1
|
Guajardo-Maturana R, Rodríguez-Kessler PL, Muñoz-Castro A. Insights into the Planarization of Benzo-Thianthrene Rings: Relevance of Electronic and Steric Effects with Resulting Aromatic Properties. J Phys Chem A 2025. [PMID: 39853113 DOI: 10.1021/acs.jpca.4c06257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Covalent-organic frameworks (COFs) are useful architectures for two- (2D) and three-dimensional (3D) active materials. Recently, the characterization of the nonplanar benzo[5,6][1,4]dithiino[2,3-b]thianthrene-6,13-dicarbonitrile (bTEpCN), as a prototypical section of 2D COFs, enables further understanding of the properties on such extended networks. Upon adsorption on the Au(111) surface, planarization of bTEpCN is achieved. Here, we explore the factors driven by such an observation, driven by the increase in the destabilizing steric effect when going from the favored nonplanar to planar conformation. Interestingly, upon mono-oxidation, such a preference is reversed, favoring a planar conformation, revealing the key role of charge release from bTEpCN in reaching the planar conformation.
Collapse
Affiliation(s)
- Raul Guajardo-Maturana
- Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK) Chile, Universidad SEK, Fernando Manterola 0789, Providencia, Santiago 8370146, Chile
| | - Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato 37150, Mexico
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| |
Collapse
|
2
|
Gu Y, Xiang F, Liang Y, Bai P, Qiu Z, Chen Q, Narita A, Xie Y, Fasel R, Müllen K. A Poly(2,7-anthrylene) with peri-Fused Porphyrin Edges. Angew Chem Int Ed Engl 2025; 64:e202417129. [PMID: 39449108 DOI: 10.1002/anie.202417129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Anthracene has served as an important building block of conjugated polymers with the connecting positions playing a crucial role for the electronic structures. Herein, anthracene units have been coupled through their 2,7-carbons to develop an unprecedented, conjugated polymer, namely, poly(2,7-anthrylene) featuring additional peri-fused porphyrin edges. The synthesis starts from a 2,7-dibromo-9-nickel(II) porphyrinyl-anthracene as the pivotal precursor. Polymerization is achieved by an AA-type Yamamoto coupling, followed by a polymer-analogous oxidative cyclodehydrogenation to obtain a peri-fusion between porphyrin and anthracene moieties. Although further cyclodehydrogenation between the repeating units cannot be achieved in solution, the thermal treatment of the precursor polymer derived from 2,7-dibromo-9-porphyrinyl-anthracene on a metal surface realizes the full cyclodehydrogenation. The difference between solution and on-surface reactivity can be rationalized by the larger dihedral angle between repeat units in solution, which is reduced under the pronounced interaction with the metal surface. The peri-fusion in the title polymer gives rise to a narrow electronic band gap optical absorptions extending far into the near-infrared region. Oligomeric models are synthesized as well to support the analyses of the electronic and photophysical properties.
Collapse
Affiliation(s)
- Yanwei Gu
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Feifei Xiang
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Yamei Liang
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Peizhi Bai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hongkong, Shenzhen (CUHK-Shenzhen, Guangdong, 518172, P.R. China
| | - Qiang Chen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Klaus Müllen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
3
|
Ali M, Ewenike RB, Manion JG, Lessard BH. Two Is Better than One: How the Addition of Multiple Biodegradable Polymers Can Improve Organic Thin-Film Transistor Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1734-1742. [PMID: 39706816 DOI: 10.1021/acsami.4c17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Developing sustainable electronics requires using materials that are either recyclable or biodegradable, without compromising on electrical performance. Here, we introduce a solution-processed biodegradable polymer blend consisting of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) and different mixtures of two biodegradable polymers, polycaprolactone (PCL) and polylactic acid (PLA). We find that controlling the ratio of components enables a reduction in semiconductor polymer loading (∼70:80% reduction) while maintaining or improving field-effect transistor performance. At a ratio of 30 wt % DPP2T versus 70 wt % PLA and PCL (56:14 ratio), DPP2T self-assembled and crystallized inside the biodegradable polymer matrix, exhibiting a high field-effect mobility (0.18 cm2 V-1 s-1), a reduced threshold voltage (∼17 V), and a high on/off ratio (∼106). This study demonstrates that performance does not need to be sacrificed for biodegradability.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Raluchukwu B Ewenike
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Joseph G Manion
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Griffrith C, Krul SE, Hoehn SJ, Phan T, Crespo‐Hernández CE. Structural and Electronic Factors Controlling the Efficiency and Rate of Intersystem Crossing to the Triplet State in Thiophene Polycyclic Derivatives. Chemistry 2024; 30:e202402721. [PMID: 39185738 PMCID: PMC11618044 DOI: 10.1002/chem.202402721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Thiophene polycyclic derivatives are widely used in organic light-emitting diodes, photovoltaics, and medicinal chemistry applications. Understanding the electronic and structural factors controlling their intersystem crossing rates is paramount for these applications to be successful. This study investigates the photophysical, electronic structure, and excited state dynamics of 1,2-benzodiphenylene sulfide, benzo[b]naphtho[1,2-d]thiophene, and benzo[b]naphtho[2,3-d]thiophene in polar aprotic and non-polar solvents. Steady-state absorption and emission spectroscopy, femtosecond transient absorption spectroscopy, and DFT and TD-DFT calculations are employed. Low fluorescence quantum yields of 1.2 to 2.7 % are measured in acetonitrile and cyclohexene, evidencing that the primary relaxation pathways in these thiophene derivatives are nonradiative. Linear interpolation of internal coordinates calculations predict that an S-C bond elongation reaction coordinate facilitates the efficient intersystem crossing to the T1 state. Excitation of 1,2-benzodiphenylene sulfide and benzo[b]naphtho[1,2-d]thiophene at 350 nm or benzo[b]naphtho[2,3-d]thiophene at 365 nm, populates the lowest-energy 1ππ* state, which relaxes to the 1ππ* minimum in tens of picoseconds or intersystem crosses to the triplet manifold in ca. 500 ps to 1.1 ns depending on the position at which the benzene rings are added. Excitation at 266 nm does not affect the intersystem crossing rates. Laser photodegradation experiments demonstrate that the thiophene polycyclic derivatives are highly photostable.
Collapse
Affiliation(s)
- Cameron Griffrith
- Department of ChemistryCase Western Reserve UniversityCleveland, Ohio44106USA
| | - Sarah E. Krul
- Department of ChemistryCase Western Reserve UniversityCleveland, Ohio44106USA
| | - Sean J. Hoehn
- Department of ChemistryCase Western Reserve UniversityCleveland, Ohio44106USA
| | - Tram Phan
- Department of ChemistryCase Western Reserve UniversityCleveland, Ohio44106USA
| | | |
Collapse
|
5
|
Li Y, He Z, Li Y, Cao D, Cheng X, Shi Z, Duan H, Feng A, Wang S, Xie J, Yan X. Polymer colloidal motors with photodynamic-regulated propulsion. J Colloid Interface Sci 2024; 675:64-73. [PMID: 38964125 DOI: 10.1016/j.jcis.2024.06.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Artificial colloidal motors capable of converting various external energy into mechanical motion, have emerged as attractive photosensitizer (PS) nanocarriers with good deliverability for photodynamic therapy. However, photoactivated 3O2-to-1O2 transformation as the most crucial energy transfer of the photodynamic process itself is still challenging to convert into autonomous transport. Herein, we report on PS-loaded thiophane-containing semiconducting conjugated polymer (SCP)-based polymer colloidal motors with asymmetric geometry for photodynamic-regulated propulsion in the liquid. The asymmetrical presence of the SCP phases within the colloidal motors would lead to significant differences in the 3O2-to-1O2 transformation and 1O2 release manners between asymmetrical polymer phases, spontaneously creating asymmetrical osmotic pressure gradients across the nanoparticles for powering the self-propelled motion under photodynamic regulation. This photoactivated energy-converting behavior can be also combined with the photothermal conversion of the SCP phases to create two energy gradients exerting diffusiophoretic/thermophoretic force on the colloidal motors for achieving multimode synergistic propulsion. This unique motile feature endows the light-driven PS nanocarriers with good permeability against various physiological barriers in the tumor microenvironment for enhancing antitumor efficacy, showing great potential in phototherapy.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaoxia He
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yun Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongsheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xie Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiqing Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiyan Duan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ao Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Bharathi KD, Mohanakrishnan AK. Serendipitous synthesis of phenanthrene derivatives by exploiting electrocyclization during thermolysis of Diels-Alder intermediate dihydrodibenzothiophene- S, S-dioxides. Chem Commun (Camb) 2024; 60:13590-13593. [PMID: 39485090 DOI: 10.1039/d4cc04572f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Diels-Alder reaction of tetraaryl cyclopentadienones with benzo[b]thiophene-S,S-dioxides in nitrobenzene under reflux led to the formation of aryl/hetero-aryl fused phenanthrene derivatives via SO2 elimination of the intermediate dihydrodibenzothiophene-S,S-dioxides followed by 6π-electrocyclization and subsequent aromatization. The 6π-electrocyclization methodology was found to be applicable for assembling a wide variety of phenanthrene derivatives in good to moderate yields.
