exceeded 96%. Thus, the superior recyclability of these PILs was verified. These PILs provide a promising route for efficient adsorption of Freon refrigerants, highlighting their potential significance in pertinent industries and environmental conservation efforts.
Collapse
Affiliation(s)
- Mingyuan Xin
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
- Dandong Chemical Engineering Institute Co., LTD. Dandong Liaoning China
| | - Qiang Wang
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| | - Qiang Wang
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| | - Haoyu Wang
- Dandong Chemical Engineering Institute Co., LTD. Dandong Liaoning China
| | - Furqan Muhammad
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| | - Guanze Nie
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| |
Collapse
|
16
|
Sun L, Huang H, Zhang L, Neisiany RE, Ma X, Tan H, You Z. Spider-Silk-Inspired Tough, Self-Healing, and Melt-Spinnable Ionogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305697. [PMID: 37997206 PMCID: PMC10797445 DOI: 10.1002/advs.202305697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Indexed: 11/25/2023]
Abstract
As stretchable conductive materials, ionogels have gained increasing attention. However, it still remains crucial to integrate multiple functions including mechanically robust, room temperature self-healing capacity, facile processing, and recyclability into an ionogel-based device with high potential for applications such as soft robots, electronic skins, and wearable electronics. Herein, inspired by the structure of spider silk, a multilevel hydrogen bonding strategy to effectively produce multi-functional ionogels is proposed with a combination of the desirable properties. The ionogels are synthesized based on N-isopropylacrylamide (NIPAM), N, N-dimethylacrylamide (DMA), and ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). The synergistic hydrogen bonding interactions between PNIPAM chains, PDMA chains, and ILs endow the ionogels with improved mechanical strength along with fast self-healing ability at ambient conditions. Furthermore, the synthesized ionogels show great capability for the continuous fabrication of the ionogel-based fibers using the melt-spinning process. The ionogel fibers exhibit spider-silk-like features with hysteresis behavior, indicating their excellent energy dissipation performance. Moreover, an interwoven network of ionogel fibers with strain and thermal sensing performance can accurately sense the location of objects. In addition, the ionogels show great recyclability and processability into different shapes using 3D printing. This work provides a new strategy to design superior ionogels for diverse applications.
Collapse
Affiliation(s)
- Lijie Sun
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
- Biotechnology CentreSilesian University of TechnologyKrzywoustego 8Gliwice44‐100Poland
| | - Xiaopeng Ma
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518038China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| |
Collapse
|
17
|
Zhao Z, Qing Y, Kong L, Xu H, Fan X, Yun J, Zhang L, Wu H. Advancements in Microwave Absorption Motivated by Interdisciplinary Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304182. [PMID: 37870274 DOI: 10.1002/adma.202304182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Microwave absorption materials (MAMs) are originally developed for military purposes, but have since evolved into versatile materials with promising applications in modern technologies, including household use. Despite significant progress in bench-side research over the past decade, MAMs remain limited in their scope and have yet to be widely adopted. This review explores the history of MAMs from first-generation coatings to second-generation functional absorbers, identifies bottlenecks hindering their maturation. It also presents potential solutions such as exploring broader spatial scales, advanced characterization, introducing liquid media, utilizing novel toolbox (machine learning, ML), and proximity of lab to end-user. Additionally, it meticulously presents compelling applications of MAMs in medicine, mechanics, energy, optics, and sensing, which go beyond absorption efficiency, along with their current development status and prospects. This interdisciplinary research direction differs from previous research which primarily focused on meeting traditional requirements (i.e., thin, lightweight, wide, and strong), and can be defined as the next generation of smart absorbers. Ultimately, the effective utilization of ubiquitous electromagnetic (EM) waves, aided by third-generation MAMs, should be better aligned with future expectations.
Collapse
Affiliation(s)
- Zehao Zhao
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuchang Qing
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Luo Kong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hailong Xu
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaomeng Fan
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jijun Yun
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
18
|
Elyasi Z, Ghomi JS, Najafi GR, Sharif MA. Fabrication of uniform Pd nanoparticles immobilized on crosslinked ionic chitosan support as a super-active catalyst toward regioselective synthesis of pyrazole-fused heterocycles. Int J Biol Macromol 2023; 253:126589. [PMID: 37673137 DOI: 10.1016/j.ijbiomac.2023.126589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Selection of biodegradable chitosan as a raw material is a smart technique due to its easy modifiability and high renewability. Herein, taking advantage of these functional characteristics, an ionic biopolymer support is produced from copolymerization of allylated chitosan (with 48 % degree of substitution) and polymerizable ionic liquid ([MEVIm]Br). Next, palladium nanoparticles are successfully stabilized in this designed support through a facile manner based on interconnected porous network, ionic nature and rich functional groups. Then, the Pd@CS-PIL structure was utilized as a heterogeneous catalyst for regioselective synthesis of pyrazole-fused heterocycles. The as-synthesized Pd@CS-PIL was characterized by various techniques such as XRD, EDX, FESEM, elemental mapping, TEM, BET, ICP, TGA, and FT-IR to better determine the structure, morphology, purity and physical properties. The obtained results revealed that the proposed nanostructure provides favorable porosity with significant specific surface area (139.2 m2.g-1), Pd nanoparticles with high dispersion (mean diameter ∼ 22.8 nm) and crosslinked nature with good thermal stability (50 % weight loss about 600 °C). Therefore, Pd@CS-PIL nanostructure showed the key features of a super-active catalyst, and pharmaceutical pyrazole-fused scaffolds were produced in favorable yields (86-96 %) under ultrasound conditions.
