1
|
Gür Maz T, Dahlke P, Gizem Ergül A, Olğaç A, Jordan PM, Çalışkan B, Werz O, Banoglu E. Novel 1,3,4-oxadiazole derivatives as highly potent microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors. Bioorg Chem 2024; 147:107383. [PMID: 38653151 DOI: 10.1016/j.bioorg.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.
Collapse
Affiliation(s)
- Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Azize Gizem Ergül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey.
| |
Collapse
|
2
|
Al-Wahaibi LH, Elshamsy AM, Ali TFS, Youssif BGM, Bräse S, Abdel-Aziz M, El-Koussi NA. Design and synthesis of new dihydropyrimidine/sulphonamide hybrids as promising anti-inflammatory agents via dual mPGES-1/5-LOX inhibition. Front Chem 2024; 12:1387923. [PMID: 38800576 PMCID: PMC11117333 DOI: 10.3389/fchem.2024.1387923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
A novel series of dihydropyrimidine/sulphonamide hybrids 3a-j with anti-inflammatory properties have been developed and tested as dual mPGES-1/5-LOX inhibitors. In vitro assay, results showed that compounds 3c, 3e, 3h, and 3j were the most effective dual inhibitors of mPGES-1 and 5-LOX activities. Compound 3j was the most potent dual inhibitor with IC50 values of 0.92 µM and 1.98 µM, respectively. In vivo, anti-inflammatory studies demonstrated that compounds 3c, 3e, 3h, and 3e had considerable anti-inflammatory activity, with EI% ranging from 29% to 71%. Compounds 3e and 3j were equivalent to celecoxib after the first hour but exhibited stronger anti-inflammatory effects than celecoxib after the third and fifth hours. Moreover, compounds 3e and 3j significantly reduced the levels of pro-inflammatory cytokines (PGE2, TNF-α, and IL-6) with gastrointestinal safety profiles. Molecular docking simulations explored the most potent derivatives' binding affinities and interaction patterns within mPGES-1 and 5-LOX active sites. This study disclosed that compound 3j is a promising anti-inflammatory lead with dual mPGES-1/5-LOX inhibition that deserves further preclinical investigation.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali M. Elshamsy
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Taha F. S. Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Minya, Egypt
| | - S. Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Nawal A. El-Koussi
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minya, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
4
|
Steinmetz-Späh J, Jakobsson PJ. The anti-inflammatory and vasoprotective properties of mPGES-1 inhibition offer promising therapeutic potential. Expert Opin Ther Targets 2023; 27:1115-1123. [PMID: 38015194 DOI: 10.1080/14728222.2023.2285785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) is produced by cyclooxygenases (COX-1/2) and the microsomal prostaglandin E synthase 1 (mPGES-1). PGE2 is pro-inflammatory in diseases such as rheumatoid arthritis, cardiovascular disorders, and cancer. While Nonsteroidal anti-inflammatory drugs (NSAIDs) targeting COX can effectively reduce inflammation, their use is limited by gastrointestinal and cardiovascular side effects resulting from the blockade of all prostanoids. To overcome this limitation, selective inhibition of mPGES-1 is being explored as an alternative therapeutic strategy to inhibit PGE2 production while sparing or even upregulating other prostaglandins. However, the exact timing and location of PGH2 conversion to PGD2, PGI2, TXB2 or PGF2α, and whether it hinders or supports the therapeutic effect of mPGES-1 inhibition, is not fully understood. AREAS COVERED The article briefly describes prostanoid history and metabolism with a strong focus on the vascular effects of prostanoids. Recent advances in mPGES-1 inhibitor development and results from pre-clinical and clinical studies are presented. Prostanoid shunting after mPGES-1 inhibition is highlighted and particularly discussed in the context of cardiovascular diseases. EXPERT OPINION The newest research demonstrates that inhibition of mPGES-1 is a potent anti-inflammatory treatment strategy and beneficial and safer regarding cardiovascular side effects compared to NSAIDs. Inhibitors of mPGES-1 hold great potential to advance to the clinic and there are ongoing phase-II trials in endometriosis.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Sluter MN, Li Q, Yasmen N, Chen Y, Li L, Hou R, Yu Y, Yang CY, Meibohm B, Jiang J. The inducible prostaglandin E synthase (mPGES-1) in neuroinflammatory disorders. Exp Biol Med (Maywood) 2023; 248:811-819. [PMID: 37515545 PMCID: PMC10468642 DOI: 10.1177/15353702231179926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Babaoglu ZY, Kilic D. Virtual screening, molecular simulations and bioassays: Discovering novel microsomal prostaglandin E Synthase-1 (mPGES-1) inhibitors. Comput Biol Med 2023; 155:106616. [PMID: 36780799 DOI: 10.1016/j.compbiomed.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/05/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase expressed following exposure to pro-inflammatory stimuli. The mPGES-1 enzyme represents a new target for the therapeutic treatment of acute and chronic inflammatory disorders and cancer. In the present study, compounds from the ZINC15 database with an indole scaffold were docked at the mPGES-1 binding site using Glide (high-throughput virtual screening [HTVS], standard precision [SP] and extra precision [XP]), and the stabilities of the complexes were determined by molecular simulation studies. Following HTVS, the top 10% compounds were retained and further screened by SP. Again, the top 10% of these compounds were retained. Finally, the Glide XP scores of the compounds were determined, 20% were analyzed, and the Prime MM-GBSA total free binding energies of the compounds were calculated. The molecular simulations (100 ns) of the reference ligand, LVJ, and the two best-scoring compounds were performed with the Desmond program to analyze the dynamics of the target protein-ligand complexes. In human lung cells treated with the hit compounds, cell viability by colorimetric method and PGE2 levels by immunoassay method were determined. These in vitro experiments demonstrated that the two indole-containing hit compounds are potential novel inhibitors of mPGES-1 and are, therefore, potential therapeutic agents for cancer/inflammation therapies. Moreover, the compounds are promising lead mPGES-1 inhibitors for novel molecule design.