Collapse
Affiliation(s)
- Kabali Divya Bharathi
- Department of Organic Chemistry, School of Chemical Sciences, University of Madras Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | - Arasambattu K Mohanakrishnan
- Department of Organic Chemistry, School of Chemical Sciences, University of Madras Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|
7
|
Hamblin RL, Zhang Z, DuBay KH. Characteristic System Time Scales Can Influence the Collective Sequence Development of Nematically Ordered Copolymers. Macromolecules 2024; 57:9984-9998. [PMID: 39552814 PMCID: PMC11562797 DOI: 10.1021/acs.macromol.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024]
Abstract
The sequence of copolymers is of significant importance to their material properties, yet controlling the copolymer sequence remains a challenge. Previously, we have shown that polymer chains with sufficient stiffness and intermolecular attractions can undergo an emergent, polymerization-driven nematic alignment of nascent oligomers during a step-growth polymerization process. Both the extent of alignment and the point in the reaction at which it occurs impact the kinetics and the sequence development of the growing polymer. Of particular interest is the emergence of a characteristic block length in the ensemble of sequences, resulting in unusually peaked block length distributions. Here we explore the emergence of this characteristic block length over time and investigate how changes in activation energy, solution viscosity, and monomer density influence the sequence and block length distributions of stiff copolymers undergoing step-growth polymerization. We find that emergent aggregation and nematic ordering restrict the availability of longer chains to form bonds, thereby altering the propensity of chains to react in a length dependent fashion, which changes as the reaction progresses, and promoting the formation of chains and blocks of a characteristic length. Further, we demonstrate that the characteristic length scale which emerges is sensitive to the relative time scales of reaction kinetics and reactant diffusion, shifting in response to changes in the activation energy of the reaction and the viscosity of the solvent. Our observations suggest the potential for biasing characteristic lengths of sequence repeats in stiff and semiflexible copolymer systems by targeting specific nonbonded interactions and reaction kinetics through the informed adjustment of reaction conditions and the selection or chemical modification of monomer species.
Collapse
Affiliation(s)
- Ryan L. Hamblin
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Zhongmin Zhang
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Kateri H. DuBay
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
8
|
Jasmin Finkelmeyer S, Mankel C, Ansay G, Elmanova A, Zechel S, Martin D Hager, Schubert US, Presselt M. Filling the gaps: Introducing plasticizers into π-conjugated OPE-NH 2 Langmuir layers for defect-free anisotropic interfaces and membranes towards unidirectional mass, charge, or energy transfer. J Colloid Interface Sci 2024; 680:1090-1100. [PMID: 39591772 DOI: 10.1016/j.jcis.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
The construction of ultrathin membranes from linearly aligned π-electron systems is advantageous for targeted energy, charge, or mass transfer. The Langmuir-Blodgett (LB) technique enables the creation of such membranes, especially with amphiphilic π-electron systems. However, these systems often aggregate, forming rigid Langmuir monolayers with defects or holes. In this study we introduce plasticizers to effectively address this issue. To create anisotropic membranes, we used an oligo(phenylene ethynylene) derivative (OPE-NH2) as an linear amphiphile and bisphenol A di-tert-butyl ester (BPAE) as a plasticizer. We analyzed surface pressure (mean molecular area) (Π(mma)) isotherms and characterized Langmuir monolayers with Brewster Angle Microscopy (BAM), to determine the optimal miscibility of OPE-NH2 with BPAE. Detailed analysis of hole areas filled was performed through image binarization. We identified an optimal BPAE concentration of 4 mol-% in the OPE-NH2 Langmuir monolayer. Our BAM image evaluation via binarization determined the difference between the mean molecular areas of close-packed Langmuir domains and those quantified via the Π(mma) isotherm. This study presents an automated method for BAM image analysis and a new approach for fabricating defect-free anisotropic molecular monolayers of π-conjugated amphiphiles.
Collapse
Affiliation(s)
| | - Charlotte Mankel
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Genevieve Ansay
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; The University of Chicago, Chicago, IL 60637, USA.
| | - Anna Elmanova
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany.
| | - Stefan Zechel
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Martin D Hager
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Helmholtz Institute for Polymers in Energy Application Jena (HIPOLE Jena), Lessingstrasse 12-14, 07743 Jena, Germany.
| | - Ulrich S Schubert
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Helmholtz Institute for Polymers in Energy Application Jena (HIPOLE Jena), Lessingstrasse 12-14, 07743 Jena, Germany.
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany.
| |
Collapse
|
9
|
Garo J, Nicolini T, Sotiropoulos JM, Raimundo JM. Tuning the Electronic Properties of Bridged Dithienyl-, Difuryl-, Dipyrrolyl-Vinylene as Precursors of Small-Bandgap Conjugated Polymer. Chemistry 2024; 30:e202402461. [PMID: 39136579 DOI: 10.1002/chem.202402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 09/25/2024]
Abstract
Optoelectronic properties of linear π-conjugated polymers/oligomers are of great importance for the fabrication of organic photonic and electronic devices. To this end, the π-conjugated polymers/oligomers need to meet both optoelectronic and key structural properties in order to fulfill their implementation as active components. In particular, they need to possess low bandgap and high thermal, conformational, and photochemical stabilities. So far, several strategies have been developed to attain such requirements including the covalent and non-covalent rigidification concepts of the π-conjugated systems. On the basis of these findings, we describe herein the theoretical studies of novel series of covalently bridged derivatives demonstrating the benefits of the strategy. Comparison of these derivatives with compounds previously described in the literature highlights enhanced optoelectronic properties and behaviors that would be beneficial for the construction and development of new linear π-conjugated polymers.
Collapse
Affiliation(s)
- Jordan Garo
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 5254, Pau, France
| | | | | | | |
Collapse
|
10
|
Griffith C, Mao E, Hoehn SJ, Krul SE, Crespo-Hernández CE. Carbon-sulfur bond elongation as the promoting reaction coordinate in the efficient sub-nanosecond intersystem crossing in thianaphthene derivatives. Phys Chem Chem Phys 2024; 26:23457-23467. [PMID: 39221604 DOI: 10.1039/d4cp02849j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Thiophene derivatives have become integral to OLEDs, photovoltaics, and photodynamic therapy research. A deeper understanding of their excited state dynamics and electronic relaxation mechanisms is expected to provide important physical insights of direct relevance for these applications. In this study, thianaphthene (TN), 2-methylbenzothiophene (2MBT), and 3-methylbenzothiophene (3MBT) are investigated using femtosecond broadband transient absorption and steady-state spectroscopy techniques along with time-dependent density functional calculations in cyclohexane and acetonitrile. The photophysical properties and electronic relaxation mechanisms of these derivatives are elucidated. Small fluorescence quantum yields ranging from 0.4 to 1.1% are measured. It is demonstrated that excitation of TN at 290 nm leads primarily to intersystem crossing to the triplet manifold with a lifetime of 400 ± 15 ps in either solvent, whereas four- to twofold shorter intersystem crossing lifetimes are measured for 2MBT and 3MBT depending on whether cyclohexane or acetonitrile is used. Linear interpolation of internal coordinates evidence that elongation of the S-C bonds enables ultrafast intersystem crossing in these thiophene derivatives involving singlet and triplet states with ππ* and πσ* characters. Excitation at 266 nm results in an additional 5 ± 1 ps lifetime, which is assigned to intramolecular vibrational relaxation dynamics occurring in the excited singlet state.
