1
|
Liu H, Ren D, Geng H, Tian Y, Li M, Wang N, Yuan S, Hao J, Cui J. Coacervate-Derived Assembly of Poly(ethylene glycol) Nanoparticles for Combinational Tumor Therapy. Adv Healthc Mater 2025:e2403865. [PMID: 39748607 DOI: 10.1002/adhm.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.g., thiol-disulfide exchange, click chemistry, and Schiff base reaction). The reported assembly strategy avoids the template removal process and the resultant PEG NPs exhibit excellent stability in the physiological environment compared to coacervates. The presence of polyphenols in PEG NPs enables the loading of various cargos including metal ions (i.e., Ru, Gd, Mn, Fe) and drug molecules (i.e., doxorubicin), which demonstrates their promise in magnetic resonance imaging and combinational tumor therapy. This work provides a promising strategy to promote the development of coacervate-derived NPs as a drug delivery system for biomedical applications.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dandan Ren
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
2
|
Singh S, Chhetri S, Haldar D. Ni(II)-Directed Supramolecular Metallogel: Stimuli Responsiveness and Semiconducting Device Fabrication. Chem Asian J 2024:e202401429. [PMID: 39740805 DOI: 10.1002/asia.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C. The rheological tests have verified the gel with its mechanical stability, while a SEM image has shown a spherical aggregate morphology. The gel is photo-responsive in nature and exhibits gel to sol transformation upon adsorption of toxic gases like NH3 or H2S. Notably, electrical conductivity of the gel was observed in electronic metal-semiconductor (MS) junctions' devices with a measured conductivity of 0.9×10-6 Sm-1. These devices also exhibited Schottky barrier diode characteristics, underscoring the multifunctional potential of the Ni(II)-gel.
Collapse
Affiliation(s)
- Surajit Singh
- Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Shant Chhetri
- Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debasish Haldar
- Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
3
|
Yang CJ, Huang WL, Yang Y, Kuan CH, Tseng CL, Wang TW. Zwitterionic modified and freeze-thaw reinforced foldable hydrogel as intraocular lens for posterior capsule opacification prevention. Biomaterials 2024; 309:122593. [PMID: 38713971 DOI: 10.1016/j.biomaterials.2024.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Posterior capsule opacification (PCO) is a predominant postoperative complication, often leading to visual impairment due to the aberrant proliferation and adhesion of lens epithelial cells (LECs) and protein precipitates subsequent to intraocular lens (IOL) implantation. To address this clinical issue, a foldable and antifouling sharp-edged IOL implant based on naturally-derived cellulose hydrogel is synthesized. The mechanical strength and transparency of the hydrogel is enhanced via repeated freeze-thaw (FT) cycles. The incorporated zwitterionic modifications can remarkably prevent the incidence of PCO by exhibiting proteins repulsion and cell anti-adhesion properties. The graft of dopamine onto both the haptic and the periphery of the posterior surface ensures the adhesion of the hydrogel to the posterior capsule and impedes the migration of LECs without compromising transparency. In in vivo study, the zwitterionic modified foldable hydrogel exhibits uveal and capsular biocompatibility synchronously with no signs of inflammatory response and prevent PCO formation, better than that of commercialized and PEG-modified IOL. With foldability, endurability, antifouling effect, and adhesive to posterior capsule, the reported hydrogel featuring heterogeneous surface design displays great potential to eradicate PCO and attain post-operative efficacy after cataract surgery.
Collapse
Affiliation(s)
- Cheng-Jui Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Lun Huang
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Cchu Branch; Hsinchu, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University; Taipei, Taiwan
| | - Yu Yang
- Interdisciplinary Program of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University; Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Cui G, Guo X, Deng L. Preparation strategies of mussel-inspired chitosan-based biomaterials for hemostasis. Front Pharmacol 2024; 15:1439036. [PMID: 39221147 PMCID: PMC11363193 DOI: 10.3389/fphar.2024.1439036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Chitosan (CS) has been extensively studied in wound care for its intrinsic hemostatic and antibacterial properties. However, CS has limiting hemostasis applications on account of its drawbacks such as poor adhesion in humid environments and water solubility at neutral pH. CS-based biomaterials, inspired by mussel-adhesive proteins, serve as a suggested platform by biomedical science. The reports show that the mussel-inspired CS-based hemostatic structure has negligible toxicity and excellent adhesiveness. Biomedicine has witnessed significant progress in the development of these hemostatic materials. This review summarizes the methods for the modification of CS by mussel-inspired chemistry. Moreover, the general method for preparation of mussel-inspired CS-based biomaterials is briefly discussed in this review. This work is expected to give a better understanding of opportunities and challenges of the mussel-inspired strategy for the functionalization of CS-based biomaterials in hemostasis and wound healing. This review is hoped to provide an important perspective on the preparation of mussel-inspired CS-based hemostatic materials.
Collapse
Affiliation(s)
- Guihua Cui
- Department of Chemistry, Jilin Medical University, Jilin, China
| | - Xiaoyu Guo
- Jilin Vocational College of Industry and Technology, Jilin, China
| | - Li Deng
- Department of Extracorporeal Life Support, The People’s Hospital of Gaozhou, Gaozhou, China
| |
Collapse
|
5
|
Yu W, Xu Y, Liu Z, Luo F, Sun X, Li X, Duan F, Liang X, Wu L, Xu T. Bioadhesive-Inspired Ionomer for Membrane Electrode Assembly Interface Reinforcement in Fuel Cells. J Am Chem Soc 2024; 146:22590-22599. [PMID: 39082835 DOI: 10.1021/jacs.4c06961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 °C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm-2 for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h-1). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.
Collapse
Affiliation(s)
- Weisheng Yu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhiru Liu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fen Luo
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xu Sun
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojiang Li
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fanglin Duan
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232001, China
| | - Liang Wu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Ghiorghita CA, Platon IV, Lazar MM, Dinu MV, Aprotosoaie AC. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr Polym 2024; 334:122033. [PMID: 38553232 DOI: 10.1016/j.carbpol.2024.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Over the years, polysaccharides such as chitosan, alginate, hyaluronic acid, k-carrageenan, xanthan gum, carboxymethyl cellulose, pectin, and starch, alone or in combination with proteins and/or synthetic polymers, have been used to engineer an extensive portfolio of hydrogels with remarkable features. The application of polysaccharide-based hydrogels has the potential to alleviate challenges related to bioavailability, solubility, stability, and targeted delivery of phytocompounds, contributing to the development of innovative and efficient drug delivery systems and functional food formulations. This review highlights the current knowledge acquired on the preparation, features and applications of polysaccharide/phytocompounds hydrogel-based hybrid systems in wound management, drug delivery, functional foods, and food industry. The structural, functional, and biological requirements of polysaccharides and phytocompounds on the overall performance of such hybrid systems, and their impact on the application domains are also discussed.
