1
|
Huamani Ortiz ADJ, Campos Segura AV, Magaño Bocanegra KJ, Velásquez Sotomayor MB, Barrón Pastor HJ, Llimpe Mitma de Barrón Y, Chacón Villanueva RD, Murillo Carrasco AG, Ortiz Rojas CA. Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability. Cancers (Basel) 2025; 17:412. [PMID: 39941781 PMCID: PMC11816344 DOI: 10.3390/cancers17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Gastric cancer (GC) is a highly aggressive malignancy with diverse molecular subtypes. While microsatellite instability (MSI) GC generally carries a favorable prognosis, a subset of patients experiences poor outcomes, highlighting the need for refined prognostic markers. Methods: This study utilized transcriptomic and clinical data from two independent cohorts, The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG), to identify novel prognostic genes in MSI-GC. Results: Through rigorous survival analysis, we identified high MAP4K4 expression (MAP4K4high) as an independent and robust predictor of poor overall survival (OS) and disease-free survival (DFS) specifically within the MSI-GC subtype. MAP4K4high was associated with increased hazard ratios for both OS and DFS in both cohorts, even after adjusting for clinicopathological factors. Further analysis revealed that MAP4K4high MSI-GC tumors exhibit a distinct molecular profile characterized by increased extracellular matrix remodeling, epithelial-mesenchymal transition, and a microenvironment enriched in monocytes and cancer-associated fibroblasts (CAFs). Notably, a subgroup of MSI-GC patients with a CIN-like phenotype and high MAP4K4 expression exhibited particularly dismal outcomes. Conclusions: Our findings establish MAP4K4 as a promising prognostic biomarker for risk stratification in MSI-GC and suggest its potential role in driving aggressive tumor behavior through modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Alvaro De Jesus Huamani Ortiz
- Molecular Medicine Research and Teaching Group (MEDMOL), Faculty of Medicine, National University of San Marcos, Lima 15081, Peru; (A.D.J.H.O.); (H.J.B.P.); (Y.L.M.d.B.)
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
| | - Anthony Vladimir Campos Segura
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Clinical and Functional Genomics Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo 01509-010, Brazil
| | - Kevin Jorge Magaño Bocanegra
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Mariana Belén Velásquez Sotomayor
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Faculty of Medicine, Southern Scientific University, Lima 150142, Peru
| | - Heli Jaime Barrón Pastor
- Molecular Medicine Research and Teaching Group (MEDMOL), Faculty of Medicine, National University of San Marcos, Lima 15081, Peru; (A.D.J.H.O.); (H.J.B.P.); (Y.L.M.d.B.)
| | - Yesica Llimpe Mitma de Barrón
- Molecular Medicine Research and Teaching Group (MEDMOL), Faculty of Medicine, National University of San Marcos, Lima 15081, Peru; (A.D.J.H.O.); (H.J.B.P.); (Y.L.M.d.B.)
| | - Ruy Diego Chacón Villanueva
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-900, Brazil
| | - Alexis Germán Murillo Carrasco
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Center for Translational Research in Oncology (LIM/24), Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
- Comprehensive Center for Precision Oncology, University of São Paulo, São Paulo 01246-000, Brazil
| | - César Alexander Ortiz Rojas
- Immunology and Cancer Research Group (IMMUCA), OMICS, Lima 15001, Peru; (A.V.C.S.); (M.B.V.S.); (R.D.C.V.)