Collapse
Affiliation(s)
- Cameron Griffith
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Erqian Mao
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Sarah E Krul
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
11
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Adusei EBA, Casetti VT, Goldsmith CD, Caswell M, Alinj D, Park J, Zeller M, Rusakov AA, Kinney ZJ. Bent naphthodithiophenes: synthesis and characterization of isomeric fluorophores. RSC Adv 2024; 14:25120-25129. [PMID: 39139244 PMCID: PMC11318266 DOI: 10.1039/d4ra04850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Thiophene-containing heteroarenes are one of the most well-known classes of π-conjugated building blocks for photoactive molecules. Isomeric naphthodithiophenes (NDTs) are at the forefront of this research area due to their straightforward synthesis and derivatization. Notably, NDT geometries that are bent - such as naphtho[2,1-b:3,4-b']dithiophene (α-NDT) and naphtho[1,2-b:4,3-b']dithiophene (β-NDT) - are seldom employed as photoactive small molecules. This report investigates how remote substituents impact the photophysical properties of isomeric α- and β-NDTs. The orientation of the thiophene units plays a critical role in the emission: in the α(OHex)R2 series conjugation from the end-caps to the NDT core is apparent, while in the β(Oi-Pent)R2 series minimal change is observed unless strong electron acceptors, such as β(Oi-Pent)(PhCF3)2, are employed. This push-pull acceptor-donor-acceptor (A-D-A) fluorophore exhibits positive fluorosolvatochromism that correlates with increasing solvent polarity parameter, E T(30). In total, these results highlight how remote substituents are able to modulate the emission of isomeric bent NDTs.
Collapse
Affiliation(s)
- Emmanuel B A Adusei
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Vincent T Casetti
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Calvin D Goldsmith
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Madison Caswell
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Drecila Alinj
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Jimin Park
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Matthias Zeller
- Department of Chemistry, Purdue University West Lafayette Indiana USA
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| | - Zacharias J Kinney
- Department of Chemistry, Oakland University Rochester Michigan USA +1-248-370-2347
| |
Collapse
|
13
|
Gon M, Morisaki Y, Tanimura K, Tanaka K. Preparation of seven-coordinated hypervalent tin(IV)-fused azobenzene and applications for stimuli-responsive π-conjugated polymer films. Dalton Trans 2024; 53:11858-11866. [PMID: 38949783 DOI: 10.1039/d4dt01738b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Heavy atoms can form highly coordinated states, and their optical properties have attracted much attention. Recently, we have demonstrated that a reversible coordination-number shift of hypervalent tin(IV) from five to six can provide predictable hypsochromic shifts in light absorption and emission properties in small molecules and a π-conjugated polymer film. Herein, we show the preparation of seven-coordinated tin and reveal that the binding constant of the seven coordination with ethylenediamine (EDA, K = 2900 M-1) is 200 times higher than that of six coordination with propylamine (PA, K = 14 M-1) owing to the chelate effect. Moreover, reversible vapochromism of the π-conjugated polymer film was observed upon exposure (λabs = 598 nm and λPL = 697 nm) and desorption (λabs = 641 nm and λPL = 702 nm) of EDA vapor. Furthermore, as a unique demonstration, the thermochromic film was prepared by fixing the seven coordination as the initial state using 1,10-phenanthroline. These optical variations are predictable by quantum chemical calculations. Our findings are valuable for the development of designable and controllable stimuli-responsive materials focusing on the inherent properties of the elements.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yusuke Morisaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kazuya Tanimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
He Y, Luscombe CK. Quantitative comparison of the copolymerisation kinetics in catalyst-transfer copolymerisation to synthesise polythiophenes. Polym Chem 2024; 15:2598-2605. [PMID: 38933685 PMCID: PMC11197037 DOI: 10.1039/d4py00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Polythiophenes are one of the most widely studied conjugated polymers. With the discovery of the chain mechanism of Kumada catalyst-transfer polymerisation (KCTP), various polythiophene copolymer structures, such as random, block, and gradient copolymers, have been synthesized via batch or semi-batch (sequential addition) methods. However, the lack of quantitative kinetic data for thiophene monomers brings challenges to experimental design and structure prediction when synthesizing the copolymers. In this study, the reactivity ratios and the polymerisation rate constants of 3-hexylthiophene with 4 thiophene comonomers in KCTP are measured by adapting the Mayo-Lewis equation and the first-order kinetic behaviour of chain polymerisation. The obtained kinetic information highlights the impact of the monomer structure on the reactivity in the copolymerisations. The kinetic data are used to predict the copolymer structure of equimolar batch copolymerisations of the 4 thiophene derivatives with 3-hexylthiophene, with the experimental data agreeing well with the predictions. 3-Dodecylthiophene and 3-(6-bromo)hexylthiophene, which have higher structural similarity to 3-hexylthiophene, show nearly equivalent reactivity to 3-hexylthiophene and give random copolymers in the batch copolymerisation. 3-(2-Ethylhexyl)thiophene with a branched side chain is less reactive compared to 3-hexylthiophene and failed to homopolymerize at room temperature, but produced gradient copolymers with 3-hexylthiophene. Finally, the bulkiest 3-(4-octylphenyl)thiophene, despite its ability to homopolymerize, failed to maintain chain polymerisation in the copolymerisation with 3-hexylthiophene, possibly due to the large steric hindrance caused by the phenyl ring directly attached to the thiophene center. This study highlights the importance of monomer structures in copolymerisations and the need for accurate kinetic data.
Collapse
Affiliation(s)
- Yifei He
- Department of Materials Science and Engineering, University of Washington Seattle USA
| | - Christine K Luscombe
- Pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Okinawa Japan
| |
Collapse
|
15
|
Zhang L, Wang Z, Song Z. Synthesis of Benzo[ a]carbazoles and Dibenzo[ c, g]carbazoles via Sequential Gold Catalysis and Photomediated Cyclization. J Org Chem 2024; 89:8888-8895. [PMID: 38818883 DOI: 10.1021/acs.joc.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we report a reaction protocol for the construction of benzo[a]carbazole and dibenzo[c,g]carbazole frameworks. The detailed gold catalytic reaction conditions developed for the challenging intermolecular carbon nucleophilic addition to internal alkynes are realized, giving the desired alkyne hydroarylation products in good yields. The resulting trisubstituted alkenes are able to undergo photomediated cyclization, furnishing the desired carbazole molecules with excellent yields and high efficiency.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| | - Zhuo Wang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| |
Collapse
|
16
|
Ayuso-Carrillo J, Fina F, Galleposo EC, Ferreira RR, Mondal PK, Ward BD, Bonifazi D. One-Step Catalyst-Transfer Macrocyclization: Expanding the Chemical Space of Azaparacyclophanes. J Am Chem Soc 2024; 146:16440-16457. [PMID: 38848549 PMCID: PMC11191698 DOI: 10.1021/jacs.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
In this paper, we report on a one-step catalyst-transfer macrocyclization (CTM) reaction, based on the Pd-catalyzed Buchwald-Hartwig cross-coupling reaction, selectively affording only cyclic structures. This route offers a versatile and efficient approach to synthesize aza[1n]paracyclophanes (APCs) featuring diverse functionalities and lumens. The method operates at mild reaction temperatures (40 °C) and short reaction times (∼2 h), delivering excellent isolated yields (>75% macrocycles) and up to 30% of a 6-membered cyclophane, all under nonhigh-dilution concentrations (35-350 mM). Structural insights into APCs reveal variations in product distribution based on different endocyclic substituents, with steric properties of exocyclic substituents having minimal influence on the macrocyclization. Aryl-type endocyclic substituents predominantly yield 6-membered macrocycles, while polycyclic aromatic units such as fluorene and carbazole favor 4-membered species. Experimental and computational studies support a proposed mechanism of ring-walking catalyst transfer that promotes the macrocycle formation. It has been found that the macrocyclization is driven by the formation of cyclic conformers during the oligomerization step favoring an intramolecular C-N bond formation that, depending on the cycle size, hinges on either preorganization effect or kinetic increase of the reductive elimination step or a combination of the two. The CTM process exhibits a "living" behavior, facilitating sequential synthesis of other macrocycles by introducing relevant monomers, thus providing a practical synthetic platform for chemical libraries. Notably, CTM operates both under diluted and concentrated regimes, offering scalability potential, unlike typical macrocyclization reactions usually operating in the 0.1-1 mM range.