Collapse
Affiliation(s)
- Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Ioana-Victoria Platon
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Marinela Lazar
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| | - Ana Clara Aprotosoaie
- "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| |
Collapse
|
7
|
Gaeta M, Travagliante G, Barcellona M, Fragalà ME, Purrello R, D'Urso A. Self-Assembled Chiral Film Based on Melanin Polymers. Chirality 2024; 36:e23695. [PMID: 38890151 DOI: 10.1002/chir.23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Chirality plays a fundamental role in natural phenomena, yet its manifestation on solid surfaces remains relatively unexplored. In this study, we investigate the formation of chiroptical melanin-based self-assembled films on quartz substrates, leveraging mussel-inspired surface chemistry. Water-soluble porphyrins serve as molecular synthons, facilitating the spontaneous formation of hetero-aggregates in phosphate-buffered saline containing L- or D-DOPA. Spectroscopic analysis reveals chiral transfer from DOPA enantiomers to porphyrin hetero-aggregates, followed by the disruption of these latter and subsequent generation of chiral melanin structures in solution. Quartz substrates inserted into these solutions spontaneously accumulate homogeneous melanin-like films over days, demonstrating the feasibility of self-assembly. The resulting films exhibit characteristic UV/Vis and CD spectra, with distinct signals indicating successful chiral induction. Interestingly, the AFM characterizations reveal a distinct surface morphology, and in addition, some thermal and mechanical properties have been taken into account. Overall, this study sheds light on the formation, stability, and chiroptical properties of melanin-based films, paving the way for their application in various fields.
Collapse
Affiliation(s)
- Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | | | - Matteo Barcellona
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Maria Elena Fragalà
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
8
|
Yu Y, Jin S, Yu Z, Xing J, Chen H, Li K, Liu C, Deng C, Xiao H. Deep eutectic supramolecular polymer functionalized MXene for enhancing mechanical properties, photothermal conversion, and bacterial inactivation of cellulose textiles. Int J Biol Macromol 2024; 267:131512. [PMID: 38608972 DOI: 10.1016/j.ijbiomac.2024.131512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have gained significant attention for their potential in constructing diverse functional materials, However, MXene is easily oxidized and weakly bound to the cellulose matrix, which pose challenges in developing MXene-decorated non-woven fabric with strong bonding and stable thermal management properties. Herein, we successfully prepared deep eutectic supramolecular polymer (DESP) functionalized MXene to address these issues. MXene can be wrapped with DESP to be insulated from water and protected from being oxidized. Subsequently, we achieved an efficient in-situ deposition of DESP-functionalized MXene onto fibers through a combination of dip coating and photopolymerization technique. The resulting nonwoven fabric (CNs-DESP@M) exhibited excellent photothermal conversion properties along with rapid thermal response and functional stability. Interestingly, the interface bonding between MXene and the fiber surface was significantly enhanced due to the abundant pyrogallol groups in DESP, resulting in the composite textile exhibiting commendable mechanical properties (2.68 MPa). Moreover, the as-prepared textile demonstrates outstanding bactericidal efficacy against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The multifunctional textile, created through a facile and efficient approach, demonstrates remarkable potential for applications in smart textiles, catering to the diverse needs of individuals in the future.
Collapse
Affiliation(s)
- Yuqing Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shicun Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhaochuan Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jieping Xing
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Kuang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Deng
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
| |
Collapse
|
9
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
10
|
Ohanyan N, Abelyan N, Manukyan A, Hayrapetyan V, Chailyan S, Tiratsuyan S, Danielyan K. Tannin-albumin particles as stable carriers of medicines. Nanomedicine (Lond) 2024; 19:689-708. [PMID: 38348681 DOI: 10.2217/nnm-2023-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Background: The effectiveness of a drug is dependent on its accumulation at the site of therapeutic action, as well as its time in circulation. The aim of the research was the creation of stable albumin/tannin (punicalagin, punicalin) particles, which might serve for the delivery of medicines. Methods: Numerous chromatographic and analytical methods, docking analyses and in vivo testing were applied and used. Results: Stable tannin-albumin/medicine particles with a diameter of ∼100 nm were obtained. The results of in vivo experiments proved that tannin-albumin particles are more stable than albumin particles. Conclusion: Based on the experiments and docking analyses, these stable particles can carry an extended number of medicines, with diverse chemical structures.
Collapse
Affiliation(s)
- Nelli Ohanyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | | | - Arpi Manukyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | - Vardan Hayrapetyan
- Institute of Chemical Physics named after A.B. Nalbandyan, NAS RA, Yerevan 0014, Armenia
| | - Samvel Chailyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | | | - Kristine Danielyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
- Pharmacy Department, Eurasia International University, Yerevan 0014, Armenia
| |
Collapse
|
11
|
Wu X, Smet E, Brandi F, Raikwar D, Zhang Z, Maes BUW, Sels BF. Advancements and Perspectives toward Lignin Valorization via O-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317257. [PMID: 38128012 DOI: 10.1002/anie.202317257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ewoud Smet
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Francesco Brandi
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Deepak Raikwar
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Zhenlei Zhang
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
12
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Tang Z, Lin X, Yu M, Mondal AK, Wu H. Development of Biocompatible Mussel-Inspired Cellulose-Based Underwater Adhesives. ACS OMEGA 2024; 9:3877-3884. [PMID: 38284020 PMCID: PMC10809253 DOI: 10.1021/acsomega.3c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
Conventional adhesives have poor underwater adhesion and harm to human health and the environment during their use, which largely limits their practical applications. Herein, we synthesized cellulose-based adhesives with underwater adhesion and biocompatibility by grafting N-(3,4-dihydroxyphenethyl)methacrylamide into the cellulose chain via atom transfer radical polymerization (ATRP). FTIR, 1H NMR, and XPS analyses ensured the successful preparation of the cellulose-based adhesive polymers. The different properties of the prepared adhesives, including swelling ratio, adhesion strength, and biocompatibility are examined. Results found that the lap shear strength is enhanced by increasing the catechol content. When catechol content is 27.2 mol %, cellulose-based adhesive with the addition of Fe3+ possesses a strong lap shear strength of 2.13 MPa in a dry environment, 0.10 MPa underwater, and 0.16 MPa under seawater for iron substrate, respectively. In addition, the cell culture test demonstrated that the prepared adhesives have outstanding biocompatibility. The cellulose-based adhesives with underwater adhesion and biocompatibility have potential applications in biomedicine, electronic engineering, and construction fields.