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran
| | - Javad Safaei Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 51167, Iran.
| | | | | |
Collapse
|
19
|
Comès A, Theissen J, Dallemagne S, Morena A, Aprile C. Imidazolium-Containing Hybrid Organic-Inorganic Materials for the Conversion of CO 2: Unveiling the Key Role of the Ionic Template. Inorg Chem 2023; 62:21003-21013. [PMID: 38060352 DOI: 10.1021/acs.inorgchem.3c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
A straightforward synthesis of a series of hybrid organic-inorganic materials (HOIMs) containing imidazolium moieties was achieved. The preparation of the imidazolium acetate precursor was performed in a single-step procedure using the Debus-Radziszewski reaction. The as-synthesized alkoxysilane was employed in combination with tetraethyl orthosilicate to generate an HOIM presenting a high specific surface area. Two different structure-directing agents (SDAs), an anionic (sodium dodecyl sulfate (SDS)) or a cationic (cetyltrimethylammonium bromide) surfactant, were used to investigate the role played by the SDA on the distribution of the imidazolium-based active sites within the silica structure. After the synthesis, the acetate ion was replaced with Cl- and Br- via a simple acid treatment. This procedure favors also the removal of the surfactant, thus releasing the porosity of the solids. The HOIMs synthesized were fully characterized via low-angle X-ray diffraction, N2 physisorption, transmission electron microscopy, 13C and 29Si MAS NMR, combustion chemical analysis, X-ray photoelectron spectroscopy, and CO2 physisorption to assess their physicochemical and structural features, as well as the successful incorporation of imidazolium salts. Their catalytic activity in the conversion of CO2 was tested over different epoxides to produce the corresponding cyclic carbonates. The key role of the SDS (anionic surfactant) as a templating agent was proved. The best material was stable under the selected reaction conditions, reusable over multiple cycles, and active on a series of different epoxides, thus proving its versatility.
Collapse
Affiliation(s)
- Adrien Comès
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Jennifer Theissen
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Sandrine Dallemagne
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Anthony Morena
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Carmela Aprile
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| |
Collapse
|
20
|
Khorsand Kheirabad A, Friedrich HKJ, Chang J, Zhang M, Gröschel A, Yuan J. Ice-Assisted Porous Poly(ionic liquid)/MXene Composite Membranes for Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56347-56355. [PMID: 37984875 DOI: 10.1021/acsami.3c15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Controlled synthesis of polymer-based porous membranes via innovative methods is of considerable interest, yet it remains a challenge. Herein, we established a general approach to fabricate porous polyelectrolyte composite membranes (PPCMs) from poly(ionic liquid) (PIL) and MXene via an ice-assisted method. This process enabled the formation of a uniformly distributed macroporous structure within the membrane. The unique characteristics of the as-produced composite membranes display significant light-to-heat conversion and excellent performance for solar-driven water vapor generation. This facile synthetic strategy breaks new ground for developing composite porous membranes as high-performance solar steam generators for clean water production.
Collapse
Affiliation(s)
- Atefeh Khorsand Kheirabad
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Helena K J Friedrich
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Munster, 48149 Munster, Germany
| | - Jian Chang
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Miao Zhang
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Andre Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Munster, 48149 Munster, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
21
|
Qalyoubi L, Zuburtikudis I, Abu Khalifeh H, Nashef E. Adsorptive Membranes Incorporating Ionic Liquids (ILs), Deep Eutectic Solvents (DESs) or Graphene Oxide (GO) for Metal Salts Extraction from Aqueous Feed. MEMBRANES 2023; 13:874. [PMID: 37999360 PMCID: PMC10673284 DOI: 10.3390/membranes13110874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Water scarcity is a significant concern, particularly in arid regions, due to the rapid growth in population, industrialization, and climate change. Seawater desalination has emerged as a conventional and reliable solution for obtaining potable water. However, conventional membrane-based seawater desalination has drawbacks, such as high energy consumption resulting from a high-pressure requirement, as well as operational challenges like membrane fouling and high costs. To overcome these limitations, it is crucial to enhance the performance of membranes by increasing their efficiency, selectivity, and reducing energy consumption and footprint. Adsorptive membranes, which integrate adsorption and membrane technologies, offer a promising approach to address the drawbacks of standalone membranes. By incorporating specific materials into the membrane matrix, composite membranes have demonstrated improved permeability, selectivity, and reduced pressure requirements, all while maintaining effective pollutant rejection. Researchers have explored different adsorbents, including emerging materials such as ionic liquids (ILs), deep eutectic solvents (DESs), and graphene oxide (GO), for embedding into membranes and utilizing them in various applications. This paper aims to discuss the existing challenges in the desalination process and focus on how these materials can help overcome these challenges. It will also provide a comprehensive review of studies that have reported the successful incorporation of ILs, DESs, and GO into membranes to fabricate adsorptive membranes for desalination. Additionally, the paper will highlight both the current and anticipated challenges in this field, as well as present prospects, and provide recommendations for further advancements.