Collapse
Affiliation(s)
- Josue Ayuso-Carrillo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Federica Fina
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - El Czar Galleposo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Rúben R. Ferreira
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Pradip Kumar Mondal
- Elettra
Sincrotrone Trieste S.C.p.A., Strada Statale 14−km 163, 5 in Area Science
Park, Basovizza, Trieste 34149, Italy
| | - Benjamin D. Ward
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Davide Bonifazi
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| |
Collapse
|
17
|
Sanda F, Otsuki T, Kawai K, Ozaki M, Morimoto T, Hosotani M, Sotani T, Sogawa H, Hayashi J. Sintering of Platinum-Containing Conjugated Polymers: Gas Adsorption and Catalysis of the Formed Pt-Carbon Composites. Inorg Chem 2024; 63:10434-10442. [PMID: 38771992 DOI: 10.1021/acs.inorgchem.4c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Pt-containing meta- and para-linked poly(phenyleneethynylene)s were synthesized by the dehydrochlorination coupling polymerization of PtCl2(PBu3)2 with m- and p-diethynylbenzenes. The formed polymers were sintered at 900 °C to obtain Pt-graphene hybrids, whose structures were examined by Raman scattering spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) measurements. Shapes─facets, terraces, and steps─with average diameters of 2.0-3.4 μm were observed by field emission scanning electron microscopy (FE-SEM). The Pt-graphene hybrids moderately adsorbed CO2 and O2 and slightly adsorbed ethylene and methane. Epoxidation of stilbene was carried out using Pt-graphene hybrids as catalysts to obtain stilbene oxide.
Collapse
Affiliation(s)
- Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tomoyuki Otsuki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kazato Kawai
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Miki Ozaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Taku Morimoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Mio Hosotani
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Taichi Sotani
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Jun'ichi Hayashi
- Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
18
|
Chin KLO, Ong PJ, Zhu Q, Xu J, Chua MH. Electrofluorochromic Switching of Heat-Induced Cross-Linkable Multi-Styryl-Terminated Triphenylamine and Tetraphenylethylene Derivatives. Molecules 2024; 29:2340. [PMID: 38792201 PMCID: PMC11123742 DOI: 10.3390/molecules29102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
High-performance electrochromic (EC) and electrofluorochromic (EFC) materials have garnered considerable interest due to their diverse applications in smart windows, optoelectronics, optical displays, military camouflage, etc. While many different EC and EFC polymers have been reported, their preparation often requires multiple steps, and their polymer molecular weights are subjected to batch variation. In this work, we prepared two triphenylamine (TPA)-based and two tetraphenylethylene (TPE)-based derivatives functionalized with terminal styryl groups via direct Suzuki coupling with (4-vinylphenyl)boronic acid and vinylboronic acid pinacol ester. The two novel TPE derivatives exhibited green-yellow aggregation-induced emission (AIE). The EC and EFC properties of pre- and post-thermally treated derivatives spin-coated onto ITO-glass substrates were studied. While all four derivatives showed modest absorption changes with applied voltages up to +2.4 V, retaining a high degree of optical transparency, they exhibited obvious EFC properties with the quenching of blue to yellow fluorescence with IOFF/ON contrast ratios of up to 7.0. The findings therefore demonstrate an elegant approach to preparing optically transparent, heat-induced, cross-linkable styryl-functionalized EFC systems.
Collapse
Affiliation(s)
- Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
| | - Pin Jin Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
| | - Qiang Zhu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
- Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore 117543, Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (K.L.O.C.); (Q.Z.)
| |
Collapse
|
19
|
Moro S, Spencer SE, Lester DW, Nübling F, Sommer M, Costantini G. Molecular-Scale Imaging Enables Direct Visualization of Molecular Defects and Chain Structure of Conjugated Polymers. ACS NANO 2024; 18:11655-11664. [PMID: 38652866 PMCID: PMC11080458 DOI: 10.1021/acsnano.3c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.
Collapse
Affiliation(s)
- Stefania Moro
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Daniel W. Lester
- Polymer
Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, U.K.
| | - Fritz Nübling
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
| | - Michael Sommer
- Institute
for Chemistry, Chemnitz University of Technology, Chemnitz 09111, Germany
- Center
for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Giovanni Costantini
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
20
|
Stäter S, Woering EF, Lombeck F, Sommer M, Hildner R. Hexylation Stabilises Twisted Backbone Configurations in the Prototypical Low-Bandgap Copolymer PCDTBT. Chemphyschem 2024; 25:e202300971. [PMID: 38372667 DOI: 10.1002/cphc.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Conjugated donor-acceptor copolymers hold great potential as materials for high-performance organic photovoltaics, organic transistors and organic thermoelectric devices. Their low optical bandgap is achieved by alternation of donor and acceptor moieties along the polymer chain, leading to a pronounced charge-transfer character of electronic excitations. However, the influence of appended side chains and of chemical defects of the backbone on their photophysical and conformational properties remains largely unexplored on the level of individual chains. Here, we employ room temperature single-molecule photoluminescence spectroscopy on four compounds based on the prototypical copolymer PCDTBT with systematically changed chemical structure. Our results show that an increasing density of statistically added hexyl chains to the TBT comonomer distorts the molecular conformation, likely through the increase of average dihedral angles along the backbone. We find that, although the conformation becomes more twisted with high hexyl density, the side chains appear to stabilize the backbone in this twisted conformation. In addition, we demonstrate that homocoupling defects along the backbone barely influence the PL spectra of single chains, and thus intra-chain electronic properties.
Collapse
Affiliation(s)
- Sebastian Stäter
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Erik F Woering
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Florian Lombeck
- Makromolekulare Chemie, Stefan-Meier-Str. 31, Universität Freiburg, 79104, Freiburg, Germany
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Michael Sommer
- TU Chemnitz, Institute for Chemistry, Str. der Nationen 62, 09111, Chemnitz, Germany
| | - Richard Hildner
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| |
Collapse
|
21
|
Zhang J, Chen Q, Li M, Zhang G, Zhang Z, Deng X, Xue J, Zhao C, Xiao C, Ma W, Li W. Carboxylating Elastomer via Thiol-Ene Click Reaction to Improve Miscibility with Conjugated Polymers for Mechanically Robust Organic Solar Cells with Efficiency of 19. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312805. [PMID: 38319917 DOI: 10.1002/adma.202312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.
Collapse
Affiliation(s)
- Junjie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Guangcong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangmeng Deng
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Dang NTT, Le TQ, Duc Cuong N, Linh NLM, Le LS, Tran TD, Nguyen HP. Polythiophene-wrapped Chitosan Nanofibrils with a Bouligand Structure toward Electrochemical Macroscopic Membranes. ACS OMEGA 2024; 9:13680-13691. [PMID: 38559940 PMCID: PMC10976385 DOI: 10.1021/acsomega.3c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Exploring structural biomimicry is a great opportunity to replicate hierarchical frameworks inspired by nature in advanced functional materials for boosting new applications. In this work, we present the biomimetic integration of polythiophene into chitosan nanofibrils in a twisted Bouligand structure to afford free-standing macroscopic composite membranes with electrochemical functionality. By considering the integrity of the Bouligand structure in crab shells, we can produce large, free-standing chitosan nanofibril membranes with iridescent colors and flexible toughness. These unique structured features lead the chitosan membranes to host functional additives to mimic hierarchically layered composites. We used the iridescent chitosan nanofibrils as a photonic platform to investigate the host-guest combination between thiophene and chitosan through oxidative polymerization to fabricate homogeneous polythiophene-wrapped chitosan composites. This biomimetic incorporation fully retains the twisted Bouligand organization of nanofibrils in the polymerized assemblies, thus giving rise to free-standing macroscopic electrochemical membranes. Our further experiments are the modification of the biomimetic polythiophene-wrapped chitosan composites on a glassy carbon electrode to design a three-electrode system for simultaneous electrochemical detection of uric acid, xanthine, hypoxanthine, and caffeine at trace concentrations.