Collapse
Affiliation(s)
| | - Deryanur Kilic
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
8
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24033049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
|
9
|
Potenza M, Giordano A, Chini MG, Saviano A, Kretzer C, Raucci F, Russo M, Lauro G, Terracciano S, Bruno I, Iorizzi M, Hofstetter RK, Pace S, Maione F, Werz O, Bifulco G. Identification of 2-Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E 2 and Leukotriene Biosynthesis Inhibitors. ACS Med Chem Lett 2022; 14:26-34. [PMID: 36655121 PMCID: PMC9841589 DOI: 10.1021/acsmedchemlett.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Marianna Potenza
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,The
FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Assunta Giordano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,Institute
of Biomolecular Chemistry (ICB), Consiglio
Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy
| | - Maria G. Chini
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Anella Saviano
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Christian Kretzer
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Federica Raucci
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marina Russo
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Maria Iorizzi
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Robert K. Hofstetter
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Francesco Maione
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany,
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,
| |
Collapse
|
10
|
Ciccone V, Piragine E, Gorica E, Citi V, Testai L, Pagnotta E, Matteo R, Pecchioni N, Montanaro R, Di Cesare Mannelli L, Ghelardini C, Brancaleone V, Morbidelli L, Calderone V, Martelli A. Anti-Inflammatory Effect of the Natural H 2S-Donor Erucin in Vascular Endothelium. Int J Mol Sci 2022; 23:ijms232415593. [PMID: 36555238 PMCID: PMC9778978 DOI: 10.3390/ijms232415593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops, CREA Council for Agricultural Research and Economics, Via di Corticella 133, 40134 Bologna, Italy
| | - Roberto Matteo
- Research Centre for Cereal and Industrial Crops, CREA Council for Agricultural Research and Economics, Via di Corticella 133, 40134 Bologna, Italy
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, CREA Council for Agricultural Research and Economics, S.S. 673 Km 25,200, 71122 Foggia, Italy
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
- Correspondence: (V.C.); (A.M.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
- Correspondence: (V.C.); (A.M.)
| |
Collapse
|
11
|
Li X, Holtrop T, Jansen FAC, Olson B, Levasseur P, Zhu X, Poland M, Schalwijk W, Witkamp RF, Marks DL, van Norren K. Lipopolysaccharide-induced hypothalamic inflammation in cancer cachexia-anorexia is amplified by tumour-derived prostaglandin E2. J Cachexia Sarcopenia Muscle 2022; 13:3014-3027. [PMID: 36303458 PMCID: PMC9745464 DOI: 10.1002/jcsm.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cachexia-anorexia syndrome is a complex metabolic condition characterized by skeletal muscle wasting, reduced food intake and prominent involvement of systemic and central inflammation. Here, the gut barrier function was investigated in pancreatic cancer-induced cachexia mouse models by relating intestinal permeability to the degree of cachexia. We further investigated the involvement of the gut-brain axis and the crosstalk between tumour, gut and hypothalamus in vitro. METHODS Two distinct mouse models of pancreatic cancer cachexia (KPC and 4662) were used. Intestinal inflammation and permeability were assessed through fluorescein isothiocyanate dextran (FITC-dextran) and lipopolysaccharide (LPS), and hypothalamic and systemic inflammation through mRNA expression and plasma cytokines, respectively. To simulate the tumour-gut-brain crosstalk, hypothalamic (HypoE-N46) cells were incubated with cachexia-inducing tumour secretomes and LPS. A synthetic mimic of C26 secretome was produced based on its secreted inflammatory mediators. Each component of the mimic was systematically omitted to narrow down the key mediator(s) with an amplifying inflammation. To substantiate its contribution, cyclooxygenase-2 (COX-2) inhibitor was used. RESULTS In vivo experiments showed FITC-dextran was enhanced in the KPC group (362.3 vs. sham 111.4 ng/mL, P < 0.001). LPS was increased to 140.9 ng/mL in the KPC group, compared with sham and 4662 groups (115.8 and 115.8 ng/mL, P < 0.05). Hypothalamic inflammatory gene expression of Ccl2 was up-regulated in the KPC group (6.3 vs. sham 1, P < 0.0001, 4662 1.3, P < 0.001), which significantly correlated with LPS concentration (r = 0.4948, P = 0.0226). These data suggest that intestinal permeability is positively related to the cachexic degree. Prostaglandin E2 (PGE2) was confirmed to be present in the plasma and PGE2 concentration (log10) in the KPC group was much higher than in 4662 group (1.85 and 0.56 ng/mL, P < 0.001), indicating a role for PGE2 in pancreatic cancer-induced cachexia. Parallel to in vivo findings, in vitro experiments revealed that the cachexia-inducing tumour secretomes (C26, LLC, KPC and 4662) amplified LPS-induced hypothalamic IL-6 secretion (419%, 321%, 294%, 160%). COX-2 inhibitor to the tumour cells reduced PGE2 content (from 105 to 102 pg/mL) in the secretomes and eliminated the amplified hypothalamic IL-6 production. Moreover, results could be reproduced by addition of PGE2 alone, indicating that the increased hypothalamic inflammation is directly related to the PGE2 from tumour. CONCLUSIONS PGE2 secreted by the tumour may play a role in amplifying the effects of bacteria-derived LPS on the inflammatory hypothalamic response. The cachexia-inducing potential of tumour mice models parallels the loss of intestinal barrier function. Tumour-derived PGE2 might play a key role in cancer-related cachexia-anorexia syndrome via tumour-gut-brain crosstalk.