Collapse
Affiliation(s)
- Zuwu Tang
- School
of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, P. R. China
| | - Xinxing Lin
- School
of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, P. R. China
| | - Meiqiong Yu
- School
of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, P. R. China
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou, Fujian 350108, P. R. China
- National
Forestry and Grassland Administration Key Laboratory of Plant Fiber
Functional Materials, Fuzhou, Fujian 350108, P. R. China
| | - Ajoy Kanti Mondal
- Institute
of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Hui Wu
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou, Fujian 350108, P. R. China
- National
Forestry and Grassland Administration Key Laboratory of Plant Fiber
Functional Materials, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
14
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
15
|
Zhang S, Yang L, Wang Y, Yang G, Li Y, Li Y, Zhu J, Li R, Xie W, Wan Q, Pei X, Chen J, Zhang X, Wang J. Development of a Stretchable and Water-Resistant Hydrogel with Antibacterial and Antioxidant Dual Functions for Wound Healing in Movable Parts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43524-43540. [PMID: 37695676 DOI: 10.1021/acsami.3c08782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The treatment of wounds that develop on moving parts of the body, such as joints, is considered a challenge due to poor mechanical matching and secondary injury caused by continuous motion and inflammation. Herein, a stretchable, multifunctional hydrogel dressing utilizing the dual cross-linking of chitosan (CS) and acrylic acid (AA) and modified with caffeic acid (CA) and aloin (Alo) was developed. Mechanical testing demonstrated that the hydrogel possessed excellent stretching capability (of approximately 869%) combined with outstanding adhesion (about 56 kPa), contributing to its compatibility with moving parts and allowing complete coverage of wound sites without limiting joint and organ motion. Bioinformatics analysis confirmed that use of the hydrogel resulted in upregulated expression of multiple genes related to angiogenesis and cell proliferation. Furthermore, antibacterial testing indicated that the dressing suppressed the growth of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), providing a better microenvironment for wound healing. An in vivo wound defect model on movable skin verified that the wound healing observed with the hydrogel dressing was superior to that observed with a commercially available dressing. Taken together, the results suggest that a stretchable multifunctional hydrogel dressing represents a promising alternative wound dressing with therapeutic potential for superior healing, especially for moving parts of the body.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Guangmei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yahong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Liu B, Zhang Z, Li B, Liu Q, Lee BP. Acrylate monomer polymerization triggered by iron oxide magnetic nanoparticles and catechol containing microgels. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 468:143716. [PMID: 37334100 PMCID: PMC10275414 DOI: 10.1016/j.cej.2023.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Phenol and its derivatives are the most used polymerization inhibitors for vinyl-based monomers. Here, we reported a novel catalytic system composed of mussel inspired adhesive moiety, catechol, in combination with iron oxide nanoparticles (IONPs) to generate hydroxyl radical (•OH) at pH 7.4. Catechol-containing microgel (DHM) was prepared by copolymerizing dopamine methacrylamide (DMA) and N-hydroxyethyl acrylamide (HEAA), which generated superoxide (•O2-) and hydrogen peroxide (H2O2) as a result of catechol oxidation. In the presence of IONPs, the generated reactive oxygen species were further converted to •OH, which initiated free radical polymerization of various water-soluble acrylate-based monomers including neutral (acrylamide, methyl acrylamide, etc.), anionic (2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt), cationic ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), and zwitterionic (2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) monomers. Compared with the typical free radical initiating systems, the reported system does not require the addition of extra initiators for polymerization. During the process of polymerization, a bilayer hydrogel was formed in situ and exhibited the ability to bend during the process of swelling. The incorporation of IONPs significantly enhanced magnetic property of the hydrogel and the combination of DHM and IONPs also improved the mechanical properties of these hydrogels.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, Jilin 130022, China
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bingqian Li
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, Jilin 130022, China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, Jilin 130022, China
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
17
|
Zhao X, Liu Y, Zhu Q, Gong W. Catechol-Based Porous Organic Polymers for Effective Removal of Phenolic Pollutants from Water. Polymers (Basel) 2023; 15:polym15112565. [PMID: 37299361 DOI: 10.3390/polym15112565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Phenolic pollutants released from industrial activities seriously damage natural freshwater resources, and their elimination or reduction to safe levels is an urgent challenge. In this study, three catechol-based porous organic polymers, CCPOP, NTPOP, and MCPOP, were prepared using sustainable lignin biomass-derived monomers for the adsorption of phenolic contaminants in water. CCPOP, NTPOP, and MCPOP showed good adsorption performance for 2,4,6-trichlorophenol (TCP) with theoretical maximum adsorption capacities of 808.06 mg/g, 1195.30 mg/g, and 1076.85 mg/g, respectively. In addition, MCPOP maintained a stable adsorption performance after eight consecutive cycles. These results indicate that MCPOP is a potential material for the effective treatment of phenol pollutants in wastewater.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiqiong Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qimeng Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weitao Gong
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Cui G, Guo X, Su P, Zhang T, Guan J, Wang C. Mussel-inspired nanoparticle composite hydrogels for hemostasis and wound healing. Front Chem 2023; 11:1154788. [PMID: 37065820 PMCID: PMC10097955 DOI: 10.3389/fchem.2023.1154788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Uncontrolled hemorrhage caused by trauma can easily lead to death. Efficient and safe hemostatic materials are an urgent and increasing need for hemostatic research. Following a trauma, wound healing is induced by various cellular mechanisms and proteins. Hemostatic biomaterials that can not only halt bleeding quickly but also provide an environment to promote wound healing have been the focus of research in recent years. Mussel-inspired nanoparticle composite hydrogels have been propelling the development of hemostatic materials owing to their unique advantages in adhesion, hemostasis, and bacteriostasis. This review summarizes the hemostatic and antimicrobial fundamentals of polydopamine (PDA)-based nanomaterials and emphasizes current developments in hemorrhage-related PDA nanomaterials. Moreover, it briefly discusses safety concerns and clinical application problems with PDA hemostatic nanomaterials.