Collapse
Affiliation(s)
- Nhan Thi Thanh Dang
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Thang Quoc Le
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Nguyen Duc Cuong
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Nguyen Le My Linh
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Lam Son Le
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
| | - Tien Dong Tran
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Hai Phong Nguyen
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
| |
Collapse
|
23
|
Bhattacharjee R, Kertesz M. Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1395-1404. [PMID: 38375000 PMCID: PMC10876101 DOI: 10.1021/acs.chemmater.3c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
By variation of the chemical repeat units of conjugated polymers, only discrete tuning of essential physical parameters is possible. A unique property of a class of π-conjugated polymers, where polycyclic aromatic hydrocarbons are linked via ethynylene linkers, is their topological aromatic to quinoid phase transition discovered recently by Cirera et al. and González-Herrero et al., which is controllable in discrete steps by chemical variations. We have discovered by means of density functional theory computations that such a phase transition can be achieved by applying continuous variations of longitudinal strain, allowing us to tune the bond length alternation and bandgap. At a specific strain value, the bandgap becomes zero due to an orbital level crossing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Our hypothesis provides a perspective on the design of organic electronic materials and provides a novel insight into the properties of a continuous phase transition in topological semiconducting polymers.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
24
|
Wasiak T, Just D, Dzienia A, Łukowiec D, Wacławek S, Mielańczyk A, Kodan S, Bansal A, Chandra R, Janas D. PdNPs/NiNWs as a welding tool for the synthesis of polyfluorene derivatives by Suzuki polycondensation under microwave radiation. Sci Rep 2024; 14:2336. [PMID: 38282019 PMCID: PMC10822865 DOI: 10.1038/s41598-024-52795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Conjugated polymers are promising tools to differentiate various types of semiconducting single-walled carbon nanotubes (s-SWCNTs). However, their synthesis is challenging. Insufficient control over molecular weights, and unpredictive/unrepeatable batches hinder possible applications and scale-up. Furthermore, commercial homogeneous catalysts often require inert conditions and are almost impossible to recycle. To overcome these problems, we present a nanocatalyst consisting of magnetic nickel nanowires decorated with highly active palladium nanoparticles. A two-step wet chemical reduction protocol with the assistance of sonochemistry was employed to obtain a heterogeneous catalyst capable of conducting step-growth Suzuki polycondensation of a fluorene-based monomer. Additionally, we enhanced the performance of our catalytic system via controlled microwave irradiation, which significantly shortened the reaction time from 3 d to only 1 h. We studied the influence of the main process parameters on the yield and polymer chain length to gain insight into phenomena occurring in the presence of metallic species under microwave irradiation. Finally, the produced polymers were used to extract specific s-SWCNTs by conjugated polymer extraction to validate their utility.
Collapse
Affiliation(s)
- Tomasz Wasiak
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Dominik Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Dariusz Łukowiec
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100, Gliwice, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Mielańczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Sonika Kodan
- Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ananya Bansal
- Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ramesh Chandra
- Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
25
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
26
|
Zika A, Agarwal M, Zika W, Guldi DM, Schweins R, Gröhn F. Photoacid-macroion assemblies: how photo-excitation switches the size of nano-objects. NANOSCALE 2024; 16:923-940. [PMID: 38108137 DOI: 10.1039/d3nr04570f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Electrostatic self-assembly of photoacids with oppositely charged macroions yields supramolecular nano-objects in aqueous solutions, whose size is controlled through light irradiation. Nano-assemblies are formed due to electrostatic attractions and mutual hydrogen bonding of the photoacids. Irradiation with UV light leads to the deprotonation of the photoacid and, consequently, a change in particle size. Overall, the hydrodynamic radii of the well-defined photoacid-macroion nano-objects lie between 130 and 370 nm. For a set of photoacids, we determine the acidity constants in the ground and excited state, discuss the sizes of photoacid-macroion nano-objects (by dynamic and static light scattering), their composition and the particle shapes (by small-angle neutron scattering), and relate their charge characteristics to size, structure and shape. We investigate the association thermodynamics and relate nanoscale structures to thermodynamics and, in turn, thermodynamics to molecular features, particularly the ionization energy of the photoacid hydroxyl group proton. Structure-directing effects completely differ from those for previously investigated systems, with hydrogen bonding and entropic effects playing a major role herein. This combined approach allows developing a comprehensive understanding of assembly formation and photo-response, anchored in molecular parameters (pKa, ionization energy, substituent group location), charge characteristics, and the association enthalpy and entropy. This fundamental understanding again paves the way for tailoring application solutions with novel photoresponsive materials.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
| | - Mohit Agarwal
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
- DS LSS Institut Laue - Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Wiebke Zika
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Ralf Schweins
- DS LSS Institut Laue - Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
| |
Collapse
|
27
|
Joseph JP, Malone T, Abraham SR, Dutta A, Gupta S, Kuzmin A, Baev A, Swihart MT, Hendrickson JR, Prasad PN. Plasticizer-Induced Enhancement of Mesoscale Dissymmetry in Thin Films of Chiral Polymers with Variable Chain Length. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305684. [PMID: 37725635 DOI: 10.1002/adma.202305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Indexed: 09/21/2023]
Abstract
Conjugated polymers with chiral side chains are of interest in areas including chiral photonics, optoelectronics, and chemical and biological sensing. However, the low dissymmetry factors of most neat polymer thin films have limited their practical application. Here, a robust method to increase the absorption dissymmetry factor in a poly-fluorene-thiophene (PF8TS series) system is demonstrated by varying molecular weight and introducing an achiral plasticizer, polyethylene mono alcohol (PEM-OH). Extending chain length within the optimal range and adding this long-chain alcohol significantly enhance the chiroptical properties of spin-coated and annealed thin films. Mueller matrix spectroscopic ellipsometry (MMSE) analysis shows good agreement with the steady-state transmission measurements confirming a strong chiral response (circular dichroism (CD) and circular birefringence (CB)), ruling out linear dichroism, birefringence, and specific reflection effects. Solid-state NMR studies of annealed hybrid chiral polymer systems show enhancement of signals associated with aromatic π-stacked backbone and the ordered side-chain conformations. Further studies using Raman spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and polarized optical microscopy (POM) indicate that PEM-OH facilitates mesoscopic crystal domain ordering upon annealing. This provides new insights into routes for tuning optical activity in conjugated polymers.
Collapse
Affiliation(s)
- Jojo P Joseph
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Trent Malone
- Department of Electro-Optics and Photonics, University of Dayton, Dayton, OH, 45469, USA
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Shema R Abraham
- Department of Chemical and Biological Engineering, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Avisek Dutta
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Sonal Gupta
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Andrey Kuzmin
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Alexander Baev
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Joshua R Hendrickson
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Paras N Prasad
- Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| |
Collapse
|
28
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
29
|
Tardío C, Donoso B, Fernández P, Torres-Moya I. Rational Design of a Multifunctional Benzothiadiazole Derivative in Organic Photonics and Electronics. Chemistry 2023; 29:e202302524. [PMID: 37811670 DOI: 10.1002/chem.202302524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
In order to achieve a multifunctional compound with potential application in organic photonics and electronics, a multidonor benzothiadiazole derivative was rationally designed and synthesized employing microwave irradiation as energy source, increasing the process efficiency about yields and reaction times in comparison with conventional conditions. This powerful compound displayed solvatochromism and showed efficient behavior as red optical waveguide with low OLC around 10-2 dB μm-1 and with the capacity of light transmission in two directions. In addition, the proposed derivative acted as efficient p-type semiconductor in organic field-effect transistors (OFETs) with hole mobilities up 10-1 cm2 V-1 s-1 . This corroborates its multifunctional character, thus making it a potential candidate to be applied in hybrid organic field-effect optical waveguides (OFEWs).
Collapse
Affiliation(s)
- Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071, Ciudad Real, Spain
| | - Beatriz Donoso
- Department of Organic Chemistry, Faculty of Sciences, Campus of Fuentenueva, University of Granada, 18071, Granada, Spain
| | - Pablo Fernández
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071, Ciudad Real, Spain
| | - Iván Torres-Moya
- Department of Organic Chemistry. Faculty of Chemical Sciences. Campus of Espinardo, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
30
|
Tokita Y, Uchida T, Kamigawara T, Hoka K, Nitto R, Ohta Y, Yokozawa T. Tandem Kumada-Tamao catalyst-transfer condensation polymerization and Suzuki-Miyaura coupling for the synthesis of end-functionalized poly(3-hexylthiophene). Chem Commun (Camb) 2023; 59:13139-13142. [PMID: 37811687 DOI: 10.1039/d3cc04100j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Successive Kumada-Tamao catalyst-transfer condensation polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene and Suzuki-Miyaura end-functionalization with pinacol arylboronate in one pot afforded poly(3-hexylthiophene) (P3HT) with a base-sensitive functional group at both ends. The use of poly(methyl methacrylate) (PMMA) bearing a boronic acid ester moiety at one end enabled one-pot synthesis of PMMA-b-P3HT-b-PMMA triblock copolymer.