- Center for Translational Research in Oncology (LIM/24), Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
- Medical Investigation Laboratory in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM/31), Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| |
Collapse
|
2
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Juin A, Spence HJ, Machesky LM. Dichotomous role of the serine/threonine kinase MAP4K4 in pancreatic ductal adenocarcinoma onset and metastasis through control of AKT and ERK pathways. J Pathol 2024; 262:454-466. [PMID: 38229581 DOI: 10.1002/path.6248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Kwon YS, Lee MG, Kim NY, Nam GS, Nam KS, Jang H, Kim S. Overcoming radioresistance of breast cancer cells with MAP4K4 inhibitors. Sci Rep 2024; 14:7410. [PMID: 38548749 PMCID: PMC10978830 DOI: 10.1038/s41598-024-57000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) has recently emerged as a promising therapeutic target in cancer. In this study, we explored the biological function of MAP4K4 in radioresistant breast cancer cells using two MAP4K4 inhibitors, namely PF06260933 and GNE-495. Radioresistant SR and MR cells were established by exposing SK-BR-3 and MCF-7 breast cancer cells to 48-70 Gy of radiation delivered at 4-5 Gy twice a week over 10 months. Surprisingly, although radioresistant cells were derived from two different subtypes of breast cancer cell lines, MAP4K4 was significantly elevated regardless of subtype. Inhibition of MAP4K4 with PF06260933 or GNE-495 selectively targeted radioresistant cells and improved the response to irradiation. Furthermore, MAP4K4 inhibitors induced apoptosis through the accumulation of DNA damage by inhibiting DNA repair systems in radioresistant cells. Notably, Inhibition of MAP4K4 suppressed the expressions of ACSL4, suggesting that MAP4K4 functioned as an upstream effector of ACSL4. This study is the first to report that MAP4K4 plays a crucial role in mediating the radioresistance of breast cancer by acting upstream of ACSL4 to enhance DNA damage response and inhibit apoptosis. We hope that our findings provide a basis for the development of new drugs targeting MAP4K4 to overcome radioresistance.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do, 63240, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, Honam University, Gwangsan-gu, Gwangju, 62399, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Hyunsoo Jang
- Department of Radiation Oncology, Pohang St. Mary's Hospital, Pohang, Gyeongsangbuk-do, 37661, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea.
| |
Collapse
|
5
|
Gonzalez-Montero J, Burotto M. Considerations on the implementation of MAP4K4 inhibitors as cancer treatment. Expert Opin Ther Targets 2024; 28:113-115. [PMID: 38421000 DOI: 10.1080/14728222.2024.2326211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Jaime Gonzalez-Montero
- Oncology Department, Bradford Hill Clinical Research Center, Santiago, Chile
- Basic and Clinical Oncology Department, University of Chile, Santiago, Chile
| | - Mauricio Burotto
- Oncology Department, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
6
|
Ding L, Jiang L, Xing Z, Dai H, Wei J. Map4k4 is up-regulated and modulates granulosa cell injury and oxidative stress in polycystic ovary syndrome via activating JNK/c-JUN pathway: An experimental study. Int Immunopharmacol 2023; 124:110841. [PMID: 37647682 DOI: 10.1016/j.intimp.2023.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
The regulatory mechanism on granulosa cells (GCs) oxidative injury is becoming increasingly important in polycystic ovary syndrome (PCOS) studies. Serine/threonine kinase mitogen-activated protein 4 kinase 4 (Map4k4) is linked with oxidative injury and possibly associated with premature ovarian failure and ovarian dysgenesis. Herein, we investigated the function and mechanism of Map4k4 in a PCOS rat model. A microarray from GEO database identified Map4k4 was up-regulated in the ovarian of PCOS rats, and functional enrichments suggested that oxidative stress-associated changes are involved. We verified the raised Map4k4 expression in an established PCOS rat model and also in the isolated PCOS-GCs, which were consistent with the microarray data. Map4k4 knockdown in vivo contributed to regular estrous cycle, restrained steroid concentrations and ovarian injury in PCOS rats. Both Map4k4 silencing in vivo and in vitro attenuated the PCOS-related GC oxidative stress and apoptosis. Mechanically, Map4k4 activated the JNK/c-JUN signaling pathway. Importantly, a JNK agonist restored the suppressive effects of Map4k4 silencing on PCOS-induced granulosa cell injury and oxidative stress. Besides, Map4k4 may be a target gene of miR-185-5p. In conclusion, Map4k4, a potential target of miR-185-5p, is up-regulated and induces ovarian GC oxidative injury by activating JNK/c-JUN pathway in PCOS. The Map4k4/JNK/c-JUN mechanism may provide a new idea on the treatment of PCOS.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ze Xing
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huixu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingzan Wei
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
González-Montero J, Rojas CI, Burotto M. MAP4K4 and cancer: ready for the main stage? Front Oncol 2023; 13:1162835. [PMID: 37223681 PMCID: PMC10200945 DOI: 10.3389/fonc.2023.1162835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
MAP4K4 is a serine/threonine kinase that belongs to the MAP kinase family and plays a critical role in embryogenesis and cellular migration. It contains approximately 1,200 amino acids and has a molecular mass of 140 kDa. MAP4K4 is expressed in most tissues where it has been examined and its knockout is embryonic lethal due to impaired somite development. Alterations in MAP4K4 function have a central role in the development of many metabolic diseases such as atherosclerosis and type 2 diabetes, but have recently been implicated in the initiation and progression of cancer. For example, it has been shown that MAP4K4 can stimulate the proliferation and invasion of tumor cells by activating pro-proliferative pathways (such as the c-Jun N-terminal kinase [JNK] and mixed-lineage protein kinase 3 [MLK3] pathways), attenuate anti-tumor cytotoxic immune responses, and stimulate cell invasion and migration by altering cytoskeleton and actin function. Recent in vitro experiments using RNA interference-based knockdown (miR) techniques have shown that inhibition of MAP4K4 function reduces tumor proliferation, migration, and invasion, and may represent a promising therapeutic approach in many types of cancer such as pancreatic cancer, glioblastoma, and medulloblastoma, among others. Over the last few years, specific MAP4K4 inhibitors such as GNE-495 have been developed but have not yet been tested in cancer patients. However, these novel agents may be useful for cancer treatment in the future.