Collapse
Affiliation(s)
- Xiaolin Li
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Tosca Holtrop
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Fleur A C Jansen
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Pete Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mieke Poland
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Winni Schalwijk
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Klaske van Norren
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Yang S, Huh E, Moon GH, Ahn J, Woo J, Han HS, Lee HH, Chung KS, Lee KT, Oh MS, Lee JY. In vitro and in vivo neuroprotective effect of novel mPGES-1 inhibitor in animal model of Parkinson's Disease. Bioorg Med Chem Lett 2022; 74:128920. [PMID: 35931244 DOI: 10.1016/j.bmcl.2022.128920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
mPGES-1 is found to be up-regulated in the dopaminergic neurons of the substantia nigra pars compacta (SNpc) of postmortem brain tissue from Parkinson's disease (PD) patients and neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. Since the genetic deletion of mPGES-1 abolished 6-OHDA-induced PGE2 production and 6-OHDA-induced dopaminergic neurodegeneration in vitro and in vivo models, mPGES-1 enzyme has the potential to be an important target for PD therapy. In the present work, we investigated whether a small organic molecule as mPGES-1 inhibitor could exhibit the neuroprotective effects against 6-OHDA-induced neurotoxicity in in vitro and in vivo models. For this research goal, a new series of arylsulfonyl hydrazide derivatives was prepared and investigated whether these compounds may protect neurons against 6-OHDA-induced neurotoxicity in both in vitro and in vivo studies. Among them, compound 7s (MPO-0144) as a mPGES-1 inhibitor (PGE2 IC50 = 41.77 nM; mPGES-1 IC50 = 1.16 nM) exhibited a potent neuroprotection (ED50 = 3.0 nM) against 6-OHDA-induced in PC12 cells without its own neurotoxicity (IC50 = >10 μM). In a 6-OHDA-induced mouse model of PD, administration of compound 7s (1 mg/kg/day, for 7days, i.p.) ameliorated motor impairments and dopaminergic neuronal damage. These significant biological effects of compound 7s provided the first pharmacological evidence that mPGES-1 inhibitor could be a promising therapeutic agent for PD patients.
Collapse
Affiliation(s)
- Seyoung Yang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gwang Hyun Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junseong Ahn
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwon Woo
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
13
|
Ochiai T, Honsawa T, Sasaki Y, Hara S. Prostacyclin Synthase as an Ambivalent Regulator of Inflammatory Reactions. Biol Pharm Bull 2022; 45:979-984. [DOI: 10.1248/bpb.b22-00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| |
Collapse
|
14
|
Luo JF, Yao YD, Cheng CS, Lio CK, Liu JX, Huang YF, He F, Xie Y, Liu L, Liu ZQ, Zhou H. Sinomenine increases the methylation level at specific GCG site in mPGES-1 promoter to facilitate its specific inhibitory effect on mPGES-1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194813. [PMID: 35417776 DOI: 10.1016/j.bbagrm.2022.194813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Prostaglandin E2 (PGE2) in cancer and inflammatory diseases is a key mediator of disease progression. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to inhibit the expression of PGE2 by depressing cyclooxygenase (COX) in inflammatory treatments. However, the inhibition to COXs may cause serious side effects. Thus, it is urgent to develop new anti-inflammatory drugs aiming new targets to inhibit PGE2 production. Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the final step of PGE2 biosynthesis. Therefore, the selective inhibition of mPGES-1 has become a promising strategy in the treatments of cancer and inflammatory diseases. Our previous studies confirmed that sinomenine (SIN) is a specific mPGES-1 inhibitor. However, the exact mechanism by which SIN inhibits mPGES-1 remains unknown. This study aimed to explain the regulation effect of SIN to mPGES-1 gene expression by its DNA methylation induction effect. We found that the demethylating agent 5-azacytidine (5-AzaC) reversed the inhibitory effect of SIN to mPGES-1. Besides, SIN selectively increased the methylation level of the promoter region in the mPGES-1 gene while the pretreatment of 5-AzaC suppressed this effect. The results also shows that pretreatment with SIN increased the methylation level of specific GCG sites in the promoter region of mPGES-1. This specific methylation site may become a new biomarker for predicting and diagnosing RA and cancer with high expression of mPGES-1. Also, our research provides new ideas and solutions for clinical diagnosis and treatment of diseases related to mPGES-1 and for targeted methylation strategy in drug development.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Key Laboratory of Plant Ex-situ Conservation and Research Center of Resource Plant, Lushan Botanical Garden, Chinese Academy of Science, Jiujiang City, Jiangxi Province, PR China
| | - Chon-Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, PR China
| | - Yu-Feng Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China
| | - Fan He
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China.
| | - Liang Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China.
