1
|
Besch D, Seeger DR, Schofield B, Golovko SA, Parmer M, Golovko MY. A simplified method for preventing postmortem alterations of brain prostanoids for true in situ level quantification. J Lipid Res 2024; 65:100583. [PMID: 38909689 PMCID: PMC11301166 DOI: 10.1016/j.jlr.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Dramatic postmortem prostanoid (PG) enzymatic synthesis in the brain causes a significant artifact during PG analysis. Thus, enzyme deactivation is required for an accurate in situ endogenous PG quantification. To date, the only method for preventing postmortem brain PG increase with tissue structure preservation is fixation by head-focused microwave irradiation (MW), which is considered the gold standard method, allowing for rapid in situ heat-denaturation of enzymes. However, MW requires costly equipment that suffers in reproducibility, causing tissue loss and metabolite degradation if overheated. Our recent study indicates that PGs are not synthesized in the ischemic brain unless metabolically active tissue is exposed to atmospheric O2. Based on this finding, we proposed a simple and reproducible alternative method to prevent postmortem PG increase by slow enzyme denaturation before craniotomy. To test this approach, mice were decapitated directly into boiling saline. Brain temperature reached 100°C after ∼140 s during boiling, though 3 min boiling was required to completely prevent postmortem PG synthesis, but not free arachidonic acid release. To validate this fixation method, brain basal and lipopolysaccharide (LPS)-induced PG were analyzed in unfixed, MW, and boiled tissues. Basal and LPS-induced PG levels were not different between MW and boiled brains. However, unfixed tissue showed a significant postmortem increase in PG at basal conditions, with lesser differences upon LPS treatment compared to fixed tissue. These data indicate for the first time that boiling effectively prevents postmortem PG alterations, allowing for a reproducible, inexpensive, and conventionally accessible tissue fixation method for PG analysis.
Collapse
Affiliation(s)
- Derek Besch
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Drew R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Brennon Schofield
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Meredith Parmer
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
2
|
Huang HX, Inglese P, Tang J, Yagoubi R, Correia GDS, Horneffer-van der Sluis VM, Camuzeaux S, Wu V, Kopanitsa MV, Willumsen N, Jackson JS, Barron AM, Saito T, Saido TC, Gentlemen S, Takats Z, Matthews PM. Mass spectrometry imaging highlights dynamic patterns of lipid co-expression with Aβ plaques in mouse and human brains. J Neurochem 2024; 168:1193-1214. [PMID: 38372586 DOI: 10.1111/jnc.16042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024]
Abstract
Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aβ) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aβ plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aβ plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aβ-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aβ plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.
Collapse
Affiliation(s)
- Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Paolo Inglese
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
| | - Riad Yagoubi
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Gonçalo D S Correia
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Stephane Camuzeaux
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maksym V Kopanitsa
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Nanet Willumsen
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Johanna S Jackson
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Steve Gentlemen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Paul M Matthews
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
3
|
Kratz D, Wilken-Schmitz A, Sens A, Hahnefeld L, Scholich K, Geisslinger G, Gurke R, Thomas D. Post-mortem changes of prostanoid concentrations in tissues of mice: Impact of fast cervical dislocation and dissection delay. Prostaglandins Other Lipid Mediat 2022; 162:106660. [PMID: 35714920 DOI: 10.1016/j.prostaglandins.2022.106660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Prostanoids are potent lipid mediators involved in a wide variety of physiological functions like blood pressure regulation or inflammation as well as cardiovascular and malign diseases. Elucidation of their modes of action is mainly carried out in pre-clinical animal models by quantifying prostanoids in tissues of interest. Unfortunately, prostanoids are prone to post-mortem artifact formation and de novo synthesis can already be caused by external stimuli during the euthanasia of animals like prolonged hypercapnia or ischemia. Therefore, this study investigates the suitability and impact of fast cervical dislocation for the determination of prostanoids (6-keto-PGF1α, TXB2, PGF2α, PGD2, PGE2) in seven tissues of mice (spinal cord, brain, sciatic nerve, kidney, liver, lung, and spleen) to minimize time-dependent effects and approximate physiological concentrations. Tissues were dissected in a standardized sequence directly or after 10 min to investigate the influence of dissection delays. The enzyme inhibitor indomethacin (10 µM) in combination with low processing temperatures was employed to preserve prostanoid concentrations during sample preparation. Quantification of prostanoids was performed via LC-MS/MS. This study shows, that prostanoids are differentially susceptible to post-mortem artifact formation which is closely connected to their physiological function and metabolic stability in the respective tissues. Prostanoids in the brain, spinal cord, and kidney that are not involved in the regulatory response post-mortem, i.e. blood flow regulation (6-keto-PGF1α, PGE2, PGF2α) showed high reproducibility even after dissection delay and could be assessed after fast cervical dislocation if prerequisites like standardized pre-analytical workflows with immediate dissection and inhibition of residual enzymatic activity are in place. However, in tissues with high metabolic activity (liver, lung) more stable prostanoid metabolites should be used. Moreover, prostanoids in the spleen were strongly affected by dissection delays and presumably the method of euthanasia itself.
Collapse
Affiliation(s)
- D Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - A Wilken-Schmitz
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Sens
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - L Hahnefeld
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - K Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - R Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - D Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Abstract
Metabolomics is the laboratory analysis and scientific study of the metabolome—that is, the entire collection of small molecule chemicals in an organism. The metabolome represents the functional state of an organism and provides a multifaceted readout of the aggregate activity of endogenous (cellular) and exogenous (environmental) processes. In this review, we discuss how the integrative and dynamic properties of the metabolome create unique opportunities to study complex pathologies that evolve and oscillate over time, like epilepsy. We explain how the scientific progress and clinical applications of metabolomics remain hampered by biological and technical challenges, and we propose best practices to overcome these challenges so that metabolomics can be used in a rigorous and effective manner to further epilepsy research.