Collapse
|
8
|
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers (Basel) 2023; 15:cancers15082272. [PMID: 37190200 PMCID: PMC10136566 DOI: 10.3390/cancers15082272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruchi Roy
- UICentre for Drug Discovery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Huang H, Han Q, Zheng H, Liu M, Shi S, Zhang T, Yang X, Li Z, Xu Q, Guo H, Lu F, Wang J. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 2021; 13:13. [PMID: 34930918 PMCID: PMC8688448 DOI: 10.1038/s41419-021-04474-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022]
Abstract
There are nearly 40% of cervical cancer patients showing poor response to neoadjuvant chemotherapy that can be induced by autophagy, however, the underlying mechanism has not yet been fully clarified. We previously found that Sex-determining region of Y-related high-mobility-group box 6 (SOX6), a tumor suppressor gene or oncogene in several cancers, could induce autophagy in cervical cancer. Accordingly, this study aims to investigate the mechanism of SOX6-induced autophagy and its potential significance in the platinum-based chemotherapy of cervical cancer. Firstly, we found that SOX6 could promote autophagy in cervical cancer cells depending on its HMG domain. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) gene was identified as the direct target gene of SOX6, which was transcriptionally upregulated by binding the HMG domain of SOX6 protein to its double-binding sites within MAP4K4 gene promoter. MAP4K4 mediated the SOX6-induced autophagy through inhibiting PI3K-Akt-mTOR pathway and activating MAPK/ERK pathway. Further, the sensitivity of cervical cancer cells to cisplatin chemotherapy could be reduced by the SOX6-induced autophagy in vitro and in vivo, while such a phenomenon could be turned over by autophagy-specific inhibitor and MAP4K4 inhibitor, respectively. Moreover, cisplatin itself could promote the expression of endogenous SOX6 and subsequently the MAP4K4-mediated autophagy in cervical cancer cells, which might in turn reduce the sensitivity of these cells to cisplatin treatment. These findings uncovered the underlying mechanism and potential significance of SOX6-induced autophagy, and shed new light on the usage of MAP4K4 inhibitor or autophagy-specific inhibitor for sensitizing cervical cancer cells to the platinum-based chemotherapy.
Collapse
Affiliation(s)
- Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Han
- Department of Gynecology and Obstetrics, The Third Hospital of Peking University, Beijing, 100191, China
| | - Han Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mingchen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingwen Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongqing Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Xu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Guo
- Department of Gynecology and Obstetrics, The Third Hospital of Peking University, Beijing, 100191, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
10
|
Abstract
Metastasis is the process of cancer cell dissemination from primary tumors to different organs being the bone the preferred site for metastatic homing of prostate cancer (PCa) cells. Prostate tumorigenesis is a multi-stage process that ultimately tends to advance to become metastatic PCa. Once PCa patients develop skeletal metastases, they eventually succumb to the disease. Therefore, it is imperative to identify essential molecular drivers of this process to develop new therapeutic alternatives for the treatment of this devastating disease. Here, we have identified MAP4K4 as a relevant gene for metastasis in PCa. Our work shows that genetic deletion of MAP4K4 or pharmacological inhibition of its encoded kinase, HGK, inhibits metastatic PCa cells migration and clonogenic properties. Hence, MAP4K4 might promote metastasis and tumor growth. Mechanistically, our results indicate that HGK depleted cells exhibit profound differences in F-actin organization, increasing cell spreading and focal adhesion stability. Additionally, HGK depleted cells fails to respond to TNF-α stimulation and chemoattractant action. Moreover, here we show that HGK upregulation in PCa samples from TCGA and other databases correlates with a poor prognosis of the disease. Hence, we suggest that it could be used as prognostic biomarker to predict the appearance of an aggressive phenotype of PCa tumors and ultimately, the appearance of metastasis. In summary, our results highlight an essential role for HGK in the dissemination of PCa cells and its potential use as prognostic biomarker.