Collapse
Affiliation(s)
- Liyan Qalyoubi
- Department of Chemical Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates; (L.Q.); (H.A.K.)
| | - Ioannis Zuburtikudis
- Department of Chemical Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates; (L.Q.); (H.A.K.)
| | - Hadil Abu Khalifeh
- Department of Chemical Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates; (L.Q.); (H.A.K.)
| | - Enas Nashef
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
22
|
Foley K, Walters KB. Solution and Film Self-Assembly Behavior of a Block Copolymer Composed of a Poly(ionic Liquid) and a Stimuli-Responsive Weak Polyelectrolyte. ACS OMEGA 2023; 8:33684-33700. [PMID: 37744857 PMCID: PMC10515397 DOI: 10.1021/acsomega.3c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023]
Abstract
Cu(0)-mediated atom transfer radical polymerization was used to synthesize a poly(ionic liquid), poly[4-vinylbenzyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] (PVBBImTf2N), a stimuli-responsive polyelectrolyte, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), and a novel block copolymer formed from these two polymers. The synthesis of the block copolymer, poly[2-(dimethylamino) ethyl methacrylate]-block-[poly(4-vinylbenzyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] (PDMAEMA-b-PVBBImTf2N), was examined to evaluate the control of "livingness" polymerization, as indicated by molecular weight, characterizations of degree of polymerization, and 1HNMR spectroscopy. 2D DOSY NMR measurements revealed the successful formation of block copolymer and the connection between the two polymer blocks. PDMAEMA-b-PVBBImTf2N was further characterized for supramolecular interactions in both the bulk and solution states through FTIR and 1H NMR spectroscopies. While the block copolymer demonstrated similar intermolecular behavior to the PIL homopolymer in the bulk state as indicated by FTIR, hydrogen bonding and counterion interactions in solution were observed in polar organic solvent through 1H NMR measurements. The DLS characterization revealed that the PDMAEMA-b-PVBBImTf2N block copolymer forms a network-like aggregated structure due to a combination of hydrogen bonding between the PDMAEMA and PIL group and electrostatic repulsive interactions between PIL blocks. This structure was found to collapse upon the addition of KNO3 while still maintaining hydrogen bonding interactions. AFM-IR analysis demonstrated varied morphologies, with spherical PDMAEMA in PVBBImTf2N matrix morphology exhibited in the region approaching the film center. AFM-IR further revealed signals from silica nano-contaminates, which selectively interacted with the PDMAEMA spheres, demonstrating the potential for the PDMAEMA-b-PVBBImTf2N PIL block copolymer in polymer-inorganic nanoparticle composite applications.
Collapse
Affiliation(s)
- Kayla Foley
- Ralph E. Martin Department
of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Keisha B. Walters
- Ralph E. Martin Department
of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
23
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
24
|
Cao X, Ye C, Cao L, Shan Y, Ren J, Ling S. Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300447. [PMID: 37002548 DOI: 10.1002/adma.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Innovation in the ionotronics field has significantly accelerated the development of ultraflexible devices and machines. However, it is still challenging to develop efficient ionotronic-based fibers with necessary stretchability, resilience, and conductivity due to inherent conflict in producing spinning dopes with both high polymer and ion concentrations and low viscosities. Inspired by the liquid crystalline spinning of animal silk, this study circumvents the inherent tradeoff in other spinning methods by dry spinning a nematic silk microfibril dope solution. The liquid crystalline texture allows the spinning dope to flow through the spinneret and form free-standing fibers under minimal external forces. The resultant silk-sourced ionotronic fibers (SSIFs) are highly stretchable, tough, resilient, and fatigue-resistant. These mechanical advantages ensure a rapid and recoverable electromechanical response of SSIFs to kinematic deformations. Further, the incorporation of SSIFs into core-shell triboelectric nanogenerator fibers provides outstanding stable and sensitive triboelectric response to precisely and sensitively perceive small pressures. Moreover, by implementing a combination of machine learning and Internet of Things techniques, the SSIFs can sort objects made of different materials. With these structural, processing, performance, and functional merits, the SSIFs prepared herein are expected to be applied in human-machine interfaces.
Collapse
Affiliation(s)
- Xinyi Cao
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Chao Ye
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- School of Textile and Clothing, Yancheng Institute of Technology, Jiangsu, 224051, China
| | - Leitao Cao
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yicheng Shan
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
25
|
Abstract
Condensable gases are the sum of condensable and volatile steam or organic compounds, including water vapor, which are discharged into the atmosphere in gaseous form at atmospheric pressure and room temperature. Condensable toxic and harmful gases emitted from petrochemical, chemical, packaging and printing, industrial coatings, and mineral mining activities seriously pollute the atmospheric environment and endanger human health. Meanwhile, these gases are necessary chemical raw materials; therefore, developing green and efficient capture technology is significant for efficiently utilizing condensed gas resources. To overcome the problems of pollution and corrosion existing in traditional organic solvent and alkali absorption methods, ionic liquids (ILs), known as "liquid molecular sieves", have received unprecedented attention thanks to their excellent separation and regeneration performance and have gradually become green solvents used by scholars to replace traditional absorbents. This work reviews the research progress of ILs in separating condensate gas. As the basis of chemical engineering, this review first provides a detailed discussion of the origin of predictive molecular thermodynamics and its broad application in theory and industry. Afterward, this review focuses on the latest research results of ILs in the capture of several important typical condensable gases, including water vapor, aromatic VOCs (i.e., BTEX), chlorinated VOC, fluorinated refrigerant gas, low-carbon alcohols, ketones, ethers, ester vapors, etc. Using pure IL, mixed ILs, and IL + organic solvent mixtures as absorbents also briefly expanded the related reports of porous materials loaded with an IL as adsorbents. Finally, future development and research directions in this exciting field are remarked.