Collapse
Affiliation(s)
- Tore Eid
- Departments of Laboratory Medicine, of Neurosurgery, and of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Clinical Chemistry Laboratory, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
5
|
Ma J, He JJ, Wang M, Hou JL, Elsheikha HM, Zhu XQ. Toxoplasma gondii induces metabolic disturbances in the hippocampus of BALB/c mice. Parasitol Res 2021; 120:2805-2818. [PMID: 34219189 DOI: 10.1007/s00436-021-07222-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii can cross the blood-brain barrier and infect different regions of the brain including the hippocampus. In the present study, we examined the impact of Toxoplasma gondii infection on the metabolism of the hippocampus of female BALB/c mice compared to control mice using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariate analysis revealed significant differences between infected and control hippocampi and identified 25, 82, and 105 differential metabolites (DMs) in the infected hippocampi at 7, 14, and 21 days post-infection (dpi), respectively. One DM (sphingosyl-phosphocholine in the sphingolipid metabolism pathway) and 11 dysregulated pathways were detected at all time points post-infection, suggesting their important roles in the neuropathogenesis of T. gondii infection. These pathways were related to neural activity, such as inflammatory mediator regulation of TRP channels, retrograde endocannabinoid signaling, and arachidonic acid metabolism. Weighted correlation network analysis and receiver operating characteristic analysis identified 33 metabolites significantly associated with T. gondii infection in the hippocampus, and 30 of these were deemed as potential biomarkers for T. gondii infection. This study provides, for the first time, a global view of the metabolic perturbations that occur in the mouse hippocampus during T. gondii infection. The potential relevance of the identified metabolites and pathways to the pathogenesis of cognitive impairment and psychiatric disorders are discussed.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, People's Republic of China.
| |
Collapse
|
6
|
Wallis TP, Venkatesh BG, Narayana VK, Kvaskoff D, Ho A, Sullivan RK, Windels F, Sah P, Meunier FA. Saturated free fatty acids and association with memory formation. Nat Commun 2021; 12:3443. [PMID: 34103527 PMCID: PMC8187648 DOI: 10.1038/s41467-021-23840-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Polyunsaturated free fatty acids (FFAs) such as arachidonic acid, released by phospholipase activity on membrane phospholipids, have long been considered beneficial for learning and memory and are known modulators of neurotransmission and synaptic plasticity. However, the precise nature of other FFA and phospholipid changes in specific areas of the brain during learning is unknown. Here, using a targeted lipidomics approach to characterise FFAs and phospholipids across the rat brain, we demonstrated that the highest concentrations of these analytes were found in areas of the brain classically involved in fear learning and memory, such as the amygdala. Auditory fear conditioning led to an increase in saturated (particularly myristic and palmitic acids) and to a lesser extent unsaturated FFAs (predominantly arachidonic acid) in the amygdala and prefrontal cortex. Both fear conditioning and changes in FFA required activation of NMDA receptors. These results suggest a role for saturated FFAs in memory acquisition.
Collapse
Affiliation(s)
- Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Vinod K Narayana
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David Kvaskoff
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Alan Ho
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Robert K Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - François Windels
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, P. R. China
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
7
|
Dienel GA. Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: A guide for preservation of the in vivo concentrations of brain constituents. J Neurochem 2021; 158:1007-1031. [PMID: 33636013 DOI: 10.1111/jnc.15293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022]
Abstract
Post-mortem metabolism is widely recognized to cause rapid and prolonged changes in the concentrations of multiple classes of compounds in brain, that is, they are labile. Post-mortem changes from levels in living brain include components of pathways of metabolism of glucose and energy compounds, amino acids, lipids, signaling molecules, neuropeptides, phosphoproteins, and proteins. Methods that stop enzyme activity at brain harvest were developed almost 50 years ago and have been extensively used in studies of brain functions and diseases. Unfortunately, these methods are not commonly used to harvest brain tissue for mass spectrometry-based metabolomic studies or for imaging mass spectrometry studies (IMS, also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-MSI, MALDI-MSI). Instead these studies commonly kill animals, decapitate, dissect out brain and regions of interest if needed, then 'snap' freeze the tissue to stop enzymatic activity after harvest, with post-mortem intervals typically ranging from ~0.5 to 3 min. To increase awareness of the importance of stopping metabolism at harvest and preventing the unnecessary complications of not doing so, this commentary provides examples of labile metabolites and the magnitudes of their post-mortem changes in concentrations during brain harvest. Brain harvest methods that stop metabolism at harvest eliminate post-mortem enzymatic activities and can improve characterization of normal and diseased brain. In addition, metabolomic studies would be improved by reporting absolute units of concentration along with normalized peak areas or fold changes. Then reported values can be evaluated and compared with the extensive neurochemical literature to help prevent reporting of artifactual data.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
8
|
Park J, Choi K, Lee J, Jung JM, Lee Y. The Effect of Korean Red Ginseng on Bisphenol A-Induced Fatty Acid Composition and Lipid Metabolism-Related Gene Expression Changes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1841-1858. [PMID: 33300480 DOI: 10.1142/s0192415x20500925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bisphenol A (BPA), which is known to be an endocrine-disrupting chemical (EDC), is associated not only with estrogen activity and reproductive toxicity but also with a variety of metabolic disorders. BPA affects glucose tolerance, cholesterol biosynthesis, and fatty acid synthesis. Ginseng is a traditional medicinal plant that has been widely used in East Asia for more than 2000 years, and a number of health effects have been reported. Korean Red Ginseng (KRG) has also been shown to have effects on lipid metabolism and body weight reduction in vivo in obese mice. In this study, we administered BPA and KRG to ovariectomized (OVX) ICR mice. BPA (800 mg/kg/day) and KRG (1.2 g/kg/day) were orally administered to OVX mice for 3 days. KRG inhibited the increase in total fatty acid level by BPA as determined by lipid profiling in the liver of OVX mice. In addition, transcriptome analysis showed that KRG inhibited BPA-induced changes in lipid metabolic process-related genes. Our findings suggest that KRG can regulate BPA-induced changes in lipid metabolism.