Collapse
|
11
|
Kong D, Lu JY, Li X, Zhao S, Xu W, Fang J, Wang X, Ma X. Misshapen Disruption Cooperates with RasV12 to Drive Tumorigenesis. Cells 2021; 10:cells10040894. [PMID: 33919765 PMCID: PMC8070713 DOI: 10.3390/cells10040894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Although RAS family genes play essential roles in tumorigenesis, effective treatments targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic screen in Drosophila eye imaginal discs and identified Misshapen (Msn) as a tumor suppressor that synergizes with oncogenic Ras (RasV12) to induce c-Jun N-terminal kinase (JNK) activation and Hippo inactivation, then subsequently leads to tumor overgrowth and invasion. Moreover, ectopic Msn expression activates Hippo signaling pathway and suppresses Hippo signaling disruption-induced overgrowth. Importantly, we further found that Msn acts downstream of protocadherin Fat (Ft) to regulate Hippo signaling. Finally, we identified msn as a Yki/Sd target gene that regulates Hippo pathway in a negative feedback manner. Together, our findings identified Msn as a tumor suppressor and provide a novel insight into RAS-related tumorigenesis that may be relevant to human cancer biology.
Collapse
Affiliation(s)
- Du Kong
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jin-Yu Lu
- Baylor College of Medicine, Hematology & Oncology, Houston, TX 77054, USA;
| | - Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Sihua Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jinan Fang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
- Correspondence: (X.W.); (X.M.)
| | - Xianjue Ma
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Correspondence: (X.W.); (X.M.)
| |
Collapse
|
12
|
Esen E, Sergin I, Jesudason R, Himmels P, Webster JD, Zhang H, Xu M, Piskol R, McNamara E, Gould S, Capietto AH, Delamarre L, Walsh K, Ye W. MAP4K4 negatively regulates CD8 T cell-mediated antitumor and antiviral immunity. Sci Immunol 2020; 5:5/45/eaay2245. [PMID: 32220977 DOI: 10.1126/sciimmunol.aay2245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
During cytotoxic T cell activation, lymphocyte function-associated antigen-1 (LFA-1) engages its ligands on antigen-presenting cells (APCs) or target cells to enhance T cell priming or lytic activity. Inhibiting LFA-1 dampens T cell-dependent symptoms in inflammation, autoimmune diseases, and graft-versus-host disease. However, the therapeutic potential of augmenting LFA-1 function is less explored. Here, we show that genetic deletion or inhibition of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) enhances LFA-1 activation on CD8 T cells and improves their adherence to APCs or LFA-1 ligand. In addition, loss of Map4k4 increases CD8 T cell priming, which culminates in enhanced antigen-dependent activation, proliferation, cytokine production, and cytotoxic activity, resulting in impaired tumor growth and improved response to viral infection. LFA-1 inhibition reverses these phenotypes. The ERM (ezrin, radixin, and moesin) proteins reportedly regulate T cell-APC conjugation, but the molecular regulator and effector of ERM proteins in T cells have not been defined. In this study, we demonstrate that the ERM proteins serve as mediators between MAP4K4 and LFA-1. Last, systematic analyses of many organs revealed that inducible whole-body deletion of Map4k4 in adult animals is tolerated under homeostatic conditions. Our results uncover MAP4K4 as a potential target to augment antitumor and antiviral immunity.