Collapse
Affiliation(s)
- Yu Tokita
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Tatsuya Uchida
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Takeru Kamigawara
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Kenta Hoka
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Reo Nitto
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
31
|
Kim J, Ren X, Zhang Y, Fazzi D, Manikandan S, Andreasen JW, Sun X, Ursel S, Un H, Peralta S, Xiao M, Town J, Marathianos A, Roesner S, Bui T, Ludwigs S, Sirringhaus H, Wang S. Efficient N-Type Organic Electrochemical Transistors and Field-Effect Transistors Based on PNDI-Copolymers Bearing Fluorinated Selenophene-Vinylene-Selenophenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303837. [PMID: 37551064 PMCID: PMC10582458 DOI: 10.1002/advs.202303837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
n-Type organic electrochemical transistors (OECTs) and organic field-effect transistors (OFETs) are less developed than their p-type counterparts. Herein, polynaphthalenediimide (PNDI)-based copolymers bearing novel fluorinated selenophene-vinylene-selenophene (FSVS) units as efficient materials for both n-type OECTs and n-type OFETs are reported. The PNDI polymers with oligo(ethylene glycol) (EG7) side chains P(NDIEG7-FSVS), affords a high µC* of > 0.2 F cm-1 V-1 s-1 , outperforming the benchmark n-type Pg4NDI-T2 and Pg4NDI-gT2 by two orders of magnitude. The deep-lying LUMO of -4.63 eV endows P(NDIEG7-FSVS) with an ultra-low threshold voltage of 0.16 V. Moreover, the conjugated polymer with octyldodecyl (OD) side chains P(NDIOD-FSVS) exhibits a surprisingly low energetic disorder with an Urbach energy of 36 meV and an ultra-low activation energy of 39 meV, resulting in high electron mobility of up to 0.32 cm2 V-1 s-1 in n-type OFETs. These results demonstrate the great potential for simultaneously achieving a lower LUMO and a tighter intermolecular packing for the next-generation efficient n-type organic electronics.
Collapse
Affiliation(s)
- Jongho Kim
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
- Present address:
Department of Textile System Eng.Kyungpook National UniversityDaegu41566Republic of Korea
| | - Xinglong Ren
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Youcheng Zhang
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Daniele Fazzi
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaVia F. Selmi 2Bologna40126Italy
| | - Suraj Manikandan
- Department of Energy Conversion and StorageTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and StorageTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Xiuming Sun
- IPOC‐Functional PolymersInstitute of Polymer Chemistry and Center for Integrated Quantum Science and Technology(IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sarah Ursel
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Hio‐Ieng Un
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Sébastien Peralta
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| | - Mingfei Xiao
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - James Town
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Stefan Roesner
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Thanh‐Tuan Bui
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| | - Sabine Ludwigs
- IPOC‐Functional PolymersInstitute of Polymer Chemistry and Center for Integrated Quantum Science and Technology(IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Henning Sirringhaus
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Suhao Wang
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| |
Collapse
|
32
|
Wang Y, Wang H, Deng J, Pan Y, Zheng Z, Ding X. Isoindigo-Based Dual-Acceptor Conjugated Polymers Incorporated Conjugation Length and Intramolecular Charge Transfer for High-Efficient Photothermal Conversion. Macromol Rapid Commun 2023; 44:e2300244. [PMID: 37465937 DOI: 10.1002/marc.202300244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Photothermal tumor therapy (PTT) and photoacoustic imaging (PA) have emerged as promising noninvasive diagnostic and therapeutic approaches for cancer treatment. However, the development of efficient PTT agents with high photostability and strong near-infrared (NIR) absorption remains challenging. This study synthesizes three isoindigo-based dual-acceptor conjugated polymers (CPs) (P-IIG-TPD, P-IIG-DPP, and P-IIG-EDOT-BT) via a green and nontoxic direct arylation polymerization (DArP) method and characterizes their optical, electrochemical, and NIR photothermal conversion properties. By incorporating two acceptors into the backbone, the resulting polymers exhibit enhanced photothermal conversion efficiency (PCE) due to improved synergy among conjugation length, planarity, and intramolecular charge transfer (ICT). The nanoparticles (NPs) of P-IIG-EDOT-BT and P-IIG-DPP have a uniform size distribution around 140 nm and exhibit remarkable NIR absorption at 808 nm. In addition, P-IIG-EDOT-BT and P-IIG-DPP NPs exhibit high PCEs of 62% and 78%, respectively. This study promotes the molecular design of CPs as NIR photothermal conversion materials and provides guidance for the development of novel dual-acceptor CPs for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongsen Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinni Deng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Xihua University, Chengdu, 610041, China
| | - Yi Pan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhaohui Zheng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaobin Ding
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
33
|
Headen TF, Di Mino C, Youngs TG, Clancy AJ. The structure of liquid thiophene from total neutron scattering. Phys Chem Chem Phys 2023; 25:25157-25165. [PMID: 37712384 DOI: 10.1039/d3cp03932c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The structure of pure liquid thiophene is revealed by using a combination of total neutron scattering experiments with isotopic substitution and molecular simulations via the next generation empirical potential refinement software, Dissolve. In the liquid, thiophene presents three principle local structural motifs within the first solvation shell, in plane and out of the plane of the thiophene ring. Firstly, above/below the ring plane thiophenes present a single H towards the π cloud, due to a combination of electrostatic and dispersion interactions. Secondly, around the ring plane, perpendicular thiophene molecules find 5 preferred sites driven by bifurcated C-H⋯S interactions, showing that hydrogen-sulfur bonding prevails over the charge asymmetry created by the heteroatom. Finally, parallel thiophenes sit above and below the ring, excluded from directly above the ring center and above the sulfur.
Collapse
Affiliation(s)
- Thomas F Headen
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.
| | - Camilla Di Mino
- Department of Materials, University of Oxford, 21 Banbury Rd, Oxford, OX2 6NN, UK
- Department of Physics & Astronomy, University College London, Gower St, London WC1E 6BT, UK
| | - Tristan Ga Youngs
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.
| | - Adam J Clancy
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| |
Collapse
|
34
|
Yin J, Choi S, Pyle D, Guest JR, Dong G. Backbone Engineering of Monodisperse Conjugated Polymers via Integrated Iterative Binomial Synthesis. J Am Chem Soc 2023; 145:19120-19128. [PMID: 37603817 PMCID: PMC10472507 DOI: 10.1021/jacs.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Synthesis of sequence-defined monodisperse π-conjugated polymers with versatile backbones remains a substantial challenge. Here we report the development of an integrated iterative binomial synthesis (IIBS) strategy to enable backbone engineering of conjugated polymers with precisely controlled lengths and sequences as well as high molecular weights. The IIBS strategy capitalizes on the use of phenol as a surrogate for aryl bromide and represents the merge between protecting-group-aided iterative synthesis (PAIS) and iterative binomial synthesis (IBS). Long and monodisperse conjugated polymers with diverse irregular backbones, which are inaccessible by conventional polymerizations, can be efficiently prepared by IIBS. In addition, topology-dependent and chain-length-dependent properties have been investigated.
Collapse
Affiliation(s)
- Jiangliang Yin
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey R. Guest
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Guangbin Dong
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Liu Y, Zhang H, Yu H, Liao Z, Paasch S, Xu S, Zhao R, Brunner E, Bonn M, Wang HI, Heine T, Wang M, Mai Y, Feng X. A Thiophene Backbone Enables Two-Dimensional Poly(arylene vinylene)s with High Charge Carrier Mobility. Angew Chem Int Ed Engl 2023; 62:e202305978. [PMID: 37271733 DOI: 10.1002/anie.202305978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Linear conjugated polymers have attracted significant attention in organic electronics in recent decades. However, despite intrachain π-delocalization, interchain hopping is their transport bottleneck. In contrast, two-dimensional (2D) conjugated polymers, as represented by 2D π-conjugated covalent organic frameworks (2D c-COFs), can provide multiple conjugated strands to enhance the delocalization of charge carriers in space. Herein, we demonstrate the first example of thiophene-based 2D poly(arylene vinylene)s (PAVs, 2DPAV-BDT-BT and 2DPAV-BDT-BP, BDT=benzodithiophene, BT=bithiophene, BP=biphenyl) via Knoevenagel polycondensation. Compared with 2DPAV-BDT-BP, the fully thiophene-based 2DPAV-BDT-BT exhibits enhanced planarity and π-delocalization with a small band gap (1.62 eV) and large electronic band dispersion, as revealed by the optical absorption and density functional calculations. Remarkably, temperature-dependent terahertz spectroscopy discloses a unique band-like transport and outstanding room-temperature charge mobility for 2DPAV-BDT-BT (65 cm2 V-1 s-1 ), which far exceeds that of the linear PAVs, 2DPAV-BDT-BP, and the reported 2D c-COFs in the powder form. This work highlights the great potential of thiophene-based 2D PAVs as candidates for high-performance opto-electronics.