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
15
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
16
|
N-Acylated and N-Alkylated 2-Aminobenzothiazoles Are Novel Agents That Suppress the Generation of Prostaglandin E2. Biomolecules 2022; 12:biom12020267. [PMID: 35204768 PMCID: PMC8961538 DOI: 10.3390/biom12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation.
Collapse
|
17
|
Caruso L, Nadur NF, Brandão M, Peixoto Ferreira LDA, Lacerda RB, Graebin CS, Kümmerle AE. The Design of Multi-target Drugs to Treat Cardiovascular Diseases: Two (or more) Birds on one Stone. Curr Top Med Chem 2022; 22:366-394. [PMID: 35105288 DOI: 10.2174/1568026622666220201151248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", which aims to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVD's. Thus, over time, treatment strategies for cardiovascular diseases have changed and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e, compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension and arrhythmia.
Collapse
Affiliation(s)
- Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Marina Brandão
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Larissa de Almeida Peixoto Ferreira
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| |
Collapse
|
18
|
Li L, Yasmen N, Hou R, Yang S, Lee JY, Hao J, Yu Y, Jiang J. Inducible Prostaglandin E Synthase as a Pharmacological Target for Ischemic Stroke. Neurotherapeutics 2022; 19:366-385. [PMID: 35099767 PMCID: PMC9130433 DOI: 10.1007/s13311-022-01191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/03/2023] Open
Abstract
As the inducible terminal enzyme for prostaglandin E2 (PGE2) synthesis, microsomal PGE synthase-1 (mPGES-1) contributes to neuroinflammation and secondary brain injury after cerebral ischemia via producing excessive PGE2. However, a proof of concept that mPGES-1 is a therapeutic target for ischemic stroke has not been established by a pharmacological strategy mainly due to the lack of drug-like mPGES-1 inhibitors that can be used in relevant rodent models. To this end, we recently developed a series of novel small-molecule compounds that can inhibit both human and rodent mPGES-1. In this study, blockade of mPGES-1 by our several novel compounds abolished the lipopolysaccharide (LPS)-induced PGE2 and pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) in mouse primary brain microglia. Inhibition of mPGES-1 also decreased PGE2 produced by neuronal cells under oxygen-glucose deprivation (OGD) stress. Among the five enzymes for PGE2 biosynthesis, mPGES-1 was the most induced one in cerebral ischemic lesions. Systemic treatment with our lead compound MPO-0063 (5 or 10 mg/kg, i.p.) in mice after transient middle cerebral artery occlusion (MCAO) improved post-stroke well-being, decreased infarction and edema, suppressed induction of brain cytokines (IL-1β, IL-6, and TNF-α), alleviated locomotor dysfunction and anxiety-like behavior, and reduced the long-term cognitive impairments. The therapeutic effects of MPO-0063 in this proof-of-concept study provide the first pharmacological evidence that mPGES-1 represents a feasible target for delayed, adjunct treatment - along with reperfusion therapies - for acute brain ischemia.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Seyoung Yang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
19
|
Nakanishi M, Rosenberg DW. Epithelial Cell-specific Deletion of Microsomal Prostaglandin E Synthase-1 Does Not Influence Colon Tumor Development in Mice. J Cancer Prev 2021; 26:304-308. [PMID: 35047457 PMCID: PMC8749314 DOI: 10.15430/jcp.2021.26.4.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022] Open
Abstract
Activation of the COX-2/microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2 (PGE2) signaling axis is a hallmark of many cancers, including colorectal cancer, prompting the implementation of prevention strategies targeting COX-2 activity. We have previously shown that targeting the downstream terminal PGE2 synthase, mPGES-1 (Ptges), specifically reduces inducible PGE2 formation without disrupting synthesis of other essential prostanoids, thereby conferring dramatic cancer protection against colon carcinogenesis in multiple mouse models. In order to accelerate its development as a viable drug target, and to better understand the mechanisms by which PGE2 influences colon carcinogenesis, we recently developed a conditional Ptges knockout mouse model (cKO). To evaluate the functional role of Ptges directly within the colonic epithelia, cKO mice were crossed with carbonic anhydrase 1 (Car1)-Cre mice (cKO.Car1), and colon tumors were induced using the azoxymethane/dextran sodium sulfate protocol. Unexpectedly, epithelial-specific blockade of Ptges failed to protect mice against colon tumor development. Further studies using the cKO mouse model will be necessary to pinpoint the cell type-specific location of mPGES-1 and its control of inducible PGE2 formation that drives tumor formation in the colon.
Collapse
Affiliation(s)
- Masako Nakanishi
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT, USA
| | - Daniel W. Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
20
|
Ballesteros-Martinez C, Rodrigues-Diez R, Beltrán LM, Moreno-Carriles R, Martínez-Martínez E, González-Amor M, Martínez-González J, Rodríguez C, Cachofeiro V, Salaices M, Briones AM. Microsomal Prostaglandin E Synthase-1 (mPGES-1) is involved in the metabolic and cardiovascular alterations associated with obesity. Br J Pharmacol 2021; 179:2733-2753. [PMID: 34877656 DOI: 10.1111/bph.15776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in obesity development and in the metabolic and cardiovascular alterations associated. EXPERIMENTAL APPROACH mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was studied by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were evaluated by myography. Histological studies, q-RT-PCR and Western Blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients and its correlation with vascular damage was determined. KEY RESULTS Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared to mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodeling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodeling, vessel stiffness and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. CONCLUSIONS AND IMPLICATIONS mPGES-1 inhibition might be a novel therapeutic approach for the management of obesity and the associated cardiovascular and metabolic alterations.