Collapse
Affiliation(s)
- Emel Esen
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Ismail Sergin
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Rajiv Jesudason
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Patricia Himmels
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Erin McNamara
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Stephen Gould
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Kevin Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| | - Weilan Ye
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
13
|
Huang LC, Yeung W, Wang Y, Cheng H, Venkat A, Li S, Ma P, Rasheed K, Kannan N. Quantitative Structure-Mutation-Activity Relationship Tests (QSMART) model for protein kinase inhibitor response prediction. BMC Bioinformatics 2020; 21:520. [PMID: 33183223 PMCID: PMC7664030 DOI: 10.1186/s12859-020-03842-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Protein kinases are a large family of druggable proteins that are genomically and proteomically altered in many human cancers. Kinase-targeted drugs are emerging as promising avenues for personalized medicine because of the differential response shown by altered kinases to drug treatment in patients and cell-based assays. However, an incomplete understanding of the relationships connecting genome, proteome and drug sensitivity profiles present a major bottleneck in targeting kinases for personalized medicine. RESULTS In this study, we propose a multi-component Quantitative Structure-Mutation-Activity Relationship Tests (QSMART) model and neural networks framework for providing explainable models of protein kinase inhibition and drug response ([Formula: see text]) profiles in cell lines. Using non-small cell lung cancer as a case study, we show that interaction terms that capture associations between drugs, pathways, and mutant kinases quantitatively contribute to the response of two EGFR inhibitors (afatinib and lapatinib). In particular, protein-protein interactions associated with the JNK apoptotic pathway, associations between lung development and axon extension, and interaction terms connecting drug substructures and the volume/charge of mutant residues at specific structural locations contribute significantly to the observed [Formula: see text] values in cell-based assays. CONCLUSIONS By integrating multi-omics data in the QSMART model, we not only predict drug responses in cancer cell lines with high accuracy but also identify features and explainable interaction terms contributing to the accuracy. Although we have tested our multi-component explainable framework on protein kinase inhibitors, it can be extended across the proteome to investigate the complex relationships connecting genotypes and drug sensitivity profiles.
Collapse
Affiliation(s)
- Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
| | - Ye Wang
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602 USA
| | - Huimin Cheng
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602 USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, 120 Green St., Athens, GA 30602 USA
| | - Sheng Li
- Department of Computer Science, 415 Boyd Graduate Studies Research Center, Athens, GA 30602 USA
| | - Ping Ma
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602 USA
| | - Khaled Rasheed
- Department of Computer Science, 415 Boyd Graduate Studies Research Center, Athens, GA 30602 USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
- Department of Biochemistry and Molecular Biology, 120 Green St., Athens, GA 30602 USA
| |
Collapse
|
14
|
Bos PH, Lowry ER, Costa J, Thams S, Garcia-Diaz A, Zask A, Wichterle H, Stockwell BR. Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents. Cell Chem Biol 2019; 26:1703-1715.e37. [PMID: 31676236 DOI: 10.1016/j.chembiol.2019.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/14/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Disease-causing mutations in many neurodegenerative disorders lead to proteinopathies that trigger endoplasmic reticulum (ER) stress. However, few therapeutic options exist for patients with these diseases. Using an in vitro screening platform to identify compounds that protect human motor neurons from ER stress-mediated degeneration, we discovered that compounds targeting the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family are neuroprotective. The kinase inhibitor URMC-099 (compound 1) stood out as a promising lead compound for further optimization. We coupled structure-based compound design with functional activity testing in neurons subjected to ER stress to develop a series of analogs with improved MAP4K inhibition and concomitant increases in potency and efficacy. Further structural modifications were performed to enhance the pharmacokinetic profiles of the compound 1 derivatives. Prostetin/12k emerged as an exceptionally potent, metabolically stable, and blood-brain barrier-penetrant compound that is well suited for future testing in animal models of neurodegeneration.
Collapse
Affiliation(s)
- Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathon Costa
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alejandro Garcia-Diaz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
HGK-sestrin 2 signaling-mediated autophagy contributes to antitumor efficacy of Tanshinone IIA in human osteosarcoma cells. Cell Death Dis 2018; 9:1003. [PMID: 30258193 PMCID: PMC6158215 DOI: 10.1038/s41419-018-1016-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/02/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
Abstract
Tanshinone IIA (TIIA) is a diterpenoid naphthoquinone isolated from the herb Salvia miltiorrhiza with antitumor effects manifested at multiple levels that are mechanistically obscure. In our previous studies, we illustrated that TIIA treatment triggered apoptosis in human osteosarcoma 143B cells both in vitro and in vivo, accompanied with mitochondrial dysfunction. Importantly, the overall survival rate of patients with osteosarcoma who were randomly recruited to S. miltiorrhiza treatment was significantly higher than those without. Pursuing this observation, we evaluated the potential effect of TIIA on autophagy induction in osteosarcoma both in vivo and in vitro. We discovered that TIIA inhibited osteosarcoma cell survival through class I PI3K and Akt signaling pathways. In contrast, expression of class III PI3K required in the early stages of autophagosome generation was predominantly enhanced by TIIA treatment. Our study indicated that treatment of TIIA effectively induced autophagy in human osteosarcoma cells, which contributed to the blockade of anchorage-independent growth of osteosarcoma cells and ameliorated tumor progression in NOD/SCID mice. We demonstrated that TIIA-mediated autophagy occurred in a sestrin 2 (SESN2)-dependent but not Beclin 1-dependent manner. In addition, we defined the activation of HGK (MAP4K4 or mitogen-activated protein kinase kinase kinase kinase)/SAPK/JNK1/Jun kinase pathways in upregulating transcription of SESN2, in which TIIA triggered HGK/JNK1-dependent Jun activation and led to increased Jun recruitment to AP-1-binding site in the SESN2 promoter region. Our results offer novel mechanistic insight into how TIIA inhibits osteosarcoma growth and suggest TIIA as a promising therapeutic agent for the treatment of cancer.