Collapse
Affiliation(s)
- Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hongde Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Ruyan Zhao
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Eike Brunner
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Heine
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Forschungsstelle Leipzig, 04318, Leipzig, Germany
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, (Germany)
| |
Collapse
|
36
|
Choi Y, Min K, Han N, Tae G, Kim DY. Novel Application of NIR-I-Absorbing Quinoidal Conjugated Polymer as a Photothermal Therapeutic Agent. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39117-39126. [PMID: 37551880 DOI: 10.1021/acsami.3c06807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Conjugated polymer nanoparticles (CP NPs) that could absorb the first near-infrared (NIR-I) window have emerged as highly desirable therapeutic nanomaterials. Here, a quinoidal-conjugated polymer (QCP), termed PQ, was developed as a novel class of therapeutic agents for photothermal therapy (PTT). Owing to its intrinsic quinoid structure, PQ exhibits molecular planarity and π-electron overlap along the conjugated backbone, endowing it with a narrow band gap, NIR-I absorption, and diradical features. The obtained PQ was coated with a poly(ethylene glycol) (PEG) moiety, affording nanosized and water-dispersed PQ nanoparticles (PQ NPs), which consequently show a high photothermal conversion efficiency (PCE) of 63.2%, good photostability, and apparent therapeutic efficacy for both in vitro and in vivo PTTs under an 808 nm laser irradiation. This study demonstrates that QCPs are promising active agents for noninvasive anticancer therapy using NIR-I light.
Collapse
Affiliation(s)
- Yeonsu Choi
- School of Materials Science and Engineering, Heeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Nara Han
- School of Materials Science and Engineering, Heeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Heeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
37
|
Nipate AB, Rajeswara Rao M. Solid-state red-emissive (cyano)vinylene heteroaromatics via Pd-catalysed C-H homocoupling. Org Biomol Chem 2023; 21:4123-4129. [PMID: 37129043 DOI: 10.1039/d3ob00560g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Thiophene-based π-conjugated systems are important materials for organic electronics; thus, their synthesis is of topical interest. We report fluorescent thiophene/furan-based vinylene and cyanovinylene systems via Pd-catalysed homocoupling [Pd(OAc)2, pivalic acid, KOAc, DMAc, 140 °C]. The methodology is versatile and allows the development of a variety of π-conjugated systems without the need for pre-functionalized building units. The reaction tolerates electron-rich, electron-deficient and large π-conjugated substrates. The developed compounds absorb in the visible region (400-515 nm) and emit green to orange fluorescence in the solution state (510-600 nm). Most importantly, the compounds exhibit strong aggregation-induced emission (AIE) in the NIR region (λem = 650 nm), with quantum yields reaching up to 10%. Steric hindrance imparted by vinylene/cyanovinylene units is responsible for the strong solid-state luminescence. DFT-optimized structures reveal an apparent twist of 20-40° in the molecular backbone of the compounds, supporting the AIE behaviour of the compounds.
Collapse
Affiliation(s)
- Atul B Nipate
- Department of Chemistry, IIT Dharwad, Dharwad-580011, Karnataka, India.
| | - M Rajeswara Rao
- Department of Chemistry, IIT Dharwad, Dharwad-580011, Karnataka, India.
| |
Collapse
|
38
|
Yang X, Hou S, Su M, Zhan Q, Zhang H, Quintero SM, Liu X, Liu J, Hong W, Casado J, Wu Q, Lambert CJ, Zheng Y. Quasi-Free Electron States Responsible for Single-Molecule Conductance Enhancement in Stable Radical. J Phys Chem Lett 2023; 14:4004-4010. [PMID: 37083476 DOI: 10.1021/acs.jpclett.3c00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stable organic radicals, which possess half-filled orbitals in the vicinity of the Fermi energy, are promising candidates for electronic devices. In this Letter, using a combination of scanning-tunneling-microscopy-based break junction (STM-BJ) experiments and quantum transport theory, a stable fluorene-based radical is investigated. We demonstrate that the transport properties of a series of fluorene derivatives can be tuned by controlling the degree of localization of certain orbitals. More specifically, radical 36-FR has a delocalized half-filled orbital resulting in Breit-Wigner resonances, leading to an unprecedented conductance enhancement of 2 orders of magnitude larger than the neutral nonradical counterpart (36-FOH). In other words, conversion from a closed-shell fluorene derivative to the free radical in 36-FR opens an electron transport path which massively enhances the conductance. This new understanding of the role of radicals in single-molecule junctions opens up a novel design strategy for single-molecule-based spintronic devices.
Collapse
Affiliation(s)
- Xingzhou Yang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, U.K
| | - Meiling Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xia-men University, Xiamen 361005, People's Republic of China
| | - Qian Zhan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Hanjun Zhang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Sergio M Quintero
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, Málaga 29071, Spain
| | - Xiaodong Liu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xia-men University, Xiamen 361005, People's Republic of China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xia-men University, Xiamen 361005, People's Republic of China
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, Málaga 29071, Spain
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, U.K
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, U.K
| | - Yonghao Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| |
Collapse
|
39
|
Weng YH, Lin YC, Ho JC, Yang WC, Lin BH, Liu CL, Chen WC. High-Performance Phototransistor Memory with an Ultrahigh Memory Ratio Conferred Using Hydrogen-Bonded Supramolecular Electrets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19258-19269. [PMID: 36883569 DOI: 10.1021/acsami.2c22501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the research of photonic electronics thrives, the enhanced efficacy from an optic unit cell can considerably improve the performance of an optoelectronic device. In this regard, organic phototransistor memory with a fast programming/readout and a distinguished memory ratio produces an advantageous outlook to fulfill the demand for advanced applications. In this study, a hydrogen-bonded supramolecular electret is introduced into the phototransistor memory, which comprises porphyrin dyes, meso-tetra(4-aminophenyl)porphine, meso-tetra(p-hydroxyphenyl)porphine, and meso-tetra(4-carboxyphenyl)porphine (TCPP), and insulated polymers, poly(4-vinylpyridine) and poly(4-vinylphenol) (PVPh). To combine the optical absorption of porphyrin dyes, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) is selected as a semiconducting channel. The porphyrin dyes serve as the ambipolar trapping moiety, while the insulated polymers form a barrier to stabilize the trapped charges by forming hydrogen-bonded supramolecules. We find that the hole-trapping capability of the device is determined by the electrostatic potential distribution in the supramolecules, whereas the electron-trapping capability and the surface proton doping originated from hydrogen bonding and interfacial interactions. Among them, PVPh:TCPP with an optimal hydrogen bonding pattern in the supramolecular electret produces the highest memory ratio of 1.12 × 108 over 104 s, which is the highest performance among the reported achievements. Our results suggest that the hydrogen-bonded supramolecular electret can enhance the memory performance by fine-tuning their bond strength and cast light on a potential pathway to future photonic electronics.
Collapse
Affiliation(s)
- Yi-Hsun Weng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Chieh Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
40
|
Pai MM, Yallur BC, Adimule VM, Batakurki SR. (Z)-4-(thiophen-2-ylmethylene)-4H-thieno[2,3-b]pyrrol-5(6H)-one based polymers for organic photovoltaics. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
41
|
Chakraborty B, Luscombe CK. Cross-Dehydrogenative Coupling Polymerization via C-H Activation for the Synthesis of Conjugated Polymers. Angew Chem Int Ed Engl 2023; 62:e202301247. [PMID: 36849707 DOI: 10.1002/anie.202301247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Owing to their versatile (opto)electronic properties, conjugated polymers have found application in several organic electronic devices. Cross-coupling reactions such as Stille, Suzuki, Kumada couplings, and direct arylation reactions have proved to be effective for their synthesis. More atom-efficient oxidative direct arylation polymerization has also been reported for making homopolymers. However, growing interest toward donor-acceptor polymers has led to the recent emergence of cross-dehydrogenative coupling (CDC) polymerization to synthesize alternating copolymers without any prefunctionalization of monomers. Metal-catalyzed cross-coupling of two simple arenes via double C-H activation, or of an arene with an alkene via oxidative Heck-type reaction have been used so far for CDC polymerization. In this article, we discuss the development of CDC polymerization protocols along with the relevant small molecule CDC reactions for an improved understanding of these reactions.