Collapse
Affiliation(s)
- Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - KeunOh Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jong-Min Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
9
|
Hennebelle M, Morgan RK, Sethi S, Zhang Z, Chen H, Grodzki AC, Lein PJ, Taha AY. Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuron-glia co-cultures in a sex-dependent manner. J Neurochem 2020; 152:195-207. [PMID: 31283837 PMCID: PMC6949423 DOI: 10.1111/jnc.14818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
In adult rats, omega-6 linoleic acid (LA, 18:2n-6) serves as a precursor to oxidized LA metabolites (OXLAMs) known to regulate multiple signaling processes in the brain. However, little is known regarding the levels or role(s) of LA and its metabolites during brain development. To address this gap, fatty acids within various brain lipid pools, and their oxidized metabolites (oxylipins) were quantified in brains from 1-day-old male and female pups using gas chromatography and liquid chromatography coupled to tandem mass spectrometry, respectively. Primary neuron-glia co-cultures derived from postnatal day 0-1 male and female rat neocortex were exposed to vehicle (0.1% ethanol), LA, the OXLAM 13-hydroxyoctadecadienoic acid (13-HODE), or prostaglandin E2 at 10-1000 nM for 48 h to test their effects on neuronal morphology. In both male and female pups, LA accounted for 1-3% of fatty acids detected in brain phospholipids and cholesteryl esters. It was not detected in triacylglycerols, and free fatty acids. Unesterified OXLAMs constituted 47-53% of measured unesterified oxylipins in males and females (vs. ~5-7% reported in adult rat brain). Of these, 13-HODE was the most abundant, accounting for 30-33% of measured OXLAMs. Brain fatty acid and OXLAM concentrations did not differ between sexes. LA and 13-HODE significantly increased axonal outgrowth. Separate analyses of cultures derived from male versus female pups revealed that LA at 1, 50, and 1000 nM, significantly increased axonal outgrowth in female but not male cortical neurons, whereas 13-HODE at 100 nM significantly increased axonal outgrowth in male but not female cortical neurons. prostaglandin E2 did not alter neuronal outgrowth in either sex. This study demonstrates that OXLAMs constitute the majority of unesterified oxylipins in the developing rat brain despite low relative abundance of their LA precursor, and highlights a novel role of LA and 13-HODE in differentially influencing neuronal morphogenesis in the developing male and female brain.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Hao Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Eveque-Mourroux MR, Emans PJ, Zautsen RRM, Boonen A, Heeren RMA, Cillero-Pastor B. Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 2019; 144:5953-5958. [PMID: 31418440 DOI: 10.1039/c9an00944b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal diseases, characterized by the progressive deterioration of articular cartilage. Although the disease has been well studied in the past few years, the endogenous metabolic composition and more importantly the spatial information of these molecules in cartilage is still poorly understood. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has been previously used for the investigation of the bimolecular distribution of proteins and lipids through the in situ analysis of cartilage tissue sections. MALDI-MSI as a tool to detect metabolites remains challenging, as these species have low abundance and degrade rapidly. In this work, we present a complete methodology, from sample preparation to data analysis for the detection of endogenous metabolites on cartilage by MSI. Our results demonstrate for the first time the ability to detect small molecules in fragile, challenging tissues through an optimized protocol, and render MSI as a tool towards a better understanding of OA.
Collapse
Affiliation(s)
- M R Eveque-Mourroux
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Hennebelle M, Metherel AH, Kitson AP, Otoki Y, Yang J, Lee KSS, Hammock BD, Bazinet RP, Taha AY. Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. J Lipid Res 2019; 60:671-682. [PMID: 30463986 PMCID: PMC6399504 DOI: 10.1194/jlr.d084228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
PUFAs are precursors to bioactive oxylipin metabolites that increase in the brain following CO2-induced hypercapnia/ischemia. It is not known whether the brain-dissection process and its duration also alter these metabolites. We applied CO2 with or without head-focused microwave fixation for 2 min to evaluate the effects of CO2-induced asphyxiation, dissection, and dissection time on brain oxylipin concentrations. Compared with head-focused microwave fixation (control), CO2 followed by microwave fixation prior to dissection increased oxylipins derived from lipoxygenase (LOX), 15-hydroxyprostaglandin dehydrogenase (PGDH), cytochrome P450 (CYP), and soluble epoxide hydrolase (sEH) enzymatic pathways. This effect was enhanced when the duration of postmortem ischemia was prolonged by 6.4 min prior to microwave fixation. Brains dissected from rats subjected to CO2 without microwave fixation showed greater increases in LOX, PGDH, CYP and sEH metabolites compared with all other groups, as well as increased cyclooxygenase metabolites. In nonmicrowave-irradiated brains, sEH metabolites and one CYP metabolite correlated positively and negatively with dissection time, respectively. This study presents new evidence that the dissection process and its duration increase brain oxylipin concentrations, and that this is preventable by microwave fixation. When microwave fixation is not available, lipidomic studies should account for dissection time to reduce these artifacts.