Collapse
Affiliation(s)
- Guihua Cui
- College of Chemistry, Northeast Normal University, Changchun, Jilin, China
- Department of Chemistry, Jilin Medical University, Jilin City, Jilin, China
| | - Xiaoyu Guo
- Jilin Vocational College of Industry and Technology, Jilin City, Jilin, China
| | - Ping Su
- Affiliated 465 Hospital, Jilin Medical University, Jilin City, Jilin, China
| | - Tianshuo Zhang
- Department of Chemistry, Jilin Medical University, Jilin City, Jilin, China
| | - Jiao Guan
- Department of Chemistry, Jilin Medical University, Jilin City, Jilin, China
| | - Chungang Wang
- College of Chemistry, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
19
|
Ma H, Qiao X, Han L. Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics (Basel) 2023; 8:biomimetics8010128. [PMID: 36975358 PMCID: PMC10046294 DOI: 10.3390/biomimetics8010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels, with 3D hydrophilic polymer networks and excellent biocompatibilities, have emerged as promising biomaterial candidates to mimic the structure and properties of biological tissues. The incorporation of nanomaterials into a hydrogel matrix can tailor the functions of the nanocomposite hydrogels to meet the requirements for different biomedical applications. However, most nanomaterials show poor dispersion in water, which limits their integration into the hydrophilic hydrogel network. Mussel-inspired chemistry provides a mild and biocompatible approach in material surface engineering due to the high reactivity and universal adhesive property of catechol groups. In order to attract more attention to mussel-inspired nanocomposite hydrogels, and to promote the research work on mussel-inspired nanocomposite hydrogels, we have reviewed the recent advances in the preparation of mussel-inspired nanocomposite hydrogels using a variety of nanomaterials with different forms (nanoparticles, nanorods, nanofibers, nanosheets). We give an overview of each nanomaterial modified or hybridized by catechol or polyphenol groups based on mussel-inspired chemistry, and the performances of the nanocomposite hydrogel after the nanomaterial's incorporation. We also highlight the use of each nanocomposite hydrogel for various biomedical applications, including drug delivery, bioelectronics, wearable/implantable biosensors, tumor therapy, and tissue repair. Finally, the challenges and future research direction in designing mussel-inspired nanocomposite hydrogels are discussed.
Collapse
Affiliation(s)
- Haohua Ma
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Xin Qiao
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Lu Han
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| |
Collapse
|
20
|
Hareesha N, Manjunatha J, Tighezza AM, Albaqami MD, Sillanpää M. Electrochemical detection and quantification of catechol based on a simple and sensitive poly(riboflavin) modified carbon nanotube paste electrode. Heliyon 2023; 9:e14378. [PMID: 36942251 PMCID: PMC10023950 DOI: 10.1016/j.heliyon.2023.e14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In the present research work, selective and sensitive catechol (CT) detection and quantification were shown in the presence of resorcinol (RS) in 0.2 M phosphate buffer (PB) solution by preparing a low-cost, simple, and green carbon nanotube paste electrode (CNTPE) surface activated with electropolymerized riboflavin (PRF). The morphological, conductivity, and electrochemical features of the modified electrode (PRFMCNTPE) and bare carbon nanotube paste electrode (BCNTPE) materials were analyzed using electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The PRF-activated electrode displays outstanding sensitivity, stability, selectivity, reproducibility, and repeatability for the redox feature of CT with improved electrochemical current and declined electrochemical potential compared to BCNTPE. The peak currents of CT are correlated to the different CT concentrations (CV method: 6.0-60.0 μM & DPV method: 0.5-7.0 μM), and the obtained detection limit (DL) and quantification limit (QL) are found to be 0.025 μM and 0.085 μM (CV method) and 0.0039 μM and 0.0132 μM (DPV method), respectively. The prepared PRFMCNTPE material was advantageous for the examination of CT in environmentally important tap water sample as a real-time application.
Collapse
Affiliation(s)
- N. Hareesha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India
| | - J.G. Manjunatha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India
- Corresponding author.
| | - Ammar M. Tighezza
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
de Lacalle JL, Gallastegui A, Olmedo-Martínez JL, Moya M, Lopez-Larrea N, Picchio ML, Mecerreyes D. Multifunctional Ionic Polymers from Deep Eutectic Monomers Based on Polyphenols. ACS Macro Lett 2023; 12:125-132. [PMID: 36633542 PMCID: PMC9948532 DOI: 10.1021/acsmacrolett.2c00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein we report a novel family of deep eutectic monomers and the corresponding polymers, made of (meth)acrylic ammonium salts and a series of biobased polyphenols bearing catechol or pyrogallol motifs. Phenolic chemistry allows modulating molecular interactions by tuning the ionic polymer properties from soft adhesive to tough materials. For instance, pyrogallol and hydrocaffeic acid-derived ionic polymers showed outstanding adhesiveness (>1 MPa), while tannic acid/gallic acid polymers with dense hydrogen bond distribution afforded ultratough elastomers (stretchability ≈1000% and strength ≈3 MPa). Additionally, phenolic polymeric deep eutectic solvents (polyDES) featured metal complexation ability, antibacterial properties, and fast processability by digital light 3D printing.
Collapse
Affiliation(s)
- Jon López de Lacalle
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Antonela Gallastegui
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Jorge L. Olmedo-Martínez
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Melissa Moya
- Laboratorio
de Investigación, Universidad de
Ciencias Médicas, 10108 San José, Costa
Rica,Facultad
de Microbiología, Universidad de
Ciencias Médicas, 10108 San José, Costa
Rica
| | - Naroa Lopez-Larrea
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L. Picchio
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain,Instituto
de Desarrollo Tecnológico para la Industria Química
(INTEC), CONICET, Güemes
3450, Santa Fe 3000, Argentina,E-mail:
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain,IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain,E-mail:
| |
Collapse
|
22
|
Grosjean M, Gangolphe L, Déjean S, Hunger S, Bethry A, Bossard F, Garric X, Nottelet B. Dual-Crosslinked Degradable Elastomeric Networks With Self-Healing Properties: Bringing Multi(catechol) Star-Block Copolymers into Play. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2077-2091. [PMID: 36565284 DOI: 10.1021/acsami.2c17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the biomedical field, degradable chemically crosslinked elastomers are interesting materials for tissue engineering applications, since they present rubber-like mechanical properties matching those of soft tissues and are able to preserve their three-dimensional (3D) structure over degradation. Their use in biomedical applications requires surgical handling and implantation that can be a source of accidental damages responsible for the loss of properties. Therefore, their inability to be healed after damage or breaking can be a major drawback. In this work, biodegradable dual-crosslinked networks that exhibit fast and efficient self-healing properties at 37 °C are designed. Self-healable dual-crosslinked (chemically and physically) elastomeric networks are prepared by two methods. The first approach is based on the mix of hydrophobic poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) star-shaped copolymers functionalized with either catechol or methacrylate moieties. In the second approach, hydrophobic bifunctional PEG-PLA star-shaped copolymers with both catechol and methacrylate on their structure are used. In the two systems, the supramolecular network is responsible for the self-healing properties, thanks to the dynamic dissociation/reassociation of the numerous hydrogen bonds between the catechol groups, whereas the covalent network ensures mechanical properties similar to pure methacrylate networks. The self-healable materials display mechanical properties that are compatible with soft tissues and exhibit linear degradation because of the chemical cross-links. The performances of networks from mixed copolymers versus bifunctional copolymers are compared and demonstrate the superiority of the latter. The biocompatibility of the materials is also demonstrated, confirming the potential of these degradable and self-healable elastomeric networks to be used for the design of temporary medical devices.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Louis Gangolphe
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
- LRP, Univ Grenoble Alpes, CNRS, Grenoble INP, 38000Grenoble, France
| | - Stéphane Déjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Sylvie Hunger
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Frédéric Bossard
- LRP, Univ Grenoble Alpes, CNRS, Grenoble INP, 38000Grenoble, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| |
Collapse
|
23
|
Ercole F, Kim CJ, Dao NV, Tse WKL, Whittaker MR, Caruso F, Quinn JF. Synthesis of Thermoresponsive, Catechol-Rich Poly(ethylene glycol) Brush Polymers for Attenuating Cellular Oxidative Stress. Biomacromolecules 2023; 24:387-399. [PMID: 36469858 DOI: 10.1021/acs.biomac.2c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a platform to integrate customizable quantities of catechol units into polymers by reacting caffeic acid carbonic anhydride with polymers having pendant amine groups. Brush poly(ethylene glycol)-caffeamide (PEG-CAF) copolymers based on oligo(ethylene glycol)methyl ether methacrylate (OEGMA500) were obtained with a catechol content of approximately 30, 40, and 50 mol % (vs OEGMA content). Owing to the hydrophobicity of the introduced CAF groups, the catechol copolymers exhibited cloud points in the range of 23-46 °C and were used to fabricate thermoresponsive FeIII metal-phenolic network capsules. Polymers with the highest CAF content (50 mol %) proved most effective for attenuating reactive oxygen species levels in vitro, in co-cultured fibroblasts, and breast cancer cells, even in the presence of an exogenous oxidant source. The reported approach to synthesize customizable catechol materials could be generalized to other amine-functional polymers, with potential biomedical applications such as adhesives or stimuli-responsive drug delivery systems.