Collapse
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
26
|
Li C, Cheng J, He Y, He X, Xu Z, Ge Q, Yang C. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat Commun 2023; 14:4853. [PMID: 37563150 PMCID: PMC10415297 DOI: 10.1038/s41467-023-40583-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Stretchable ionotronics have drawn increasing attention during the past decade, enabling myriad applications in engineering and biomedicine. However, existing ionotronic sensors suffer from limited sensing capabilities due to simple device structures and poor stability due to the leakage of ingredients. In this study, we rationally design and fabricate a plethora of architected leakage-free ionotronic sensors with multi-mode sensing capabilities, using DLP-based 3D printing and a polyelectrolyte elastomer. We synthesize a photo-polymerizable ionic monomer for the polyelectrolyte elastomer, which is stretchable, transparent, ionically conductive, thermally stable, and leakage-resistant. The printed sensors possess robust interfaces and extraordinary long-term stability. The multi-material 3D printing allows high flexibility in structural design, enabling the sensing of tension, compression, shear, and torsion, with on-demand tailorable sensitivities through elaborate programming of device architectures. Furthermore, we fabricate integrated ionotronic sensors that can perceive different mechanical stimuli simultaneously without mutual signal interferences. We demonstrate a sensing kit consisting of four shear sensors and one compressive sensor, and connect it to a remote-control system that is programmed to wirelessly control the flight of a drone. Multi-material 3D printing of leakage-free polyelectrolyte elastomers paves new avenues for manufacturing stretchable ionotronics by resolving the deficiencies of stability and functionalities simultaneously.
Collapse
Affiliation(s)
- Caicong Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Yunfeng He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Ziyi Xu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
| | - Canhui Yang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
| |
Collapse
|
27
|
Tamate R, Ueki T. Adaptive Ion-Gel: Stimuli-Responsive, and Self-Healing Ion Gels. CHEM REC 2023; 23:e202300043. [PMID: 37068193 DOI: 10.1002/tcr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Indexed: 04/19/2023]
Abstract
Ion gels are an emerging class of polymer gels in which a three-dimensional polymer network swells with an ionic liquid. Ion gels have drawn considerable attention in various fields such as energy and biotechnology owing to their excellent properties including nonvolatility, nonflammability, high ionic conductivity, and high thermal and electrochemical stability. Since the first report on ion gels (published ∼30 years ago), diverse functional ion gels exhibiting impressive physicochemical properties have been reported. In this review, recent developments in functional ion gels that can modulate their physical properties in response to environmental conditions are outlined. Stimuli-responsive ion gels that can adaptively undergo phase transitions in response to thermal and light stimuli are initially discussed, followed by an evaluation of diverse self-healing ion gels that can spontaneously mend mechanical damage through judiciously designed ion-gel networks.
Collapse
Affiliation(s)
- Ryota Tamate
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- PRESTO, JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takeshi Ueki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
28
|
Katcharava Z, Zhou X, Bhandary R, Sattler R, Huth H, Beiner M, Marinow A, Binder WH. Solvent and catalyst free vitrimeric poly(ionic liquid) electrolytes. RSC Adv 2023; 13:14435-14442. [PMID: 37180003 PMCID: PMC10172824 DOI: 10.1039/d3ra02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer electrolytes (PEs) are a promising alternative to overcome shortcomings of conventional lithium ion batteries (LiBs) and make them safer for users. Introduction of self-healing features in PEs additionally leads to prolonged life-time of LIBs, thus tackling cost and environmental issues. We here present solvent free, self-healable, reprocessable, thermally stable, conductive poly(ionic liquid) (PIL) consisting of pyrrolidinium-based repeating units. PEO-functionalized styrene was used as a co-monomer for improving mechanical properties and introducing pendant OH groups in the polymer backbone to act as a transient crosslinking site for boric acid, leading to the formation of dynamic boronic ester bonds, thus forming a vitrimeric material. Dynamic boronic ester linkages allow reprocessing (at 40 °C), reshaping and self-healing ability of PEs. A series of vitrimeric PILs by varying both monomers ratio and lithium salt (LiTFSI) content was synthesized and characterized. The conductivity reached 10-5 S cm-1 at 50 °C in the optimized composition. Moreover, the PILs rheological properties fit the required melt flow behavior (above 120 °C) for 3D printing via fused deposition modeling (FDM), offering the possibility to design batteries with more complex and diverse architectures.
Collapse
Affiliation(s)
- Zviadi Katcharava
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics, Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 D-06120 Halle Germany
| | - Xiaozhuang Zhou
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics, Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 D-06120 Halle Germany
| | - Rajesh Bhandary
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics, Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 D-06120 Halle Germany
| | - Rene Sattler
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS Walter Hülse Str. 1 D-06120 Halle (Saale) Germany
| | - Heiko Huth
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS Walter Hülse Str. 1 D-06120 Halle (Saale) Germany
| | - Mario Beiner
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS Walter Hülse Str. 1 D-06120 Halle (Saale) Germany
| | - Anja Marinow
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics, Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 D-06120 Halle Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics, Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 D-06120 Halle Germany
| |
Collapse
|
29
|
Pan X, Kochovski Z, Wang YL, Sarhan RM, Härk E, Gupta S, Stojkovikj S, El-Nagar GA, Mayer MT, Schürmann R, Deumer J, Gollwitzer C, Yuan J, Lu Y. Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO 2 electroreduction. J Colloid Interface Sci 2023; 637:408-420. [PMID: 36716665 DOI: 10.1016/j.jcis.2023.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yong-Lei Wang
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Chemistry Department, Faculty of Science, Cairo University, Egypt
| | - Eneli Härk
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Siddharth Gupta
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Sasho Stojkovikj
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Gumaa A El-Nagar
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Chemistry Department, Faculty of Science, Cairo University, Egypt.
| | - Matthew T Mayer
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden.