Collapse
|
17
|
Hippo pathway affects survival of cancer patients: extensive analysis of TCGA data and review of literature. Sci Rep 2018; 8:10623. [PMID: 30006603 PMCID: PMC6045671 DOI: 10.1038/s41598-018-28928-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The disruption of the Hippo pathway occurs in many cancer types and is associated with cancer progression. Herein, we investigated the impact of 32 Hippo genes on overall survival (OS) of cancer patients, by both analysing data from The Cancer Genome Atlas (TCGA) and reviewing the related literature. mRNA and protein expression data of all solid tumors except pure sarcomas were downloaded from TCGA database. Thirty-two Hippo genes were considered; for each gene, patients were dichotomized based on median expression value. Survival analyses were performed to identify independent predictors, taking into account the main clinical-pathological features affecting OS. Finally, independent predictors were correlated with YAP1 oncoprotein expression. At least one of the Hippo genes is an independent prognostic factor in 12 out of 13 considered tumor datasets. mRNA levels of the independent predictors coherently correlate with YAP1 in glioma, kidney renal clear cell, head and neck, and bladder cancer. Moreover, literature data revealed the association between YAP1 levels and OS in gastric, colorectal, hepatocellular, pancreatic, and lung cancer. Herein, we identified cancers in which Hippo pathway affects OS; these cancers should be candidates for YAP1 inhibitors development and testing.
Collapse
|
18
|
Fu Y, Liu X, Chen Q, Liu T, Lu C, Yu J, Miao Y, Wei J. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. J Exp Clin Cancer Res 2018; 37:130. [PMID: 29970191 PMCID: PMC6029016 DOI: 10.1186/s13046-018-0807-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 06/23/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aberrant expression of microRNAs (miRNAs) has emerged as important hallmarks of cancer. However, the molecular mechanisms underlying the differences of miRNA expression remain unclear. Many studies have reported that miR-98-5p plays vital functions in the development and progression of multiple cancers. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS The expression of miR-98-5p and its specific target gene were determined in human PDAC specimens and cell lines by miRNA qRT-PCR, qRT-PCR and western blot. The effects of miR-98-5p depletion or ectopic expression on PDAC proliferation, migration and invasion were evaluated in vitro using CCK-8 proliferation assays, colony formation assays, wound healing assays and transwell assays. Furthermore, the in vivo effects were investigated using the mouse subcutaneous xenotransplantation and pancreatic tail xenotransplantation models. Luciferase reporter assays were employed to identify interactions between miR-98-5p and its specific target gene. RESULTS MiR-98-5p expression was significantly lower in cancerous tissues and associated with tumor size, TNM stage, lymph node metastasis and survival. Notably, a series of gain- and loss-of-function assays elucidated that miR-98-5p suppressed PDAC cell proliferation, migration and invasion both in vitro and in vivo. Luciferase reporter assays, western blot and qRT-PCR revealed MAP4K4 to be a direct target of miR-98-5p. The effects of ectopic miR-98-5p were rescued by MAP4K4 overexpression. In contrast, the effects of miR-98-5p depletion were impaired by MAP4K4 knockdown. Furthermore, miR-98-5p suppressed the MAPK/ERK signaling pathway through downregulation of MAP4K4. In addition, the expression level of miR-98-5p was negatively correlated with MAP4K4 expression in PDAC tissues and cell lines. CONCLUSIONS These results suggest that downregulation of miR-98-5p promotes tumor development by downregulation of MAP4K4 and inhibition of the downstream MAPK/ERK signaling, thus, highlighting the potential of miR-98-5p as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Yue Fu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
- Department of General Surgery, The Affiliated Changzhou NO.2 People’s Hospital With Nanjing Medical University, 68 Gehu Road, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinchun Liu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Qiuyang Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Tongtai Liu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Cheng Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jun Yu
- Department of Surgery, Johns Hopkins Medical Institutions, 600 N Wolfe Street, Baltimore, MD USA
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jishu Wei