Collapse
Affiliation(s)
- Francesca Ercole
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nam V Dao
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Warren K L Tse
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Qiao Y, Zhang Q, Wang Q, Li Y, Wang L. Chrysanthemum–like hierarchitectures decorated on polypropylene hernia mesh and their anti-inflammatory effects. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Grignon E, An SY, Battaglia AM, Seferos DS. Catechol Homopolymers and Networks through Postpolymerization Modification. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eloi Grignon
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - So Young An
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alicia M. Battaglia
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
26
|
Huang J, Wang S, Wang X, Zhu J, Wang Z, Zhang X, Cai K, Zhang J. Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties. Acta Biomater 2022; 152:171-185. [PMID: 36084921 DOI: 10.1016/j.actbio.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Nanoadhesives can achieve tight wound closure by connecting biomacromolecules from both sides. However, previously developed adhesive systems suffered from suboptimal wound healing efficiency due to the lack of interparticle cohesion, sufficient reactive oxygen species (ROS)-scavenging sites, and angiogenesis consideration. Herein, we developed a polymer entangled porous nanoadhesive system to address the above challenge by synergy of three functional components. Firstly, hybrid mesoporous silica nanoparticles with highly integrated polydopamine (MS-PDA) were prepared by templated synthesis. The entangling between PVA polymer and MS-PDA contributed to much stronger cohesion between nanoparticles, which led to 75% larger adhesion strength. As confirmed by in vitro and in vivo evaluations, the highly exposed catechol groups boosted the scavenging activity of ROS (1.8-4.1 fold enhancement as compared with nonporous counterpart). Consequently, more macrophages exhibited anti-inflammatory phenotype, leading to 2-2.6 fold lower pro-inflammatory cytokine levels. Moreover, the sustained release of bioactive SiO44- by the disintegration of nanoparticles contributed to ∼3-fold higher expression of VEGF and enhanced new blood vessel formation, as well as better wound repair. This platform can provide a new paradigm for developing multifunctional nanoadhesive systems in treating skin wounds. STATEMENT OF SIGNIFICANCE: PVA polymer entangled mesoporous nanoadhesives of polydopamine (PDA)/silica hybrids with the combination of excellent wound closure effect, boosted ROS-scavenging activity, and significant angiogenesis ability were developed for improving the suboptimal skin wound healing efficiency. This strategy not only greatly advances our ability to rationally integrate repairing elements in nanoadhesives for manipulating combined processes of interfacial events during wound healing, but also offers general implications toward application of polymers to reinforce the adhesion strength in nanoadhesive systems. In addition, our findings on the impacts of pore effects mediated ROS species conversion and polymer entanglement may also trigger great interests and facilitate the development/broad application of therapeutic adhesives.
Collapse
Affiliation(s)
- Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
27
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
28
|
Picchio ML, Minudri D, Mantione D, Criado-Gonzalez M, Guzmán-González G, Schmarsow R, Müller AJ, Tomé LC, Minari RJ, Mecerreyes D. Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:8135-8142. [PMID: 35783106 PMCID: PMC9241144 DOI: 10.1021/acssuschemeng.2c01976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Indexed: 05/12/2023]
Abstract
Natural deep eutectics solvents (NADES), owing to their high solvation capacity and nontoxicity, are actively being sought for many technological applications. Herein, we report a series of novel NADES based on choline chloride and plant-derived polyphenols. Most of the obtained phenolic NADES have a wide liquid range and high thermal stability above 150 °C. Among them, small-sized polyphenols, like pyrogallol, vanillyl alcohol, or gentisic acid, lead to low-viscosity liquids with ionic conductivities in the order of 10-3 S cm-1 at room temperature. Interestingly, polyphenols possess valuable properties as therapeutic agents, antioxidants, adhesives, or redox-active compounds, among others. Thus, we evaluated the potential of these novel NADES for two applications: bioadhesives and corrosion protection. The mixture of choline chloride-vanillyl alcohol (2:3 mol ratio) and gelatin resulted in a highly adhesive viscoelastic liquid (adhesive stress ≈ 135 kPa), affording shear thinning behavior. Furthermore, choline chloride-tannic acid (20:1) showed an extraordinary ability to coordinate iron ions, reaching excellent corrosion inhibitive efficiencies in mild steel protection.