Collapse
Affiliation(s)
- Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Luis M Beltrán
- Servicio de Medicina Interna. Hospital Universitario La Paz, IdiPaz, Madrid, Spain.,Servicio de Medicina Interna. Hospital Virgen del Rocío - IBiS, Sevilla. Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rosa Moreno-Carriles
- Servicio de Angiología y Cirugía vascular. Hospital Universitario La Princesa, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica (IIB) Sant Pau, Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| |
Collapse
|
21
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
22
|
Sahanic S, Löffler-Ragg J, Tymoszuk P, Hilbe R, Demetz E, Masanetz RK, Theurl M, Holfeld J, Gollmann-Tepeköylü C, Tzankov A, Weiss G, Giera M, Tancevski I. The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Front Physiol 2021; 12:688946. [PMID: 34366882 PMCID: PMC8339726 DOI: 10.3389/fphys.2021.688946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca K Masanetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. Eur J Med Chem 2021; 224:113693. [PMID: 34315041 DOI: 10.1016/j.ejmech.2021.113693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The multiple inhibition of biological targets involved in pro-inflammatory eicosanoid biosynthesis represents an innovative strategy for treating inflammatory disorders in light of higher efficacy and safety. Herein, following a multidisciplinary protocol involving virtual combinatorial screening, chemical synthesis, and in vitro and in vivo validation of the biological activities, we report the identification of 1,2,4-oxadiazole-based eicosanoid biosynthesis multi-target inhibitors. The multidisciplinary scientific approach led to the identification of three 1,2,4-oxadiazole hits (compounds 1, 2 and 5), all endowed with IC50 values in the low micromolar range, acting as 5-lipoxygenase-activating protein (FLAP) antagonists (compounds 1 and 2), and as a multi-target inhibitor (compound 5) of arachidonic acid cascade enzymes, namely cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1). Moreover, our in vivo results demonstrate that compound 5 is able to attenuate leukocyte migration in a model of zymosan-induced peritonitis and to modulate the production of IL-1β and TNF-α. These results are of interest for further expanding the chemical diversity around the 1,2,4-oxadiazole central core, enabling the identification of novel anti-inflammatory agents characterized by a favorable pharmacological profile and considering that moderate interference with multiple targets might have advantages in re-adjusting homeostasis.
Collapse
|
24
|
Schmid T, Brüne B. Prostanoids and Resolution of Inflammation - Beyond the Lipid-Mediator Class Switch. Front Immunol 2021; 12:714042. [PMID: 34322137 PMCID: PMC8312722 DOI: 10.3389/fimmu.2021.714042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bioactive lipid mediators play a major role in regulating inflammatory processes. Herein, early pro-inflammatory phases are characterized and regulated by prostanoids and leukotrienes, whereas specialized pro-resolving mediators (SPM), including lipoxins, resolvins, protectins, and maresins, dominate during the resolution phase. While pro-inflammatory properties of prostanoids have been studied extensively, their impact on later phases of the inflammatory process has been attributed mainly to their ability to initiate the lipid-mediator class switch towards SPM. Yet, there is accumulating evidence that prostanoids directly contribute to the resolution of inflammation and return to homeostasis. In this mini review, we summarize the current knowledge of the resolution-regulatory properties of prostanoids and discuss potential implications for anti-inflammatory, prostanoid-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
25
|
Analysis of Boswellic Acid Contents and Related Pharmacological Activities of Frankincense-Based Remedies That Modulate Inflammation. Pharmaceuticals (Basel) 2021; 14:ph14070660. [PMID: 34358086 PMCID: PMC8308689 DOI: 10.3390/ph14070660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Extracts of frankincense, the gum resin of Boswellia species, have been extensively used in traditional folk medicine since ancient times and are still of great interest as promising anti-inflammatory remedies in Western countries. Despite their common therapeutic use and the intensive pharmacological research including studies on active ingredients, modes of action, bioavailability, pharmacokinetics, and clinical efficacy, frankincense preparations are available as nutraceuticals but have not yet approved as a drug on the market. A major issue of commercially available frankincense nutraceuticals is the striking differences in their composition and quality, especially related to the content of boswellic acids (BAs) as active ingredients, mainly due to the use of material from divergent Boswellia species but also because of different work-up and extraction procedures. Here, we assessed three frequently used frankincense-based preparations for their BA content and the interference with prominent pro-inflammatory actions and targets that have been proposed, that is, 5-lipoxygenase and leukotriene formation in human neutrophils, microsomal prostaglandin E2 synthase-1, and inflammatory cytokine secretion in human blood monocytes. Our data reveal striking differences in the pharmacological efficiencies of these preparations in inflammation-related bioassays which obviously correlate with the amounts of BAs they contain. In summary, high-quality frankincense extracts display powerful anti-inflammatory effectiveness against multiple targets which can be traced back to BAs as bioactive ingredients.