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
30
|
Yang L, Sun L, Huang H, Zhu W, Wang Y, Wu Z, Neisiany RE, Gu S, You Z. Mechanically Robust and Room Temperature Self-Healing Ionogel Based on Ionic Liquid Inhibited Reversible Reaction of Disulfide Bonds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207527. [PMID: 37127894 PMCID: PMC10369268 DOI: 10.1002/advs.202207527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Although highly desired, it is difficult to develop mechanically robust and room temperature self-healing ionic liquid-based gels (ionogels), which are very promising for next-generation stretchable electronic devices. Herein, it is discovered that the ionic liquid significantly reduces the reversible reaction rate of disulfide bonds without altering its thermodynamic equilibrium constant via small molecule model reaction and activation energy evolution of the dissociation of the dynamic network. This inhibitory effect would reduce the dissociated units in the dynamic polymeric network, beneficial for the strength of the ionogel. Furthermore, aromatic disulfide bonds with high reversibility are embedded in the polyurethane to endow the ionogel with superior room temperature self-healing performance. Isocyanates with an asymmetric alicyclic structure are chosen to provide optimal exchange efficiencies for the embedded disulfide bonds relative to aromatic and linear aliphatic. Carbonyl-rich poly(ethylene-glycol-adipate) diols are selected as soft segments to provide sufficient interaction sites for ionic liquids to endow the ionogel with high transparency, stretchability, and elasticity. Finally, a self-healing ionogel with a tensile strength of 1.65 ± 0.08 MPa is successfully developed, which is significantly higher than all the reported transparent room temperature self-healing ionogel and its application in a 3D printed stretchable numeric keyboard is exemplified.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Wenfan Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Yihan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| |
Collapse
|
31
|
Nosov D, Ronnasi B, Lozinskaya EI, Ponkratov DO, Puchot L, Grysan P, Schmidt DF, Lessard BH, Shaplov AS. Mechanically Robust Poly(ionic liquid) Block Copolymers as Self-Assembling Gating Materials for Single-Walled Carbon-Nanotube-Based Thin-Film Transistors. ACS APPLIED POLYMER MATERIALS 2023; 5:2639-2653. [PMID: 37090422 PMCID: PMC10111415 DOI: 10.1021/acsapm.2c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
The proliferation of high-performance thin-film electronics depends on the development of highly conductive solid-state polymeric materials. We report on the synthesis and properties investigation of well-defined cationic and anionic poly(ionic liquid) AB-C type block copolymers, where the AB block was formed by random copolymerization of highly conductive anionic or cationic monomers with poly(ethylene glycol) methyl ether methacrylate, while the C block was obtained by post-polymerization of 2-phenylethyl methacrylate. The resulting ionic block copolymers were found to self-assemble into a lamellar morphology, exhibiting high ionic conductivity (up to 3.6 × 10-6 S cm-1 at 25 °C) and sufficient electrochemical stability (up to 3.4 V vs Ag+/Ag at 25 °C) as well as enhanced viscoelastic (mechanical) performance (storage modulus up to 3.8 × 105 Pa). The polymers were then tested as separators in two all-solid-state electrochemical devices: parallel plate metal-insulator-metal (MIM) capacitors and thin-film transistors (TFTs). The laboratory-scale truly solid-state MIM capacitors showed the start of electrical double-layer (EDL) formation at ∼103 Hz and high areal capacitance (up to 17.2 μF cm-2). For solid-state TFTs, low hysteresis was observed at 10 Hz due to the completion of EDL formation and the devices were found to have low threshold voltages of -0.3 and 1.1 V for p-type and n-type operations, respectively.
Collapse
Affiliation(s)
- Daniil
R. Nosov
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Department
of Physics and Materials Science, University
of Luxembourg, 2 Avenue
de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Bahar Ronnasi
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Elena I. Lozinskaya
- A.N.
Nesmeyanov Institute of Organoelement Compounds Russian Academy of
Sciences (INEOS RAS), Vavilov str. 28, bld. 1, 119334 Moscow, Russia
| | - Denis O. Ponkratov
- A.N.
Nesmeyanov Institute of Organoelement Compounds Russian Academy of
Sciences (INEOS RAS), Vavilov str. 28, bld. 1, 119334 Moscow, Russia
| | - Laura Puchot
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Patrick Grysan
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Alexander S. Shaplov
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
32
|
Yang J, Chu N, Chen X. Preparation of Polyoxometalate-Based Composite by Solidification of Highly Active Cobalt-Containing Polytungstate on Polymeric Ionic Liquid for the Efficient Isolation of Proteinase K. Molecules 2023; 28:molecules28083307. [PMID: 37110541 PMCID: PMC10142915 DOI: 10.3390/molecules28083307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
A novel porous polyoxometalate (POM)-based composite (Co4PW-PDDVAC) was prepared via the solidification of water-soluble polytungstate (Co4PW) on the polymeric ionic liquid dimethyldodecyl-4-polyethylene benzyl ammonium chloride (PDDVAC) via a cation-exchange reaction. The solidification was confirmed by EDS, SEM, FT-IR, TGA, and so on. The strong covalent coordination and hydrogen-bonding interaction between the highly active Co2+ of the Co4PW and the aspartic acid residues of proteinase K endowed the obtained Co4PW-PDDVAC composite with excellent proteinase K adsorption properties. Thermodynamic investigations indicate that the adsorption behavior of proteinase K was consistent with the linear Langmuir isothermal model, giving an adsorption capacity as high as 1428 mg g-1. The Co4PW-PDDVAC composite was applied in the selective isolation of highly active proteinase K from Tritirachium album Limber crude enzyme fluid.