Collapse
Affiliation(s)
- Matías L. Picchio
- Instituto
de Desarrollo Tecnológico para la Industria Química
(INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas (Universidad Nacional de Córdoba),
IPQA−CONICET, Haya de la Torre y Medina Allende, Córdoba 5000, Argentina
- (Matías L. Picchio)
| | - Daniela Minudri
- POLYMAT
and Department of Polymers and Advanced Materials, Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- POLYKEY
Polymers, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT
and Department of Polymers and Advanced Materials, Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Gregorio Guzmán-González
- POLYMAT
and Department of Polymers and Advanced Materials, Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Ruth Schmarsow
- POLYMAT
and Department of Polymers and Advanced Materials, Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials, Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Liliana C. Tomé
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Roque J. Minari
- Instituto
de Desarrollo Tecnológico para la Industria Química
(INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - David Mecerreyes
- POLYMAT
and Department of Polymers and Advanced Materials, Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- (David Mecerreyes)
| |
Collapse
|
29
|
Escudero J, Mampuys P, Mensch C, Bheeter CB, Vroemans R, Orru RV, Harvey J, Maes BU. Synthesis of Heterocycles via Aerobic Ni-Catalyzed Imidoylation of Aromatic 1,2-Bis-nucleophiles with Isocyanides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Escudero
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Pieter Mampuys
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Carl Mensch
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Charles B. Bheeter
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Robby Vroemans
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Romano V.A. Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Center Court, Urmonderbaan 22, Geleen 6167 RD, The Netherlands
| | - Jeremy Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B3001, Belgium
| | - Bert U.W. Maes
- Division of Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| |
Collapse
|
30
|
Xu L, Liu J, Yun Daphne Ma X, Li Z, He C, Lu X. Facile anchoring mussel adhesive mimic tentacles on biodegradable polymer cargo carriers via self-assembly for microplastic-free cosmetics. J Colloid Interface Sci 2022; 612:13-22. [PMID: 34974254 DOI: 10.1016/j.jcis.2021.12.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Enhancing the deposition of fragrance delivery systems contained in personal care products on target surfaces is crucial for increasing the longevity of scent, efficiently utilizing expensive functional compounds and limiting the generation of microplastics in domestic waste water. In this work, we designed and synthesized a new type of biomimetic macromolecules, chitosan-graft-L-lysine-L-DOPA (C-L-D), as a versatile biodegradable adhesion promoter to facilitate the deposition of biodegradable fragrance carriers on diverse surfaces including hair, cotton and skin. The C-L-D has hyperbranched chain architecture with many oligopeptide adhesive tentacles, each being a simple mimic of mussel adhesive proteins. It also exhibits unique amphiphilic characteristic. As a result, it could be facilely anchored on cargo-loaded poly(lactic-co-glycolic acid) nanoparticle surface via self-assembly in the particle preparation process. The C-L-D-modified nanoparticles show significantly higher deposition efficiencies than polyvinyl alcohol- and chitosan-coated particles when deposited on the target surfaces in different aqueous media as the lysine and DOPA units are capable of providing multi-noncovalent interactions, including electrostatic, polar, hydrophobic interactions, and bidentate hydrogen bonds, with the target surfaces, and possibly also inducing oxidative cross-linking. A much higher retention rate of the C-L-D-modified nanoparticles on cotton surface is also observed after washing with a soap solution, which could be attributed to the significant role played by bidentate hydrogen bonds. These findings suggest that C-L-D is a versatile biodegradable adhesion promoter and has the potential to be applied for various personal care applications and beyond.
Collapse
Affiliation(s)
- Lulu Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jian Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiu Yun Daphne Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
31
|
Back F, Mathieu E, Betscha C, El Yakhlifi S, Arntz Y, Ball V. Optimization of the Elasticity and Adhesion of Catechol- or Dopamine-Loaded Gelatin Gels under Oxidative Conditions. Gels 2022; 8:210. [PMID: 35448111 PMCID: PMC9028716 DOI: 10.3390/gels8040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The synthesis of surgical adhesives is based on the need to design glues that give rise to strong and fast bonds without cytotoxic side effects. A recent trend in surgical adhesives is to use gel-forming polymers modified with catechol groups, which can undergo oxidative crosslinking reactions and are strongly adhesive to all kinds on surfaces in wet conditions. We previously showed that blending gelatin with catechol can yield strong adhesion when the catechol is oxidized by a strong oxidant. Our previous work was limited to the study of the variation in the sodium periodate concentration. In this article, for an in-depth approach to the interactions between the components of the gels, the influence of the gelatin, the sodium periodate and dopamine/(pyro)catechol concentration on the storage (G') and loss (G″) moduli of the gels, as well as their adhesion on steel, have been studied by shear rheometry. The hydrogels were characterized by infrared and UV-Vis spectroscopy and the size of their pores visualized by digital microscopy and SEM after freeze drying but without further additives. In terms of adhesion between two stainless steel plates, the optimum was obtained for a concentration of 10% w/v in gelatin, 10 mM in sodium periodate, and 20 mM in phenolic compounds. Below these values, it is likely that crosslinking has not been maximized and that the oxidizing environment is weakening the gelatin. Above these values, the loss in adhesiveness may result from the disruption of the alpha helixes due to the large number of phenolic compounds as well as the maintenance of an oxidizing environment. Overall, this investigation shows the possibility to design strongly adhesive hydrogels to metal surfaces by blending gelatin with polyphenols in oxidative conditions.
Collapse
Affiliation(s)
- Florence Back
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Eric Mathieu
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Cosette Betscha
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Salima El Yakhlifi
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Youri Arntz
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| |
Collapse
|
32
|
Alberts EM, Fernando PUAI, Thornell TL, George HE, Koval AM, Shukla MK, Weiss CA, Moores LC. Toward bioinspired polymer adhesives: activation assisted via HOBt for grafting of dopamine onto poly(acrylic acid). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211637. [PMID: 35360348 PMCID: PMC8965409 DOI: 10.1098/rsos.211637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
The design of bioinspired polymers has long been an area of intense study, however, applications to the design of concrete admixtures for improved materials performance have been relatively unexplored. In this work, we functionalized poly(acrylic acid) (PAA), a simple analogue to polycarboxylate ether admixtures in concrete, with dopamine to form a catechol-bearing polymer (PAA-g-DA). Synthetic routes using hydroxybenzotriazole (HOBt) as an activating agent were examined for their ability in grafting dopamine to the PAA backbone. Previous literature using the traditional coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to graft dopamine to PAA were found to be inconsistent and the sensitivity of EDC coupling reactions necessitated a search for an alternative. Additionally, HOBt allowed for greater control over per cent functionalization of the backbone, is a simple, robust reaction, and showed potential for scalability. This finding also represents a novel synthetic pathway for amide bond formation between dopamine and PAA. Finally, we performed preliminary adhesion studies of our polymer on rose granite specimens and demonstrated a 56% improvement in the mean adhesion strength over unfunctionalized PAA. These results demonstrate an early study on the potential of PAA-g-DA to be used for improving the bonds within concrete.