Collapse
|
26
|
Kim M, Kim G, Kang M, Ko D, Nam Y, Moon CS, Kang HM, Shin JS, Werz O, Lee KT, Lee JY. Discovery of N-amido-phenylsulfonamide derivatives as novel microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors. Bioorg Med Chem Lett 2021; 41:127992. [PMID: 33775835 DOI: 10.1016/j.bmcl.2021.127992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Our previous research showed that N-carboxy-phenylsulfonyl hydrazide (scaffold A) could reduce LPS-stimulated PGE2 levels in RAW 264.7 macrophage cells by an inhibition of mPGES-1 enzyme. However, a number of scaffold A derivatives showed the drawbacks such as the formation of regioisomers and poor liver metabolic stability. In order to overcome these synthetic and metabolic problems, therefore, we decided to replace N-carboxy-phenylsulfonyl hydrazide (scaffold A) with N-carboxy-phenylsulfonamide (scaffold B) or N-amido-phenylsulfonamide frameworks (scaffold C) as a bioisosteric replacement. Among them, MPO-0186 (scaffold C) inhibited the production of PGE2 (IC50: 0.24 μM) in A549 cells via inhibition of mPGES-1 (IC50: 0.49 μM in a cell-free assay) and was found to be approximately 9- and 8-fold more potent than MK-886 as a reference inhibitor, respectively. A molecular docking study theoretically suggests that MPO-0186 could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 enzyme. Furthermore, MPO-0186 demonstrated good liver metabolic stability and no significant inhibition observed in clinically relevant CYP isoforms except CYP2C19. This result provides a potential starting point for the development of selective and potent mPGES-1 inhibitor with a novel scaffold.
Collapse
Affiliation(s)
- Misong Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Geuntae Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dohyeong Ko
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunchan Nam
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Sang Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heung Mo Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
27
|
Di Micco S, Terracciano S, Ruggiero D, Potenza M, Vaccaro MC, Fischer K, Werz O, Bruno I, Bifulco G. Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Front Chem 2021; 9:676631. [PMID: 34046398 PMCID: PMC8144515 DOI: 10.3389/fchem.2021.676631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Dafne Ruggiero
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Marianna Potenza
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Maria C Vaccaro
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Katrin Fischer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ines Bruno
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
28
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
29
|
Orally Administered NSAIDs-General Characteristics and Usage in the Treatment of Temporomandibular Joint Osteoarthritis-A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14030219. [PMID: 33807930 PMCID: PMC7998670 DOI: 10.3390/ph14030219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative joint disease. The aim of this review was to present the general characteristics of orally administered nonsteroidal anti-inflammatory drugs (NSAIDs) and to present the efficacy of NSAIDs in the treatment of TMJ OA. Methods: PubMed database was analyzed with the keywords: "(temporomandibular joint) AND ((disorders) OR (osteoarthritis) AND (treatment)) AND (nonsteroidal anti-inflammatory drug)". After screening of 180 results, 6 studies have been included in this narrative review. Results and Conclusions: Nonsteroidal anti-inflammatory drugs are one of the most commonly used drugs for alleviation of pain localized in the orofacial area. The majority of articles predominantly examined and described diclofenac sodium in the treatment of pain in the course of TMJ OA. Because of the limited number of randomized studies evaluating the efficacy of NSAIDs in the treatment of TMJ OA, as well as high heterogeneity of published researches, it seems impossible to draw up unequivocal recommendations for the usage of NSAIDs in the treatment of TMJ OA. However, it is highly recommended to use the lowest effective dose of NSAIDs for the shortest possible time. Moreover, in patients with increased risk of gastrointestinal complications, supplementary gastroprotective agents should be prescribed.
Collapse
|
30
|
Mahesh G, Anil Kumar K, Reddanna P. Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE 2? J Inflamm Res 2021; 14:253-263. [PMID: 33568930 PMCID: PMC7868279 DOI: 10.2147/jir.s278514] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8Uufep6ipBQ
Collapse
Affiliation(s)
- Gopa Mahesh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kotha Anil Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
31
|
Rappl P, Rösser S, Maul P, Bauer R, Huard A, Schreiber Y, Thomas D, Geisslinger G, Jakobsson PJ, Weigert A, Brüne B, Schmid T. Inhibition of mPGES-1 attenuates efficient resolution of acute inflammation by enhancing CX3CL1 expression. Cell Death Dis 2021; 12:135. [PMID: 33542207 PMCID: PMC7862376 DOI: 10.1038/s41419-021-03423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Despite the progress to understand inflammatory reactions, mechanisms causing their resolution remain poorly understood. Prostanoids, especially prostaglandin E2 (PGE2), are well-characterized mediators of inflammation. PGE2 is produced in an inducible manner in macrophages (Mϕ) by microsomal PGE2-synthase-1 (mPGES-1), with the notion that it also conveys pro-resolving properties. We aimed to characterize the role of mPGES-1 during resolution of acute, zymosan-induced peritonitis. Experimentally, we applied the mPGES-1 inhibitor compound III (CIII) once the inflammatory response was established and confirmed its potent PGE2-blocking efficacy. mPGES-1 inhibition resulted in an incomplete removal of neutrophils and a concomitant increase in monocytes and Mϕ during the resolution process. The mRNA-seq analysis identified enhanced C-X3-C motif receptor 1 (CX3CR1) expression in resident and infiltrating Mϕ upon mPGES-1 inhibition. Besides elevated Cx3cr1 expression, its ligand CX3CL1 was enriched in the peritoneal lavage of the mice, produced by epithelial cells upon mPGES-1 inhibition. CX3CL1 not only increased adhesion and survival of Mϕ but its neutralization also completely reversed elevated inflammatory cell numbers, thereby normalizing the cellular, peritoneal composition during resolution. Our data suggest that mPGES-1-derived PGE2 contributes to the resolution of inflammation by preventing CX3CL1-mediated retention of activated myeloid cells at sites of injury.