Collapse
Affiliation(s)
- Marie Hennebelle
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| | - Adam H Metherel
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yurika Otoki
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- Food and Biodynamic Laboratory Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun Yang
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Kin Sing Stephen Lee
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Richard P Bazinet
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ameer Y Taha
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| |
Collapse
|
12
|
Ferdouse A, Leng S, Winter T, Aukema HM. The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats. Lipids 2019; 54:67-80. [DOI: 10.1002/lipd.12122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Afroza Ferdouse
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Shan Leng
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| |
Collapse
|
13
|
Makaryus R, Lee H, Robinson J, Enikolopov G, Benveniste H. Noninvasive Tracking of Anesthesia Neurotoxicity in the Developing Rodent Brain. Anesthesiology 2018; 129:118-130. [PMID: 29688900 PMCID: PMC6008207 DOI: 10.1097/aln.0000000000002229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Potential deleterious effect of multiple anesthesia exposures on the developing brain remains a clinical concern. We hypothesized that multiple neonatal anesthesia exposures are more detrimental to brain maturation than an equivalent single exposure, with more pronounced long-term behavioral consequences. We designed a translational approach using proton magnetic resonance spectroscopy in rodents, noninvasively tracking the neuronal marker N-acetyl-aspartate, in addition to tracking behavioral outcomes. METHODS Trajectories of N-acetyl-aspartate in anesthesia naïve rats (n = 62, postnatal day 5 to 35) were determined using proton magnetic resonance spectroscopy, creating an "N-acetyl-aspartate growth chart." This chart was used to compare the effects of a single 6-h sevoflurane exposure (postnatal day 7) to three 2-h exposures (postnatal days 5, 7, 10). Long-term effects on behavior were separately examined utilizing novel object recognition, open field testing, and Barnes maze tasks. RESULTS Utilizing the N-acetyl-aspartate growth chart, deviations from the normal trajectory were documented in both single and multiple exposure groups, with z-scores (mean ± SD) of -0.80 ± 0.58 (P = 0.003) and -1.87 ± 0.58 (P = 0.002), respectively. Behavioral testing revealed that, in comparison with unexposed and single-exposed, multiple-exposed animals spent the least time with the novel object in novel object recognition (F(2,44) = 4.65, P = 0.015), traveled the least distance in open field testing (F(2,57) = 4.44, P = 0.016), but exhibited no learning deficits in the Barnes maze. CONCLUSIONS Our data demonstrate the feasibility of using the biomarker N-acetyl-aspartate, measured noninvasively using proton magnetic resonance spectroscopy, for longitudinally monitoring anesthesia-induced neurotoxicity. These results also indicate that the neonatal rodent brain is more vulnerable to multiple anesthesia exposures than to a single exposure of the same cumulative duration.
Collapse
Affiliation(s)
- Rany Makaryus
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT
| | - John Robinson
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | - Grigori Enikolopov
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Jouvène C, Fourmaux B, Géloën A, Balas L, Durand T, Lagarde M, Létisse M, Guichardant M. Ultra-Performance Liquid Chromatography-Mass Spectrometry Analysis of Free and Esterified Oxygenated Derivatives from Docosahexaenoic Acid in Rat Brain. Lipids 2018; 53:103-116. [PMID: 29469960 DOI: 10.1002/lipd.12006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/04/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
Abstract
Docosahexaenoic acid (DHA), a prominent long-chain fatty acid of the omega-3 family, is present at high amount in brain tissues, especially in membrane phospholipids. This polyunsaturated fatty acid is the precursor of various oxygenated lipid mediators involved in diverse physiological and pathophysiological processes. Characterization of DHA-oxygenated metabolites is therefore crucial for better understanding the biological roles of DHA. In this study, we identified and measured, by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry, a number of oxygenated products derived from DHA in exsanguinated and nonexsanguinated brains. These metabolites were found both in free form and esterified in phospholipids. Interestingly, both (R)- and (S)-monohydroxylated fatty acid stereoisomers were observed free and esterified in phospholipids. Monohydroxylated metabolites were the main derivatives; however, measurable amounts of dihydroxylated products such as protectin DX were detected. Moreover, exsanguination allowed discriminating brain oxygenated metabolites from those generated in blood. These results obtained in healthy rats allowed an overview on the brain oxygenated metabolism of DHA, which deserves further research in pathophysiological conditions, especially in neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Jouvène
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Baptiste Fourmaux
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Alain Géloën
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Laurence Balas
- Univ-Montpellier, IBMM, ENSCM, UMR CNRS 5247, Fac Pharm, 15 Av Ch Flahault, F-34093, Montpellier, 05, France
| | - Thierry Durand
- Univ-Montpellier, IBMM, ENSCM, UMR CNRS 5247, Fac Pharm, 15 Av Ch Flahault, F-34093, Montpellier, 05, France
| | - Michel Lagarde
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Marion Létisse
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Michel Guichardant
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| |
Collapse
|
15
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
16
|
Lin L, Metherel AH, Jones PJ, Bazinet RP. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain. J Neurochem 2017; 142:662-671. [DOI: 10.1111/jnc.14067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences; University of Toronto; Toronto Canada
| | - Adam H. Metherel
- Department of Nutritional Sciences; University of Toronto; Toronto Canada
| | - Peter J. Jones
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences; University of Toronto; Toronto Canada
| |
Collapse
|
17
|
Jung JM, Lee J, Kim KH, Jang IG, Song JG, Kang K, Tack FMG, Oh JI, Kwon EE, Kim HW. The effect of lead exposure on fatty acid composition in mouse brain analyzed using pseudo-catalytic derivatization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:182-190. [PMID: 28104346 DOI: 10.1016/j.envpol.2016.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
We performed toxicological study of mice exposed to lead by quantifying fatty acids in brain of the mice. This study suggests that the introduced analytical method had an extremely high tolerance against impurities such as water and extractives; thus, it led to the enhanced resolution in visualizing the spectrum of fatty acid profiles in animal brain. Furthermore, one of the biggest technical advantages achieved in this study was the quantitation of fatty acid methyl ester profiles of mouse brain using a trace amount of sample (e.g., 100 μL mixture). Methanol was screened as the most effective extraction solvent for mouse brain. The behavioral test of the mice before and after lead exposure was conducted to see the effect of lead exposure on fatty acid composition of the mice' brain. The lead exposure led to changes in disease-related behavior of the mice. Also, the lead exposure induced significant alterations of fatty acid profile (C16:0, C 18:0, and C 18:1) in brain of the mice, implicated in pathology of psychiatric diseases. The alteration of fatty acid profile of brain of the mice suggests that the derivatizing technique can be applicable to most research fields associated with the environmental neurotoxins with better resolution in a short time, as compared to the current protocols for lipid analysis.