Collapse
Affiliation(s)
- Jiaxuan Yang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ning Chu
- Bayuquan Customs District of the People's Republic of China, Yingkou 115007, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
33
|
Liu G, Larson RG, Li L, Luo H, He X, Niu Y, Li G. Influence of Chain Entanglement on Rheological and Mechanical Behaviors of Polymerized Ionic Liquids. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
34
|
Wei R, Xiang H, Xie M, Chen G, Zhang X, Zhao C. Programming a Dual-Responsive Switch in Both the Surface and Interior of an Asymmetric Separation Membrane. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
35
|
Wang B, Qiao C, Wang YL, Dong X, Zhang W, Lu Y, Yuan J, Zeng H, Wang H. Multifunctional Underwater Adhesive Film Enabled by a Single-Component Poly(ionic liquid). ACS NANO 2023; 17:5871-5879. [PMID: 36926859 DOI: 10.1021/acsnano.2c12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tremendous efforts have been devoted to exploiting synthetic wet adhesives for real-life applications. However, developing low-cost, robust, and multifunctional wet adhesive materials remains a considerable challenge. Herein, a wet adhesive composed of a single-component poly(ionic liquid) (PIL) that enables fast and robust underwater adhesion is reported. The PIL adhesive film possesses excellent stretchability and flexibility, enabling its anchoring on target substrates regardless of deformation and water scouring. Surface force measurements show the PIL can achieve a maximum adhesion of 56.7 mN·m-1 on diverse substrates (both hydrophilic and hydrophobic substrates) in aqueous media, within ∼30 s after being applied. The adhesion mechanisms of the PIL were revealed via the force measurements, and its robust wet adhesive capacity was ascribed to the synergy of different non-covalent interactions, such as of hydrogen bonding, cation-π, electrostatic, and van der Waals interactions. Surprisingly, this PIL adhesive film exhibited impressive underwater sound absorption capacity. The absorption coefficient of a 0.7 mm-thick PIL film to 4-30 kHz sound waves could be as high as 0.80-0.92. This work reports a multifunctional PIL wet adhesive that has promising applications in many areas and provides deep insights into interfacial interaction mechanisms underlying the wet adhesion capability of PILs.
Collapse
Affiliation(s)
- Binmin Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Xiaoxiao Dong
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yan Lu
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
36
|
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023; 52:2497-2527. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Nayli Erdeanna Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
37
|
Mesoporous Polymeric Ionic Liquid via Confined Polymerization for Laccase Immobilization towards Efficient Degradation of Phenolic Pollutants. Molecules 2023; 28:molecules28062569. [PMID: 36985542 PMCID: PMC10059984 DOI: 10.3390/molecules28062569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Laccase immobilization is a promising method that can be used for the recyclable treatment of refractory phenolic pollutants (e.g., chlorophenols) under mild conditions, but the method is still hindered by the trade-off limits of supports in terms of their high specific surface area and rich functional groups. Herein, confined polymerization was applied to create abundant amino-functionalized polymeric ionic liquids (PILs) featuring a highly specific surface area and mesoporous structure for chemically immobilizing laccase. Benefiting from this strategy, the specific surface area of the as-synthesized PILs was significantly increased by 60-fold, from 5 to 302 m2/g. Further, a maximum activity recovery of 82% towards laccase was recorded. The tolerance and circulation of the immobilized laccase under harsh operating conditions were significantly improved, and the immobilized laccase retained more than 84% of its initial activity after 15 days. After 10 cycles, the immobilized laccase was still able to maintain 80% of its activity. Compared with the free laccase, the immobilized laccase exhibited enhanced stability in the biodegradation of 2,4-dichlorophenol (2,4-DCP), recording around 80% (seven cycles) efficiency. It is proposed that the synergistic effect between PILs and laccase plays an important role in the enhancement of stability and activity in phenolic pollutant degradation. This work provides a strategy for the development of synthetic methods for PILs and the improvement of immobilized laccase stability.
Collapse
|
38
|
Zhang YJ, Wu H, Tan LX, Wei Y, Ren JJ, Li YJ, Yu XD, Sun JK. Conjugated Poly(ionic liquid)-Based Nanoporous Membrane for Rapid Moisture Response. Macromol Rapid Commun 2023; 44:e2200846. [PMID: 36573846 DOI: 10.1002/marc.202200846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive nanoporous materials represent a newly emerging category of functional materials, for which instant and significant response behavior is strongly demanded but still challenging. Herein, a new kind of conjugated poly(ionic liquid)s (PILs) synthesized via a simple one-pot spontaneous nucleophilic substitution and polymerization between 4,4'-vinylenedipyridine and propargyl bromide is reported. A nanoporous membrane actuator is further developed via ionic complexation between the current PIL and trimesic acid. The actuator carries a gradient density in the hydrophobicity content along the membrane cross-section, which results in a fast response to moisture.