Collapse
Affiliation(s)
- Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Patrick Maul
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Per-Johan Jakobsson
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
32
|
Mechanism of action and potential applications of selective inhibition of microsomal prostaglandin E synthase-1-mediated PGE 2 biosynthesis by sonlicromanol's metabolite KH176m. Sci Rep 2021; 11:880. [PMID: 33441600 PMCID: PMC7806836 DOI: 10.1038/s41598-020-79466-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Increased prostaglandin E2 (PGE2) levels were detected in mitochondrial disease patient cells harboring nuclear gene mutations in structural subunits of complex I, using a metabolomics screening approach. The increased levels of this principal inflammation mediator normalized following exposure of KH176m, an active redox-modulator metabolite of sonlicromanol (KH176). We next demonstrated that KH176m selectively inhibited lipopolysaccharide (LPS) or interleukin-1β (IL-1β)-induced PGE2 production in control skin fibroblasts. Comparable results were obtained in the mouse macrophage-like cell line RAW264.7. KH176m selectively inhibited mPGES-1 activity, as well as the inflammation-induced expression of mPGES-1. Finally, we showed that the effect of KH176m on mPGES-1 expression is due to the inhibition of a PGE2-driven positive feedback control-loop of mPGES-1 transcriptional regulation. Based on the results obtained we discuss potential new therapeutic applications of KH176m and its clinical stage parent drug candidate sonlicromanol in mitochondrial disease and beyond.
Collapse
|
33
|
Present Status and Future Trends of Natural-Derived Compounds Targeting T Helper (Th) 17 and Microsomal Prostaglandin E Synthase-1 (mPGES-1) as Alternative Therapies for Autoimmune and Inflammatory-Based Diseases. Molecules 2020; 25:molecules25246016. [PMID: 33353211 PMCID: PMC7766998 DOI: 10.3390/molecules25246016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Several natural-based compounds and products are reported to possess anti-inflammatory and immunomodulatory activity both in vitro and in vivo. The primary target for these activities is the inhibition of eicosanoid-generating enzymes, including phospholipase A2, cyclooxygenases (COXs), and lipoxygenases, leading to reduced prostanoids and leukotrienes. Other mechanisms include modulation of protein kinases and activation of transcriptases. However, only a limited number of studies and reviews highlight the potential modulation of the coupling enzymatic pathway COX-2/mPGES-1 and Th17/Treg circulating cells. Here, we provide a brief overview of natural products/compounds, currently included in the Italian list of botanicals and the BELFRIT, in different fields of interest such as inflammation and immunity. In this context, we focus our opinion on novel therapeutic targets such as COX-2/mPGES-1 coupling enzymes and Th17/Treg circulating repertoire. This paper is dedicated to the scientific career of Professor Nicola Mascolo for his profound dedication to the study of natural compounds.
Collapse
|
34
|
Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and Cancer: Insight into Tumor Progression and Immunity. BIOLOGY 2020; 9:E434. [PMID: 33271839 PMCID: PMC7760298 DOI: 10.3390/biology9120434] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Erica Buoso
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
35
|
Erridge S, Mangal N, Salazar O, Pacchetti B, Sodergren MH. Cannflavins - From plant to patient: A scoping review. Fitoterapia 2020; 146:104712. [PMID: 32858172 DOI: 10.1016/j.fitote.2020.104712] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Cannflavins are a group of prenylflavonoids derived from Cannabis sativa L.. Cannflavin A (CFL-A), B (CFL-B) and C (CFL-C) have been heralded for their anti-inflammatory properties in pre-clinical evaluations. This scoping review aims to synthesise the evidence base on cannflavins to provide an overview of the current research landscape to inform research strategies to aid clinical translation. METHODS A scoping review was conducted of EMBASE, MEDLINE, Pubmed, CENTRAL and Google Scholar databases up to 26th February 2020. All studies describing original research on cannflavins and their isomers were included for review. RESULTS 26 full text articles were included. CFL-A and CFL-B demonstrated potent anti-inflammatory activity via inhibition of 12-o-tetradecanoylphorbol 13-acetate induced PGE2 release (CFL-A half maximal inhibitory concentration (IC50): 0.7 μM; CFL-B IC50: 0.7 μM) and microsomal prostaglandin E synthase-1 (CFL-A IC50: 1.8 μM; CFL-B IC50: 3.7 μM). Outcomes were also described in preclinical models of anti-oxidation (CFL-A), anti-parasitic activity (CFL-A, CFL-C), neuroprotection (CFL-A) and cancer (Isocannflavin B, a CFL-B isomer). In-silico screening identified that CFL-A has binding affinity with viral proteins that warrant further investigation. CONCLUSIONS Cannflavins demonstrate a number of promising therapeutic properties, most notably as an anti-inflammatory agent. Low yields of extraction however have previously limited research to small pre-clinical investigations. Identification of cannflavin-rich chemovars, novel extraction techniques and recent identification of a biosynthetic pathway will hopefully allow research to be scaled appropriately. In order to fully evaluate the therapeutic properties of cannflavins focused research now needs to be embedded within institutions with a track-record of clinical translation.