Collapse
Affiliation(s)
| | - P. U. Ashvin Iresh Fernando
- Bennett Aerospace, 1100 Crescent Green, #250, Cary, NC 27518, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Travis L. Thornell
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Hannah E. George
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, MS 39406, USA
| | - Ashlyn M. Koval
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Manoj K. Shukla
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Charles A. Weiss
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Lee C. Moores
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
33
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
34
|
Abstract
Although the synthesis of thiophenol-pendant polymers was reported in the 1950s, the polymers generally suffered from oxidation and became insoluble in organic solvents, hampering detailed characterization and further applications. Dithiocatechol-pendant polymers, which have one additional ortho-thiol group than thiophenol-pendant polymers, have never been synthesized, despite their promise in various applications due to their analogous molecular structure with catechol-pendant polymers. Herein, we report the first synthesis of dithiocatechol-pendant polymers using a novel protection-deprotection strategy. We carefully examined the synthetic routes and identified the deprotection conditions that do not cause cross-linking of the dithiocatechol moieties. Because the resulting dithiocatechol-pendant polymers were soluble in common organic solvents (e.g., tetrahydrofuran and N,N-dimethylformamide), the polymers can be fully characterized by standard spectroscopic methods, providing valuable data for future researchers. We also showed that besides free-radical polymerization, reversible addition-fragmentation chain-transfer polymerization can also be adopted to synthesize dithiocatechol-pendant polymers. This work paves the way for the exploitation of dithiocatechol-containing polymers for the fabrication of novel functional materials.
Collapse
Affiliation(s)
- Jincai Li
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joseph J Richardson
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Hu X, Li Z, Yang Z, Zhu F, Zhao W, Duan G, Li Y. Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Lett 2022; 11:251-256. [PMID: 35574777 DOI: 10.1021/acsmacrolett.1c00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While low-dimensional (1D and 2D) polycatechol materials have been widely described for a range of biomedical and surface engineering applications, very few examples have been explored that focus on the construction of functional polycatechol nanoparticles. Herein, we report the facile fabrication of a series of polycatechol nanoparticles via a general and robust strategy based on the one-step oxidation reaction. IO3--induced catechol redox chemistry could facilitate the precise size control of the resulting nanoparticles and also allow the successful transfer and amplification of microscopic monomer function into macroscopic polycatechol material properties. The ease, facileness, and controllability of such a one-step fabrication process could highly promote the development of polycatechol nanomaterials for various applications.
Collapse
Affiliation(s)
- Xinhao Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Barium 5-(tert-butyl)-2,3-dihydroxybenzenesulfonate. MOLBANK 2022. [DOI: 10.3390/m1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catechols and their derivatives attract great scientific interest due to the broad spectrum of their functional properties, including complexation, redox behavior, association ability and antioxidant activity. Because of the low molecular mass and two-electron redox process, they are considered to be a promising energy storage compound in different types of electrochemical power sources, such as metal-ion batteries or redox flow batteries. Herein, we report a preparation of the sterically hindered sulfonated catechol, namely the barium salt of 5-(tert-butyl)-2,3-dihydroxybenzenesulfonic acid, by the direct sulfonation of 4-tert-butylcatechol, by concentrated sulfuric acid. The proposed procedure is green and atom-economic, providing the desired product in high yield after simple purification. The solvent-free procedure is inexpensive and highly scalable, which enables direct industrial production of the title product. The resulting product was characterized by the 1H and 13C nuclear magnetic resonance (NMR) and ESI-high resolution mass spectrometry (ESI-HRMS).
Collapse
|
37
|
Yang N, Yuan R, You D, Zhang Q, Wang J, Xuan H, Ge L. Gallol-based constant underwater coating adhesives for severe aqueous conditions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Li Z, Chen Z, Chen H, Chen K, Tao W, Ouyang XK, Mei L, Zeng X. Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioact Mater 2022; 17:49-70. [PMID: 35386465 PMCID: PMC8958331 DOI: 10.1016/j.bioactmat.2022.01.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/07/2023] Open
Abstract
As a kind of nature-derived bioactive materials, polyphenol-based hydrogels possess many unique and outstanding properties such as adhesion, toughness, and self-healing due to their specific crosslinking structures, which have been widely used in biomedical fields including wound healing, antitumor, treatment of motor system injury, digestive system disease, oculopathy, and bioelectronics. In this review, starting with the classification of common polyphenol-based hydrogels, the pyramid evolution process of polyphenol-based hydrogels from crosslinking structures to derived properties and then to biomedical applications is elaborated, as well as the efficient reverse design considerations of polyphenol-based hydrogel systems are proposed. Finally, the existing problems and development prospects of these hydrogel materials are discussed. It is hoped that the unique perspective of the review can promote further innovation and breakthroughs of polyphenol-based hydrogels in the future. Polyphenol-based hydrogels combine advantages of polyphenols with common hydrogels. Cognition of such hydrogels underwent from structures to properties to applications. Various crosslinked structures of such hydrogels can derive outstanding properties. Such hydrogels can be widely used in biomedicine due to the outstanding properties. Reverse design thought from applications to properties to structures is promising.
Collapse
Affiliation(s)
- Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhidong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Kebing Chen
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Corresponding author.
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Xiao-kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Corresponding author.
| |
Collapse
|
39
|
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:366-393. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial resistance caused by the overuse of antibiotics and the shelter of biofilms has evolved into a global health crisis, which drives researchers to continuously explore antimicrobial molecules and strategies to fight against drug-resistant bacteria and biofilm-associated infections. Cationic antimicrobial peptides (AMPs) are considered to be a category of potential alternative for antibiotics owing to their excellent bactericidal potency and lesser likelihood of inducing drug resistance through their distinctive antimicrobial mechanisms. In this review, the hitherto reported plentiful action modes of AMPs are systematically classified into 15 types and three categories (membrane destructive, nondestructive membrane disturbance, and intracellular targeting mechanisms). Besides natural AMPs, cationic polypeptides, synthetic polymers, and biopolymers enable to achieve tunable antimicrobial properties by optimizing their structures. Subsequently, the applications of these cationic antimicrobial agents at the biointerface as contact-active surface coatings and multifunctional wound dressings are also emphasized here. At last, we provide our perspectives on the development of clinically significant cationic antimicrobials and related challenges in the translation of these materials.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Haoyu Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
40
|
Snook KM, Zasada LB, Chehada D, Xiao DJ. Oxidative control over the morphology of Cu 3(HHTP) 2, a 2D conductive metal–organic framework. Chem Sci 2022; 13:10472-10478. [PMID: 36277645 PMCID: PMC9473509 DOI: 10.1039/d2sc03648g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