Collapse
Affiliation(s)
- Jong-Min Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - In Geon Jang
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Gwang Song
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Kyeongjin Kang
- Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent 9000, Belgium
| | - Jeong-Ik Oh
- Advanced Technology Department, Land & Housing Institute, Daejon 34047, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Hyung-Wook Kim
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
18
|
Trépanier MO, Eiden M, Morin-Rivron D, Bazinet RP, Masoodi M. High-resolution lipidomics coupled with rapid fixation reveals novel ischemia-induced signaling in the rat neurolipidome. J Neurochem 2017; 140:766-775. [DOI: 10.1111/jnc.13934] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | | | | | - Richard P. Bazinet
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Mojgan Masoodi
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
- Lipid Biology; Nestlé Institute of Health Sciences; Lausanne Switzerland
| |
Collapse
|
19
|
Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Sci Rep 2016; 6:32361. [PMID: 27581923 PMCID: PMC5007669 DOI: 10.1038/srep32361] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022] Open
Abstract
Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions.
Collapse
|
20
|
Brose SA, Golovko SA, Golovko MY. Brain 2-Arachidonoylglycerol Levels Are Dramatically and Rapidly Increased Under Acute Ischemia-Injury Which Is Prevented by Microwave Irradiation. Lipids 2016; 51:487-95. [PMID: 27021494 DOI: 10.1007/s11745-016-4144-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
The involvement of brain 2-arachidonoylglycerol (2-AG) in a number of critical physiological and pathophysiological regulatory mechanisms highlights the importance for an accurate brain 2-AG determination. In the present study, we validated head-focused microwave irradiation (MW) as a method to prevent postmortem brain 2-AG alterations before analysis. We compared MW to freezing to prevent 2-AG induction and estimated exogenous and endogenous 2-AG stability upon exposure to MW. Using MW, we measured, for the first time, true 2-AG brain levels under basal conditions, 30 s after brain removal from the cranium, and upon exposure to 5 min of brain global ischemia. Our data indicate that brain 2-AG levels are instantaneously and dramatically increased approximately 60-fold upon brain removal from the cranium. With 5 min of brain global ischemia 2-AG levels are also, but less dramatically, increased 3.5-fold. Our data indicate that brain tissue fixation with MW is a required technique to measure both true basal 2-AG levels and 2-AG alterations under different experimental conditions including global ischemia, and 2-AG is stable upon exposure to MW.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA.
| |
Collapse
|
21
|
Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice. Lipids 2016; 51:549-60. [PMID: 26797754 DOI: 10.1007/s11745-015-4117-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/10/2015] [Indexed: 01/21/2023]
Abstract
C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies.
Collapse
|
22
|
Fitzpatrick CJ, Perrine SA, Ghoddoussi F, Galloway MP, Morrow JD. Sign-trackers have elevated myo-inositol in the nucleus accumbens and ventral hippocampus following Pavlovian conditioned approach. J Neurochem 2016; 136:1196-1203. [PMID: 26725566 DOI: 10.1111/jnc.13524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
Abstract
Pavlovian conditioned approach (PCA) is a behavioral procedure that can be used to assess individual differences in the addiction vulnerability of drug-naïve rats and identify addiction vulnerability factors. Using proton magnetic resonance spectroscopy (1 H-MRS) ex vivo, we simultaneously analyzed concentrations of multiple neurochemicals throughout the mesocorticolimbic system 2 weeks after PCA training in order to identify potential vulnerability factors to addiction in drug-naïve rats for future investigations. Levels of myo-inositol (Ins), a 1 H-MRS-detectable marker of glial activity/proliferation, were increased in the nucleus accumbens (NAc) and ventral hippocampus, but not dorsal hippocampus or medial prefrontal cortex, of sign-trackers compared to goal-trackers or intermediate responders. In addition, Ins levels positively correlated with PCA behavior in the NAc and ventral hippocampus. Because the sign-tracker phenotype is associated with increased drug-seeking behavior, these results observed in drug-naïve rats suggest that alterations in glial activity/proliferation within these regions may represent an addiction vulnerability factor. Sign-tracking rats preferentially approach reward cues during Pavlovian conditioning, while goal-trackers instead approach the location of impending reward. Sign-trackers are also more prone to cue-induced drug-seeking behavior. We used magnetic resonance spectroscopy to show that myo-inositol levels are higher in the ventral hippocampus and nucleus accumbens of sign-trackers relative to goal-trackers. Thus, elevated myo-inositol may be a vulnerability factor for addiction.