Collapse
Affiliation(s)
- Simon Erridge
- Department of Surgery and Cancer, Imperial College London, UK
| | - Nagina Mangal
- Department of Surgery and Cancer, Imperial College London, UK
| | - Oliver Salazar
- Department of Surgery and Cancer, Imperial College London, UK
| | | | - Mikael H Sodergren
- Department of Surgery and Cancer, Imperial College London, UK; Emmac Life Sciences, London, UK.
| |
Collapse
|
36
|
Ji S, Guo R, Wang J, Qian L, Liu M, Xu H, Zhang J, Guan Y, Yang G, Chen L. Microsomal Prostaglandin E 2 Synthase-1 Deletion Attenuates Isoproterenol-Induced Myocardial Fibrosis in Mice. J Pharmacol Exp Ther 2020; 375:40-48. [PMID: 32759273 DOI: 10.1124/jpet.120.000023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Deletion of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibits inflammation and protects against atherosclerotic vascular diseases but displayed variable influence on pathologic cardiac remodeling. Overactivation of β-adrenergic receptors (β-ARs) causes heart dysfunction and cardiac remodeling, whereas the role of mPGES-1 in β-AR-induced cardiac remodeling is unknown. Here we addressed this question using mPGES-1 knockout mice, subjecting them to isoproterenol, a synthetic nonselective agonist for β-ARs, at 5 or 15 mg/kg per day to induce different degrees of cardiac remodeling in vivo. Cardiac structure and function were assessed by echocardiography 24 hours after the last of seven consecutive daily injections of isoproterenol, and cardiac fibrosis was examined by Masson trichrome stain in morphology and by real-time polymerase chain reaction for the expression of fibrosis-related genes. The results showed that deletion of mPGES-1 had no significant effect on isoproterenol-induced cardiac dysfunction or hypertrophy. However, the cardiac fibrosis was dramatically attenuated in the mPGES-1 knockout mice after either low-dose or high-dose isoproterenol exposure. Furthermore, in vitro study revealed that overexpression of mPGES-1 in cultured cardiac fibroblasts increased isoproterenol-induced fibrosis, whereas knocking down mPGES-1 in cardiac myocytes decreased the fibrogenesis of fibroblasts. In conclusion, mPGES-1 deletion protects against isoproterenol-induced cardiac fibrosis in mice, and targeting mPGES-1 may represent a novel strategy to attenuate pathologic cardiac fibrosis, induced by β-AR agonists. SIGNIFICANCE STATEMENT: Inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) are being developed as alternative analgesics that are less likely to elicit cardiovascular hazards than cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs. We have demonstrated that deletion of mPGES-1 protects inflammatory vascular diseases and promotes post-myocardial infarction survival. The role of mPGES-1 in β-adrenergic receptor-induced cardiomyopathy is unknown. Here we illustrated that deletion of mPGES-1 alleviated isoproterenol-induced cardiac fibrosis without deteriorating cardiac dysfunction. These results illustrated that targeting mPGES-1 may represent an efficacious approach to the treatment of inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Rui Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Jing Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Guangrui Yang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| |
Collapse
|
37
|
Bergqvist F, Sundström Y, Shang MM, Gunnarsson I, Lundberg IE, Sundström M, Jakobsson PJ, Berg L. Anti-Inflammatory Properties of Chemical Probes in Human Whole Blood: Focus on Prostaglandin E 2 Production. Front Pharmacol 2020; 11:613. [PMID: 32435199 PMCID: PMC7218097 DOI: 10.3389/fphar.2020.00613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
We screened 57 chemical probes, high-quality tool compounds, and relevant clinically used drugs to investigate their effect on pro-inflammatory prostaglandin E2 (PGE2) production and interleukin-8 (IL-8) secretion in human whole blood. Freshly drawn blood from healthy volunteers and patients with systemic lupus erythematosus (SLE) or dermatomyositis was incubated with compounds at 0.1 or 1 µM and treated with lipopolysaccharide (LPS, 10 µg/ml) to induce a pro-inflammatory condition. Plasma was collected after 24 h for lipid profiling using liquid chromatography tandem mass spectrometry (LC-MS/MS) and IL-8 quantification using enzyme-linked immunosorbent assay (ELISA). Each compound was tested in at least four donors at one concentration based on prior knowledge of binding affinities and in vitro activity. Our screening suggested that PD0325901 (MEK-1/2 inhibitor), trametinib (MEK-1/2 inhibitor), and selumetinib (MEK-1 inhibitor) decreased while tofacitinib (JAK inhibitor) increased PGE2 production. These findings were validated by concentration-response experiment in two donors. Moreover, the tested MEK inhibitors decreased thromboxane B2 (TXB2) production and IL-8 secretion. We also investigated the lysophophatidylcholine (LPC) profile in plasma from treated whole blood as these lipids are potentially important mediators in inflammation, and we did not observe any changes in LPC profiles. Collectively, we deployed a semi-high throughput and robust methodology to investigate anti-inflammatory properties of new chemical probes.
Collapse
Affiliation(s)
- Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomic Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Sundström
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomic Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Ming-Mei Shang
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomic Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Michael Sundström
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomic Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomic Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Louise Berg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomic Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|