Collapse
Affiliation(s)
- Ya-Jun Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Hao Wu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Liang-Xiao Tan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yi Wei
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Ju-Jie Ren
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Ya-Juan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Xu-Dong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
39
|
Park HG, Son YK, Kim J, Lee JS. Dual-effect-assisted cross-linkable poly(N-allyl-vinylimidazolium) ·TFSI− as alternative electrode binder of lithium-ion battery. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
40
|
Chae W, Kim B, Ryoo WS, Earmme T. A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-ion Polymer Batteries. Polymers (Basel) 2023; 15:polym15040803. [PMID: 36850085 PMCID: PMC9964471 DOI: 10.3390/polym15040803] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Polymer electrolytes (PEs) have been thoroughly investigated due to their advantages that can prevent severe problems of Li-ion batteries, such as electrolyte leakage, flammability, and lithium dendrite growth to enhance thermal and electrochemical stabilities. Gel polymer electrolytes (GPEs) using in situ polymerization are typically prepared by thermal or UV curing methods by initially impregnating liquid precursors inside the electrode. The in situ method can resolve insufficient interfacial problems between electrode and electrolyte compared with the ex situ method, which could led to a poor cycle performance due to high interfacial resistance. In addition to the abovementioned advantage, it can enhance the form factor of bare cells since the precursor can be injected before polymerization prior to the solidification of the desired shapes. These suggest that gel polymer electrolytes prepared by in situ polymerization are a promising material for lithium-ion batteries.
Collapse
|
41
|
Fang Z, Deng Q, Zhou Y, Fu X, Yi J, Wu L, Dai Q, Yang Y. Pendant Length-Dependent Electrochemical Performances for Conjugated Organic Polymers as Solid-State Polymer Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5283-5292. [PMID: 36691802 DOI: 10.1021/acsami.2c20127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of solid-state polymer electrolytes (SPEs) has been plagued by poor ionic conductivity, low ionic transference number, and limited electrochemical potential window. The exploitation of ionized SPEs is a feasible avenue to solve this problem. Herein, conjugated organic polymers (COPs) with excellent designability and rich pore structures have been selected as platforms for exploration. Three cationic COPs with different chain lengths of quaternary ammonium salts (CbzT@Cx, x = 4, 6, 9) are designed and applied to SPEs for the first time. Meanwhile, the effects of chain lengths on their electrochemical performances are compared. Especially, CbzT@C9 shows the most attractive electrochemical performance due to its high specific surface area of 212.3 m2 g-1. The larger specific surface area allows more exposure of the long-chain quaternary ammonium cation groups, which is more favorable for the dissociation of lithium salts. Moreover, the flexible long-chain structure increases the compatibility with poly(ethylene oxide) (PEO) and reduces the crystallinity of PEO to some extent. The richer pore structure can accommodate more PEO, further disrupting the crystallinity of PEO and creating more channels for the ether-oxygen chain to transport lithium ions. At 60 °C, the SPE (CbzTM@C9) presents an excellent ionic conductivity (σ) of 8.00 × 10-4 S cm-1. CbzTM@C9 has a lithium-ion transference number (tLi+) of 0.48. Thus, the assembled Li/CbzTM@C9/LiFePO4 battery provides a good discharge capacity of 158.8 mAh g-1 at 0.1C. After 70 cycles, the capacity retention rate is 93.8% with a Coulombic efficiency of 98%. The excellent flexibility brings stable power supply capability under various bending angles to the assembled Li/CbzTM@C9/LiFePO4 soft-packed battery. The project uses conjugated organic polymers in SPEs and creates an avenue to develop flexible energy storage equipment.
Collapse
Affiliation(s)
- Zhao Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yang Zhou
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing401120, P. R. China
| | - Xiaolong Fu
- Xi'an Modern Chemistry Research Institute, Xi'an710065, Shannxi, P. R. China
| | - Jiacheng Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Lizhi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qingyang Dai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|
42
|
Patra I, Abdul Rida Musa D, Solanki R, Fakri Mustafa Y, Ziyatovna Yakhshieva Z, Hadi JM, Kazemnejadi M. Introduction of versatile and recyclable network poly (ionic liquid)s as an efficient solvent with desired properties for application in C-C cross-coupling reactions. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
43
|
Li S, Lindsey H, Mannari V, Texter J. Liquid Polymerized Ionic Liquids for Energy Storage Applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
44
|
Sims SM, Brown H, Hunter JR, Johnson RD, Whittaker RE, Miller KM. PAEK- and PES-like perarylated phosphonium ionenes: Synthesis, thermal properties, and conductivity. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
45
|
Jiang D, He Y, Zhang J, Yin J, Ding J, Wang S, Li H. Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Hernández SI, Altava B, Portillo-Rodríguez JA, Santamaría-Holek I, García-Alcántara C, Luis SV, Compañ V. The Debye length and anionic transport properties of composite membranes based on supported ionic liquid-like phases (SILLPS). Phys Chem Chem Phys 2022; 24:29731-29746. [PMID: 36458515 DOI: 10.1039/d2cp01519f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An analysis of the ionic transport properties of BMIM [NTf2] in supported ionic-liquid-like phase (SILLP)-based membranes has been carried out based on experimental impedance spectroscopy measurements. The direct current (dc)-conductivity was analyzed to determine the temperature and frequency dependence. The fit of the loss tangent curve data with the Cole-Cole approximation of the electrode polarization model provides the conductivity, diffusivity, and density of charge carriers. Among these quantities, a significant increase in conductivity is observed when an ionic liquid is added to the polymeric matrix containing imidazolium fragments. The use of a recent generalization of Eyring's absolute rate theory allowed the elucidation of how the local entropy restrictions, due to the porosity of the polymeric matrix, control the conductive process. The fit of the conductivity data as a function of temperature manifests the behavior of the excess entropy with respect to the temperature. The activation entropy and enthalpy were also determined. Our results correlate the Debye length (LD) with the experimental values of conductivity, electrode polarization relaxation time, and sample relaxation time involved. Our work provides novel insights into the description of ionic transport in membranes as the diffusivity, mobility, and free charge density depend on the LD. Moreover, we discuss the behavior of the polarization relaxation time, the sample relaxation time, and the static permittivity as a function of the temperature.