Collapse
Affiliation(s)
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Matthew P Galloway
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jonathan D Morrow
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Yuan ZX, Rapoport SI. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice. Prostaglandins Leukot Essent Fatty Acids 2015; 101:9-14. [PMID: 26234927 PMCID: PMC4581970 DOI: 10.1016/j.plefa.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). HYPOTHESIS Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. METHODS Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. RESULTS Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. CONCLUSIONS Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation.
Collapse
Affiliation(s)
- Zhi-Xin Yuan
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Thermal inactivation of enzymes and pathogens in biosamples for MS analysis. Bioanalysis 2015; 7:1885-99. [DOI: 10.4155/bio.15.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.
Collapse
|
25
|
Jung JM, Kim KH, Kwon EE, Kim HW. Analysis of the lipid profiles in a section of bovine brain via non-catalytic rapid methylation. Analyst 2015; 140:6210-6. [DOI: 10.1039/c5an00961h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The main focus of this study is to mechanistically introduce a new qualitative and quantitative technique for mapping the lipid profile of a sectional brainvianon-catalytic transesterification reaction (i.e., pseudo catalytic reaction in the presence of porous materials).
Collapse
Affiliation(s)
- Jong-Min Jung
- Department of Environment & Energy
- Sejong University
- Seoul 143-747
- South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering
- Hanyang University
- Seoul 133-791
- South Korea
| | - Eilhann E. Kwon
- Department of Environment & Energy
- Sejong University
- Seoul 143-747
- South Korea
| | - Hyung-Wook Kim
- Department of Biological Science and Technology at Sejong University
- Seoul 143-747
- South Korea
| |
Collapse
|
26
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 931] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
27
|
Jernerén F, Söderquist M, Karlsson O. Post-sampling release of free fatty acids - effects of heat stabilization and methods of euthanasia. J Pharmacol Toxicol Methods 2014; 71:13-20. [PMID: 25463283 DOI: 10.1016/j.vascn.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/03/2014] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The field of lipid research has made progress and it is now possible to study the lipidome of cells and organelles. A basic requirement of a successful lipid study is adequate pre-analytical sample handling, as some lipids can be unstable and postmortem changes can cause substantial accumulation of free fatty acids (FFAs). METHODS The aim of the present study was to investigate the effects of conductive heat stabilization and euthanasia methods on FFA levels in the rat brain and liver using liquid chromatography tandem mass spectrometry. RESULTS The analysis of brain homogenates clearly demonstrated phospholipase activity and time-dependent post-sampling changes in the lipid pool of snap frozen non-stabilized tissue. There was a significant increase in FFAs already at 2min, which continued over time. Heat stabilization was shown to be an efficient method to reduce phospholipase activity and ex vivo lipolysis. Post-sampling effects due to tissue thawing and sample preparation induced a massive release of FFAs (up to 3700%) from non-stabilized liver and brain tissues compared to heat stabilized tissue. Furthermore, the choice of euthanasia method significantly influenced the levels of FFAs in the brain. The FFAs were decreased by 15-44% in the group of animals euthanized by pentobarbital injection compared with CO2 inhalation or decapitation. DISCUSSION Our results highlight the importance of considering euthanasia methods and pre-analytical treatment in lipid analysis, factors which may otherwise interfere with the outcome of the experiments.
Collapse
Affiliation(s)
- Fredrik Jernerén
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | | | - Oskar Karlsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
28
|
Schikorski T. Readily releasable vesicles recycle at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 2014; 111:5415-20. [PMID: 24706824 PMCID: PMC3986142 DOI: 10.1073/pnas.1321541111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the synaptic vesicle cycle, synaptic vesicles fuse with the plasma membrane and recycle for repeated exo/endocytic events. By using activity-dependent N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide dye uptake combined with fast (<1 s) microwave-assisted fixation followed by photoconversion and ultrastructural 3D analysis, we tracked endocytic vesicles over time, "frame by frame." The first retrieved synaptic vesicles appeared 4 s after stimulation, and these endocytic vesicles were located just above the active zone. Second, the retrieved vesicles did not show any sign of a protein coat, and coated pits were not detected. Between 10 and 30 s, large labeled vesicles appeared that had up to 5 times the size of an individual synaptic vesicle. Starting at around 20 s, these large labeled vesicles decreased in number in favor of labeled synaptic vesicles, and after 30 s, labeled vesicles redocked at the active zone. The data suggest that readily releasable vesicles are retrieved as noncoated vesicles at the active zone.