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
19
|
Tripolitsioti D, Kumar KS, Neve A, Migliavacca J, Capdeville C, Rushing EJ, Ma M, Kijima N, Sharma A, Pruschy M, McComb S, Taylor MD, Grotzer MA, Baumgartner M. MAP4K4 controlled integrin β1 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells. Oncotarget 2018; 9:23220-23236. [PMID: 29796184 PMCID: PMC5955425 DOI: 10.18632/oncotarget.25294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/08/2018] [Indexed: 02/03/2023] Open
Abstract
Local tissue infiltration of Medulloblastoma (MB) tumor cells precedes metastatic disease but little is still known about intrinsic regulation of migration and invasion in these cells. We found that MAP4K4, a pro-migratory Ser/Thr kinase, is overexpressed in 30% of primary MB tumors and that increased expression is particularly associated with the frequently metastatic SHH β subtype. MAP4K4 is a driver of migration and invasion downstream of c-Met, which is transcriptionally up-regulated in SHH MB. Consistently, depletion of MAP4K4 in MB tumor cells restricts HGF-driven matrix invasion in vitro and brain tissue infiltration ex vivo. We show that these pro-migratory functions of MAP4K4 involve the activation of the integrin β-1 adhesion receptor and are associated with increased endocytic uptake. The consequent enhanced recycling of c-Met caused by MAP4K4 results in the accumulation of activated c-Met in cytosolic vesicles, which is required for sustained signaling and downstream pathway activation. The parallel increase of c-Met and MAP4K4 expression in SHH MB could predict an increased potential of these tumors to infiltrate brain tissue and cause metastatic disease. Molecular targeting of the underlying accelerated endocytosis and receptor recycling could represent a novel approach to block pro-migratory effector functions of MAP4K4 in metastatic cancers.
Collapse
Affiliation(s)
- Dimitra Tripolitsioti
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Karthiga Santhana Kumar
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Anuja Neve
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Jessica Migliavacca
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Charles Capdeville
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Hospital Zürich, Zürich, Switzerland
| | - Min Ma
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Noriyuki Kijima
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ashish Sharma
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Pruschy
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Scott McComb
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| | - Michael D Taylor
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael A Grotzer
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland.,University Children's Hospital Zürich, Department of Oncology, Zürich, Switzerland
| | - Martin Baumgartner
- University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Zürich, Switzerland
| |
Collapse
|
20
|
Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents. Oncotarget 2017; 8:18885-18900. [PMID: 27935865 PMCID: PMC5386655 DOI: 10.18632/oncotarget.13806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Due to exposure to environmental toxicants, a “field cancerization” effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis.
Collapse
|
21
|
Cheng H, Zhang Y, Wang H, Sun N, Liu M, Chen H, Pei R. Regulation of MAP4K4 gene expression by RNA interference through an engineered theophylline-dependent hepatitis delta virus ribozyme switch. MOLECULAR BIOSYSTEMS 2017; 12:3370-3376. [PMID: 27754501 DOI: 10.1039/c6mb00540c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Riboswitches are functional non-coding RNA regulatory components that play an important role in the regulation of gene expression in diverse organisms. In particular, using riboswitches to modulate RNA interference (RNAi) enables temporal and spatial control of gene expression in mammalian cells. Herein, a ribozyme gene switch to activate RNAi was fabricated for the artificial regulation of versatile gene silencing through the interaction of an RNA aptamer with small molecules. The device comprised an allosteric HDV ribozyme with an embedded theophylline aptamer and a primary miRNA (pri-miRNA) to silence the MAP4K4 gene in hepatic (HepG2) cells, aiming to achieve dose-dependent control of the activation of RNAi, and then the regulation of the MAP4K4 gene by theophylline. Finally, we demonstrated the feasibility and applicability of utilizing HDV ribozyme switches to activate RNAi for regulating an endogenous gene in mammalian cells.