The morphology of electrically conductive metal–organic frameworks strongly impacts their performance in applications such as energy storage and electrochemical sensing. However, identifying the appropriate conditions needed to achieve a specific nanocrystal size and shape can be a time-consuming, empirical process. Here we show how partial ligand oxidation dictates the morphology of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), a prototypical 2D conductive metal–organic framework. Using organic quinones as the chemical oxidant, we demonstrate that partial oxidation of the ligand prior to metal binding alters the nanocrystal aspect ratio by over 60-fold. Systematically varying the extent of initial ligand oxidation leads to distinct rod, block, and flake-like morphologies. These results represent an important advance in the rational control of Cu3(HHTP)2 morphology and motivate future studies into how ligand oxidation impacts the nucleation and growth of 2D conductive metal–organic frameworks. The morphology of a copper-based 2D conductive metal–organic framework can be tuned via controlled ligand oxidation. Using quinone oxidants, we show how partial ligand oxidation prior to metal binding alters the nanocrystal aspect ratio by >60-fold.![]()
Collapse
Affiliation(s)
- Kathleen M. Snook
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Leo B. Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dina Chehada
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dianne J. Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
41
|
Tanizaki S, Kubo T, Satoh K. Novel Bio‐Based Catechol‐Containing Copolymers by Precision Polymerization of Caffeic Acid‐Derived Styrenes Using Ester Protection. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shiho Tanizaki
- School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1 H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Tomohiro Kubo
- School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1 H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Kotaro Satoh
- School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1 H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| |
Collapse
|
42
|
Jiménez N, Ruipérez F, González de San Román E, Asua JM, Ballard N. Fundamental Insights into Free-Radical Polymerization in the Presence of Catechols and Catechol-Functionalized Monomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nerea Jiménez
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Fernando Ruipérez
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
- Department of Physical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Estibaliz González de San Román
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - José M. Asua
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
43
|
Wu Z, Liu J, Lin J, Lu L, Tian J, Li L, Zhou C. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Biomacromolecules 2021; 23:240-252. [PMID: 34931820 DOI: 10.1021/acs.biomac.1c01244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) bioink plays a vital role in the construction of tissues and organs by 3D bioprinting. Collagen has outstanding biocompatibility and is widely used in the field of tissue engineering. However, due to poor mechanical properties and slow self-assembly, it is challenging to manufacture high-precision 3D bioprinted collagen scaffolds. Herein, a novel digital light processing (DLP) bioink which can satisfy the printing of complex structures has been developed. This photocurable bioink is based on collagen and supplemented with a small amount of procyanidins (PA) as a cross-linking agent. The low concentration of collagen gives the bioink good fluidity and excellent biocompatibility, and a small amount of PA increases the cross-linking density of the system to obtain better mechanical properties. Using commercial digital light processing (DLP) printers, this collagen-based ink can effectively print structures with micrometer resolution, and the fidelity of the 3D structures can reach above 90%. Cells were able to be loaded in the bioink and distributed uniformly in the collagen scaffold in an unscathed way. This photocurable collagen bioink has broad application potential in DLP 3D bioprinting.
Collapse
Affiliation(s)
- Zilin Wu
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jing Liu
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jianjun Lin
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lu Lu
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jihuan Tian
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihua Li
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| | - Changren Zhou
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
44
|
Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol: Effect of heteroatoms and asymmetry. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Prozorovska L, Baker BA, Laibinis PE, Jennings GK. Surface-Initiated, Catechol-Containing Polymer Films for Effective Chelation of Aluminum Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13617-13626. [PMID: 34752699 DOI: 10.1021/acs.langmuir.1c02112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a new route for obtaining surface-tethered polymer films containing pendant catechol functional groups via surface-initiated activators regenerated by electron-transfer atom-transfer radical polymerization (SI-ARGET ATRP) of glycidyl methacrylate (GMA) and post-polymerization modification of the resulting poly(glycidyl methacrylate) (pGMA) films with dopamine. This method enables a high degree of functionalization of pGMA films with catechol groups at a controlled level, depending on the duration of the post-polymerization modification reaction. The dopamine-pGMA films readily absorbs Al3+ and Zn2+ ions, as verified by quartz crystal microbalance with dissipation (QCM-D) under continuous flow conditions, and demonstrates a four-fold molar selectivity to Al3+ over Zn2+. The ions desorb from the films upon rinsing with pure deionized (DI) water, which regenerates the catechol sites in the dopamine-pGMA film. Subsequent exposure to metal ions after rinsing steps yields reproducible levels of loading.
Collapse
Affiliation(s)
- Liudmyla Prozorovska
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Bradley A Baker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Paul E Laibinis
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37205, United States
| |
Collapse
|
47
|
Li S, Lorandi F, Wang H, Liu T, Whitacre JF, Matyjaszewski K. Functional polymers for lithium metal batteries. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Kim S, Bae G, Shin M, Kang E, Park TY, Choi YS, Cha HJ. Oriented in situ immobilization of a functional tyrosinase on microcrystalline cellulose effectively incorporates DOPA residues in bioengineered mussel adhesive protein. Biotechnol J 2021; 16:e2100216. [PMID: 34536060 DOI: 10.1002/biot.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Catechol-containing polymers such as mussel adhesive proteins (MAPs) are attractive as biocompatible adhesive biomaterials, and the catecholic amino acid 3,4-dihydroxyphenyl-L-alanine (DOPA) is considered a key molecule in underwater mussel adhesion. Tyrosinases can specifically convert tyrosine to DOPA without any cofactors. However, their catalytic properties still need to be adjusted to minimize unwanted DOPA oxidation via their diphenolase activity and catechol instability at neutral and basic pH values in the reaction products. METHODS AND RESULTS In this work, we constructed a novel functional tyrosinase, mTyr-CNK_CBM, by fusion of mTyr-CNK with a cellulose-binding motif (CBM) for oriented in situ immobilization on microcrystalline cellulose via the C-terminal CBM without any additional purification steps. mTyr-CNK_CBM showed optimal catalytic activity at pH 4.5-6.5 and room temperature and had a high monophenolase/diphenolase activity ratio (Vmax mono/Vmax di = 2.08 at pH 6 and 25°C). mTyr-CNK_CBM exhibited 2.17-fold higher (as a unimmobilized free enzyme) and similarly high (upon immobilization) in vitro DOPA modification of a bioengineered MAP compared to a commercially available mushroom tyrosinase. Moreover, the immobilized mTyr-CNK_CBM showed long-term storability and improved reusability. CONCLUSIONS These results clearly demonstrate a strong potential for practical use of immobilized mTyr-CNK_CBM as a monophenol monooxygenase in preparing biocompatible DOPA-tethered biomaterials and other catechol-containing polymers.
Collapse
Affiliation(s)
- Suhyeok Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Gaeun Bae
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Mincheol Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eungsu Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
49
|
Bryaskova R, Philipova N, Georgiev N, Lalov I, Bojinov V, Detrembleur C. Photoactive mussels inspired polymer coatings: Preparation and antibacterial activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rayna Bryaskova
- Department of Polymer Engineering University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Nikoleta Philipova
- Department of Polymer Engineering University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Nikolay Georgiev
- Department of Organic Synthesis University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Ivo Lalov
- Department of Biotechnology University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Vladimir Bojinov
- Department of Organic Synthesis University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department University of Liege Liège Belgium
| |
Collapse
|
50
|
Comprehensive study of the electrochemical growth and physicochemical properties of polycatecholamines and polycatechol. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|