Collapse
Affiliation(s)
- Thomas Schikorski
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, PR 00956
| |
Collapse
|
29
|
Brose SA, Golovko MY. Eicosanoid post-mortem induction in kidney tissue is prevented by microwave irradiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:313-8. [PMID: 24113545 PMCID: PMC3825172 DOI: 10.1016/j.plefa.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Previously, we, and others, have demonstrated a rapid and significant post-mortem increase in brain prostanoid (PG) levels analyzed without microwave fixation, and this is not the result of PG trapping or destruction in microwave-irradiated brain tissue. In the present study, we demonstrate a dramatic increase in kidney eicosanoid levels when analyzed without microwave fixation which was mainly accounted for by the 142-, 81-, and 62-fold increase in medullary 6-ketoPGF1α, PGE2, and PGF2α, levels, respectively, while PGD2 and TXB2 levels were increased ~7-fold. Whole kidney and cortex PG were also significantly increased in non-microwaved tissue, but at lesser extent. Arachidonic acid and the lipoxygenase products hydroxyeicosatetraenoic acids (HETE) were also induced in whole kidney, cortex, and medulla 1.5- to 5.5-fold depending upon tissue and metabolite. Cyclooxygenase inhibition with indomethacin decreased PG mass in non-microwaved tissue to basal levels, however HETE and arachidonic acid were not decreased. These data demonstrate the critical importance of kidney tissue fixation to limiting artifacts during kidney eicosanoid analysis.
Collapse
Affiliation(s)
| | - Mikhail Y. Golovko
- Corresponding author: Department of Pharmacology, Physiology, and Therapeutics School of Medicine and Health Sciences University of North Dakota 501 N. Columbia Rd. Grand Forks, ND 58202-9037 701-777-2305 phone 701-777-4490 fax
| |
Collapse
|
30
|
Murphy EJ. A lipid neurochemist's siren: docosahexaenoic acid and its elusive function in the central nervous system. J Neurochem 2013; 127:299-302. [PMID: 24117623 DOI: 10.1111/jnc.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Eric J Murphy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
31
|
Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DWL, Serhan CN, Bazinet RP. Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 2013; 127:378-93. [PMID: 23919613 DOI: 10.1111/jnc.12392] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
Abstract
Docosahexaenoic acid (22:6n-3) is the major brain n-3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti-inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat-1 transgenic mouse, chronic dietary n-3 polyunsaturated fatty acid modulation in transgenic and wild-type mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Furthermore, docosahexaenoic acid protected against lipopolysaccharide-induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15-lipoxygenase product and precursor to protectins and resolvins, 17S-hydroperoxy-docosahexaenoic acid, mimics anti-neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LC-MS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid-derived specialized pro-resolving mediators are present in the hippocampus. Acute intracerebroventricular infusion of 17S-hydroperoxy-docosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide-initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro-resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component. Our study shows that chronically increased brain unesterified DHA levels, but not solely phospholipid DHA levels, attenuate neuroinflammation. Similar attenuations occur with acute increases in brain unesterified DHA or 17S-HpDHA levels, highlighting the importance of an available pool of precursor unesterified DHA for the production of enzymatically derived specialized pro-resolving mediators that are critical in the regulation of neuroinflammation.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Davila M, Candiota AP, Pumarola M, Arus C. Minimization of spectral pattern changes during HRMAS experiments at 37 degrees celsius by prior focused microwave irradiation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 25:401-10. [PMID: 22286777 DOI: 10.1007/s10334-012-0303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/21/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
OBJECT High-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy provides detailed metabolomic information from intact tissue. However, long acquisition times and high rotation speed may lead to timedependent spectral pattern changes, which may affect proper interpretation of results. We report a strategy to minimize those changes, even at physiological recording temperature. MATERIALS AND METHODS Glioblastoma(Gbm) tumours were induced in 12 mice by stereotactic injection of GL261 cells. Animals were sacrificed and tumours were removed and stored in liquid N2. Half of the samples were exposed to focused microwave (FMW) irradiation prior to HRMAS while the other half was not. Time-course experiments (374 min at 37°C, 9.4T, 3,000 Hz spinning rate) were carried out to monitor spectral pattern changes. Differences were assessed with Unianova test while post-HRMAS histopathology analysis was performed to assess tissue integrity. RESULTS Significant changes (up to 1.7 fold) were observed in samples without FMW irradiation in several spectral regions e.g. mobile lipids/lactate (0.90-1.30 ppm), acetate (1.90 ppm), N-acetyl aspartate (2.00 ppm), and Choline-containing compounds (3.19-3.25 ppm). No significant changes in the spectral pattern of FMW-irradiated samples were recorded. CONCLUSION We describe here a successful strategy to minimize spectral pattern changes in mouse Gbm samples using a FMW irradiation system.
Collapse
Affiliation(s)
- Myriam Davila
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Valle`s, Spain
| | | | | | | |
Collapse
|
33
|
Kubo A, Kajimura M, Suematsu M. Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS): A Challenge for Reliable Quantitative Analyses. Mass Spectrom (Tokyo) 2012; 1:A0004. [PMID: 24349905 PMCID: PMC3775825 DOI: 10.5702/massspectrometry.a0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/08/2012] [Indexed: 02/03/2023] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is capable of determining the distribution of hundreds of molecules at once directly from tissue sections. Since tissues are analyzed intact without homogenization, spatial relationships of molecules are preserved. The technology is, therefore, undoubtedly powerful to investigate the molecular complexity of biological processes. However, several technical refinements are essential for full exploitation of MALDI-IMS to dictate dynamics alteration of biomolecules in situ; these include ways to collect tissues, target-specific tissue pretreatment, matrix choice for efficient ionization, and matrix deposition method to improve imaging resolution. Furthermore, for MALDI-IMS to reach its full potential, quantitative property in the IMS should be strengthened. We review the challenges and new approaches for optimal imaging of proteins, lipids and metabolites, highlighting a novel quantitative IMS of energy metabolites in the recent literature.