Collapse
Affiliation(s)
- Baitan Chakraborty
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| |
Collapse
|
42
|
Physical Aging Behavior of the Side Chain of a Conjugated Polymer PBTTT. Polymers (Basel) 2023; 15:polym15040794. [PMID: 36850080 PMCID: PMC9964067 DOI: 10.3390/polym15040794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
This paper provides a viewpoint of the technology of the fast-scanning calorimetry with the relaxation behavior of disordered side chains of poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C12) around the glass transition temperature of the side chains (Tg,γ). PBTTT is an ideal model of the high-performance copolymer of poly(alkylthiophenes) with side chains. The γ1 relaxation process of the disordered side chains of PBTTT was detected as a small endothermic peak that emerges before the γ2 relaxation process. It shows an increase with increasing temperature as it approaches the glass transition temperature of the disordered side chains of PBTTT. The ductile-brittle transition of PBTTT in low temperatures originating from the thermal relaxation process is probed and illustrated by physical aging experiments. The signature is shown that the relaxation process of the disordered side chain of PBTTT at low temperatures varies from Arrhenius temperature dependence to super Arrhenius temperature dependence at high temperatures. These observations could have significant consequences for the stability of devices based on conjugated polymers, especially those utilized for stretchable or flexible applications, or those demanding mechanical robustness during tensile fabrication or use in a low-temperature environment.
Collapse
|
43
|
Arshad MA. Kinetics of crystallization mechanisms in poly(3-hexylthiophene) and poly(9,9-dihexylfluorene-alt-2,5-didodecyloxybenzene) conjugated polymers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Wang S, Sun L, Zheng Y, Zhang Y, Yu N, Yang J, Li M, Chen W, He L, Liu B, Ni M, Liu H, Xu M, Bai L, Lin J, Huang W. Large-Area Blade-Coated Deep-Blue Polymer Light-Emitting Diodes with a Narrowband and Uniform Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205411. [PMID: 36574468 PMCID: PMC9951302 DOI: 10.1002/advs.202205411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Large-area polymer light-emitting diodes (PLEDs) manufactured by printing are required for flat-panel lighting and displays. Nevertheless, it remains challenging to fabricate large-area and stable deep-blue PLEDs with narrowband emission due to the difficulties in precisely tuning film uniformity and obtaining single-exciton emission. Herein, efficient and stable large-area deep-blue PLEDs with narrowband emission are prepared from encapsulated polydiarylfluorene. Encapsulated polydiarylfluorenes presented an efficient and stable deep-blue emission (peak: 439 nm; full width at half maximum (FWHM): 39 nm) in the solid state due to their single-chain emission behavior without inter-backbone chain aggregation. Large-area uniform blade-coated films (16 cm2 ) are also fabricated with excellent smoothness and morphology. Benefitting from efficient emission and excellent printed capacity, the blade-coated PLEDs with a device area of 9 mm2 realized uniform deep-blue emission (FWHM: 38 nm; CIE: 0.153, 0.067), with a corresponding maximum external quantum efficiency and the brightness comparable to those of devices based on spin-coated films. Finally, considering the essential role of deep-blue LEDs, a preliminary patterned PLED array with a pixel size of 800 × 1000 µm2 and a monochrome display is fabricated, highlighting potential full-color display applications.
Collapse
Affiliation(s)
- Shengjie Wang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Lili Sun
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Yingying Zheng
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Yahui Zhang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Ningning Yu
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Jinghao Yang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Mengyuan Li
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Wenyu Chen
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Liangliang He
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Bin Liu
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Mingjian Ni
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Heyuan Liu
- School of Materials Science and EngineeringInstitute of New EnergyCollege of ScienceChina University of Petroleum (East China)QingdaoShandong266580China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life SciencesNanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Lubing Bai
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Jinyi Lin
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life SciencesNanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME)Northwestern Polytechnical UniversityXi'an710072China
| |
Collapse
|
45
|
Nketia-Yawson V, Nketia-Yawson B, Jo JW. Interfacial Interaction Enables Enhanced Mobility in Hybrid Perovskite-Conjugated Polymer Transistors with High-k Fluorinated Polymer Dielectrics. Macromol Rapid Commun 2023; 44:e2200954. [PMID: 36661127 DOI: 10.1002/marc.202200954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Indexed: 01/21/2023]
Abstract
The charge carrier mobility of organic field-effect transistors (OFETs) has been remarkably improved through several engineering approaches and techniques by targeting pivotal parts. Herein, an ultrathin perovskite channel layer that boosts the field-effect mobility of conjugated polymer OFETs by forming perovskite-conjugated polymer hybrid semiconducting channel is introduced. The optimized lead-iodide-based perovskite-conjugated polymer hybrid channel transistors show enhanced hole mobility of over 4 cm2 V-1 s-1 (average = 2.10 cm2 V-1 s-1 ) with high reproducibility using a benchmark poly(3-hexylthiophene) (P3HT) polymer and employing high-k fluorinated polymer dielectrics. A significant hole carrier mobility enhancement of ≈200-400% in benzo[1,2-b:4,5:b']dithiophene (BDT)-based conjugated polymers is also demonstrated by exploring certain interactive groups with perovskite. This significant enhancement in the transistor performance is attributed to the increased charge carrier density in the hybrid semiconducting channel and the perovskite-polymer interactions. The findings of this paper demonstrate an exceptional engineering approach for carrier mobility enhancement in hybrid perovskite-conjugated-polymer-based electronic devices.
Collapse
Affiliation(s)
- Vivian Nketia-Yawson
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Benjamin Nketia-Yawson
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Jea Woong Jo
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| |
Collapse
|
46
|
Sivaraman S, Markkandan R, Pandiarajan K, Meenakshisundaram S. Hydrogen-bonded structure and optical nonlinearities in the proton-transfer complex of 8-hydroxy-5-nitroquinoline with ρ-toluenesulfonic acid. Struct Chem 2023. [DOI: 10.1007/s11224-023-02123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Tung WY, Pu C, Huang YF, Xie W, Cheng CF, Lai YY, Li X, Lin HY, Lai YT, Chen K, Wang CL, Zhu Y. Benzimidazolone-Dioxazine Pigments-Based Conjugated Polymers for Organic Field-Effect Transistor. Macromol Rapid Commun 2023; 44:e2200297. [PMID: 35621302 DOI: 10.1002/marc.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Indexed: 01/11/2023]
Abstract
Molecules based on benzimidazolone-dioxazine are known as blue/violet pigments and have been commercialized for decades. However, unfavorable solubility limits the application of these structures as building blocks of conjugated polymers despite their low band gaps. Herein, a series of donor-acceptor conjugated polymers containing soluble benzimidazolone-dioxazine structures as the acceptors and oligothiophene as donors are synthesized and investigated. With increasing numbers of thiophene rings, the steric hindrance diminishes and high molecular weight polymers can be achieved, leading to an improved performance in organic field effect transistor devices. The hole mobility of polymers with three to six thiophene units is in the order of 10-1 cm2 V-1 s -1 . Among all the polymers, polymer P3 with three thiophene units between benzimidazolone-dioxazine structures shows the best hole mobility of 0.4 cm2 V-1 s -1 . Grazing-incidence wide-angle X-ray scattering results reveal that the high mobility of organic field-effect transistors (OFETs) can be accredited by matched donor-acceptor packing in the solid thin films.
Collapse
Affiliation(s)
- Wei-Yao Tung
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Cheng Pu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Yi-Fan Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wei Xie
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Chung-Fu Cheng
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Yun-Yu Lai
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Xiang Li
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Heng-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yueh-Ting Lai
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Kun Chen
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu Zhu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
48
|
Huu Nguyen T, Nguyen LTT, Ha Hoang M, Nguyen TQ, Thanh Cu S, Simada R, Ohta Y, Yokozawa T, Tran Nguyen H. Intramolecular catalyst transfer on N-acyl dithieno[3,2-b:2′,3′-d]pyrroles in nonstoichiometric Suzuki-Miyaura polycondensation toward high molecular weight conjugated copolymers at room temperature. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Zhao Q, Li D, Peng J. Interrogating Polymorphism in Conjugated Poly(thieno)thiophene Thin Films for Field-Effect Transistors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dingke Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Jozeliūnaitė A, Rahmanudin A, Gražulis S, Baudat E, Sivula K, Fazzi D, Orentas E, Sforazzini G. Light-Responsive Oligothiophenes Incorporating Photochromic Torsional Switches. Chemistry 2022; 28:e202202698. [PMID: 36136376 PMCID: PMC9828566 DOI: 10.1002/chem.202202698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-0325, Vilnius, Lithuania
| | - Aiman Rahmanudin
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saulius Gražulis
- Vilnius University, Institute of Biotechnology, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Emilie Baudat
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Daniele Fazzi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi, 2, 40126, Bologna, Italy
| | - Edvinas Orentas
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-0325, Vilnius, Lithuania
| | - Giuseppe Sforazzini
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Present address: Department of Chemical and Geological Sciences, University degli Studi di Cagliari, SS 554, bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|