Collapse
Affiliation(s)
- S I Hernández
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, CP 76230, Mexico.
| | - Belen Altava
- Departamento de Química Orgánica, Universitat Jaume I, 12080-Castellón de la Plana, Spain.
| | - J A Portillo-Rodríguez
- Facultad de Ingeniería, Universidad Autónoma de Quéretaro, Cerro de las Campanas s/n, Centro Universitario, C.P. 760009, Querétaro, Mexico.
| | - Iván Santamaría-Holek
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, CP 76230, Mexico.
| | - C García-Alcántara
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, CP 76230, Mexico.
| | - Santiago V Luis
- Departamento de Química Orgánica, Universitat Jaume I, 12080-Castellón de la Plana, Spain.
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada, Universitat Politécnica de Valencia, C/Camino de Vera s/n, 46022-Valencia, Spain.
| |
Collapse
|
47
|
Xue B, Zhao X, Yin J. Electrorheological and dielectric analysis of self-crosslinked poly(ionic liquid)s with different flexible chain spacer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing. Polymers (Basel) 2022; 14:polym14235121. [PMID: 36501514 PMCID: PMC9735564 DOI: 10.3390/polym14235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Innovation in materials specially formulated for additive manufacturing is of great interest and can generate new opportunities for designing cost-effective smart materials for next-generation devices and engineering applications. Nevertheless, advanced molecular and nanostructured systems are frequently not possible to integrate into 3D printable materials, thus limiting their technological transferability. In some cases, this challenge can be overcome using polymeric macromolecules of ionic nature, such as polymeric ionic liquids (PILs). Due to their tuneability, wide variety in molecular composition, and macromolecular architecture, they show a remarkable ability to stabilize molecular and nanostructured materials. The technology resulting from 3D-printable PIL-based formulations represents an untapped array of potential applications, including optoelectronic, antimicrobial, catalysis, photoactive, conductive, and redox applications.
Collapse
|
49
|
Reddy AVB, Rafiq R, Ahmad A, Maulud AS, Moniruzzaman M. Cross-Linked Ionic Liquid Polymer for the Effective Removal of Ionic Dyes from Aqueous Systems: Investigation of Kinetics and Adsorption Isotherms. Molecules 2022; 27:molecules27227775. [PMID: 36431876 PMCID: PMC9694219 DOI: 10.3390/molecules27227775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyes—methylene blue and orange-II—from aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.
Collapse
Affiliation(s)
| | - Rehan Rafiq
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Aqeel Ahmad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Abdulhalim Shah Maulud
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence:
| |
Collapse
|
50
|
Lee SS, Sharipov M, Kim WJ, Lee YI. Turn Off-On Fluorescent CO 2 Gas Detection Based on Amine-Functionalized Imidazole-Based Poly(ionic liquid). ACS OMEGA 2022; 7:40485-40492. [PMID: 36385837 PMCID: PMC9648106 DOI: 10.1021/acsomega.2c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Poly(ionic liquids) (PILs) have been widely used for CO2 capture because their characteristics resemble those of an ionic liquid, yet they have properties typically associated with polymers. We studied the application of the amine-functionalized poly(vinylimidazole)-based PIL (PVIm-NH2) as a chemosensor. The PVIm-NH2 was successfully prepared by a facile and low-cost method and was characterized by several analytical techniques: proton nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), and spectrofluorometry. The ability of PVIm-NH2 to detect CO2 gas was evaluated in the presence of triethylamine (TEA). Under optimized conditions, the detection limit was calculated to be 2.86 × 10-3 M with R 2 = 0.9906. Moreover, theoretical and experimental studies suggested a plausible mechanism whereby PVIm-NH2 generates N-heterocyclic carbenes (NHCs) in the presence of TEA, which further reacts with CO2 gas in aqueous media to form a carboxylic acid. Analysis of PVIm-NH2 before and after the addition of TEA using the 1H NMR technique showed the disappearance of the proton peak, thus suggesting a successful generation of NHC. Further analysis via 13C NMR revealed the reaction of CO2 and NHC to form a carboxylic acid group. Finally, we demonstrated that PIL is a promising candidate as a chemosensor through diverse structural modifications.
Collapse
Affiliation(s)
- Seong-Soo Lee
- Department
of Chemistry, Changwon National University, Changwon51140, Republic of Korea
| | - Mirkomil Sharipov
- Department
of Chemistry, Changwon National University, Changwon51140, Republic of Korea
| | - Won June Kim
- Department
of Chemistry, Changwon National University, Changwon51140, Republic of Korea
| | - Yong-Ill Lee
- Department
of Chemistry, Changwon National University, Changwon51140, Republic of Korea
- Faculty
of Chemical Engineering, Industrial University
of Ho Chi Minh City, Ho Chi Minh
City71408, Vietnam
| |
Collapse
|