Collapse
Affiliation(s)
- Akiko Kubo
- Department of Biochemistry, School of Medicine, Keio University
| | - Mayumi Kajimura
- Department of Biochemistry, School of Medicine, Keio University
- JST, ERATO, Suematsu Gas Biology Project
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University
- JST, ERATO, Suematsu Gas Biology Project
| |
Collapse
|
34
|
Bhattacharjee AK, White L, Chang L, Ma K, Harry GJ, Deutsch J, Rapoport SI. Bilateral common carotid artery ligation transiently changes brain lipid metabolism in rats. Neurochem Res 2012; 37:1490-8. [PMID: 22422289 PMCID: PMC3478069 DOI: 10.1007/s11064-012-0740-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/04/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Brain lipid metabolism was studied in rats following permanent bilateral common carotid artery ligation (BCCL), a model for chronic cerebral hypoperfusion. Unesterified (free) fatty acids (uFA) and acyl-CoA concentrations were measured 6 h, 24 h, and 7 days after BCCL or sham surgery, in high energy-microwaved brain. In BCCL compared to sham rats, cytosolic phospholipase A(2) (cPLA(2)) immunoreactivity in piriform cortex, and concentrations of total uFA and arachidonoyl-CoA, an intermediate for arachidonic acid reincorporation into phospholipids, were increased only at 6 h. At 24 h, immunoreactivity for secretory phospholipase A(2) (sPLA(2)), which may regulate blood flow, was increased near cortical and hippocampal blood vessels. BCCL did not affect levels of brain IB(4)+ microglia, glial fibrillary acidic protein (GFAP)+ astrocytes, cyclooxygenase-2 (COX-2) immunoreactivity at any time, but increased cPLA(2) immunoreactivity in one region at 6 h. Thus, BCCL affected brain lipid metabolism transiently, likely because of compensatory sPLA(2)-mediated vasodilation, without producing evidence of neuroinflammation.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Laura White
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - G. Jean Harry
- Neurotoxicology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph Deutsch
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- The Hebrew University of Jerusalem, School of Pharmacy, Jerusalem, Israel
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Zhang H, Good DJ. Comparison of hypothalamic mRNA levels in mice euthanized by CO₂ inhalation and focused-beam microwave irradiation. Lab Anim (NY) 2011; 40:313-8. [PMID: 22358208 DOI: 10.1038/laban1011-313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/17/2011] [Indexed: 11/09/2022]
Abstract
Focused-beam microwave irradiation (FBMI) is a relatively new method for euthanasia of small mammals and is available to most researchers. Compared with CO₂ inhalation, this method of euthanasia has the advantage of preserving fast-degrading metabolites. But differences in brain RNA quantity and quality, gene expression and histology in mice euthanized by CO₂ inhalation versus FBMI have not been investigated. Here the authors report that a smaller quantity of RNA was isolated from brains of mice euthanized by FBMI compared with those of mice euthanized by CO₂ inhalation. They also found relative differences in the levels of the expression of some genes. These studies suggest that either method can be used for histological analysis or RNA isolation, but the authors caution against combining the techniques within a single study on gene expression.
Collapse
Affiliation(s)
- Haiyan Zhang
- Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | |
Collapse
|
36
|
Taves MD, Ma C, Heimovics SA, Saldanha CJ, Soma KK. Measurement of steroid concentrations in brain tissue: methodological considerations. Front Endocrinol (Lausanne) 2011; 2:39. [PMID: 22654806 PMCID: PMC3356067 DOI: 10.3389/fendo.2011.00039] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022] Open
Abstract
It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate.
Collapse
Affiliation(s)
- Matthew D. Taves
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Matthew D. Taves, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4. e-mail:
| | - Chunqi Ma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Sarah A. Heimovics
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Colin J. Saldanha
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, USA
- Program in Cognitive Science, Lehigh UniversityBethlehem, PA, USA
| | - Kiran K. Soma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- Graduate Program in Neuroscience, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
37
|
Polo-Hernández E, De Castro F, García-García AG, Tabernero A, Medina JM. Oleic acid synthesized in the periventricular zone promotes axonogenesis in the striatum during brain development. J Neurochem 2010; 114:1756-66. [DOI: 10.1111/j.1471-4159.2010.06891.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Basselin M, Kim HW, Chen M, Ma K, Rapoport SI, Murphy RC, Farias SE. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res 2010; 51:1049-56. [PMID: 20040630 PMCID: PMC2853431 DOI: 10.1194/jlr.m002469] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/22/2009] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a lithium-free diet, low (0.5 ng/h)- or high (250 ng/h)-dose LPS compared with artificial cerebrospinal fluid increased brain unesterified AA and prostaglandin E(2) concentrations and activities of AA-selective Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2))-IV and Ca(2+)-dependent secretory sPLA(2). LiCl feeding prevented these increments. Lithium had a significant main effect by increasing brain concentrations of lipoxygenase-derived AA metabolites, 5- hydroxyeicosatetraenoic acid (HETE), 5-oxo-eicosatetranoic acid, and 17-hydroxy-DHA by 1.8-, 4.3- and 1.9-fold compared with control diet. Lithium also increased 15-HETE in high-dose LPS-infused rats. Ca(2+)-independent iPLA(2)-VI activity and unesterified DHA and docosapentaenoic acid (22:5n-3) concentrations were unaffected by LPS or lithium. This study demonstrates, for the first time, that lithium can increase brain 17-hydroxy-DHA formation, indicating a new and potentially important therapeutic action of lithium.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|