Collapse
Affiliation(s)
- Hui Cheng
- College of Life Sciences, Shanghai University, Shanghai 200444, China and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuanyuan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongyan Wang
- College of Life Sciences, Shanghai University, Shanghai 200444, China and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Na Sun
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Min Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongxia Chen
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Renjun Pei
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
22
|
Gao X, Chen G, Gao C, Zhang DH, Kuan SF, Stabile LP, Liu G, Hu J. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol 2017; 11:628-639. [PMID: 28306189 PMCID: PMC5467491 DOI: 10.1002/1878-0261.12055] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
About 76% of patients with lung adenocarcinoma harbor activating mutations in the receptor tyrosine kinase (RTK)/RAS/RAF pathways, leading to aberrant activation of the mitogen-activated protein kinase (MAPK) pathways particularly the MAPK/ERK pathway. However, many lung adenocarcinomas lacking these genomic mutations also display significant MAPK pathway activation, suggesting that additional MAPK pathway alterations remain undetected. This study has identified serine/threonine kinase mitogen-activated protein 4 kinase 4 (MAP4K4) as a novel positive regulator of MAPK/ERK signaling in lung adenocarcinoma. The results showed that MAP4K4 was drastically elevated in lung adenocarcinoma independently of KRAS or EGFR mutation status. Knockdown of MAP4K4 inhibited proliferation, anchorage-independent growth and migration of lung adenocarcinoma cells, and also inhibited human lung adenocarcinoma xenograft growth and metastasis. Mechanistically, we found that MAP4K4 activated ERK through inhibiting protein phosphatase 2 activity. Our results further showed that downregulation of MAP4K4 prevented ERK reactivation in EGFR inhibitor erlotinib-treated lung adenocarcinoma cells. Together, our findings identify MAP4K4 as a novel MAPK/ERK pathway regulator in lung adenocarcinoma that is required for lung adenocarcinoma maintenance.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Guangming Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Dennis Han Zhang
- University of Pittsburgh Dietrich School of Arts and Sciences, PA, USA
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of Medicine, PA, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| |
Collapse
|
23
|
Chuang HC, Tan TH. MAP4K4 and IL-6 + Th17 cells play important roles in non-obese type 2 diabetes. J Biomed Sci 2017; 24:4. [PMID: 28061846 PMCID: PMC5219747 DOI: 10.1186/s12929-016-0307-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
Obesity is a causal factor of type 2 diabetes (T2D); however, people without obesity (including lean, normal weight, or overweight) may still develop T2D. Non-obese T2D is prevalent in Asia and also frequently occurs in Europe. Recently, multiple evidences oppose the notion that either obesity or central obesity (visceral fat accumulation) promotes non-obese T2D. Several factors such as inflammation and environmental factors contribute to non-obese T2D. According to the data derived from gene knockout mice and T2D clinical samples in Asia and Europe, the pathogenesis of non-obese T2D has been unveiled recently. MAP4K4 downregulation in T cells results in enhancement of the IL-6+ Th17 cell population, leading to insulin resistance and T2D in both human and mice. Moreover, MAP4K4 single nucleotide polymorphisms and epigenetic changes are associated with T2D patients. Interactions between MAP4K4 gene variants and environmental factors may contribute to MAP4K4 attenuation in T cells, leading to non-obese T2D. Future investigations of the pathogenesis of non-obese T2D shall lead to development of precision medicine for non-obese T2D.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053, Taiwan. .,Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| |
Collapse
|
24
|
Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci 2016; 6:56. [PMID: 27800153 PMCID: PMC5084373 DOI: 10.1186/s13578-016-0121-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine kinase MAP4K4 is a member of the Ste20p (sterile 20 protein) family. MAP4K4 was initially discovered in 1995 as a key kinase in the mating pathway in Saccharomyces cerevisiae and was later found to be involved in many aspects of cell functions and many biological and pathological processes. The role of MAP4K4 in immunity, inflammation, metabolic and cardiovascular disease has been recognized. Information regarding MAP4K4 in cancers is extremely limited, but increasing evidence suggests that MAP4K4 also plays an important role in cancer and MAP4K4 may represent a novel actionable cancer therapeutic target. This review summarizes our current understanding of MAP4K4 regulation and MAP4K4 in cancer. MAP4K4-specific inhibitors have been recently developed. We hope that this review article would advocate more basic and preclinical research on MAP4K4 in cancer, which could ultimately provide biological and mechanistic justifications for preclinical and clinical test of MAP4K4 inhibitor in cancer patients.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China ; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
25
|
Song WH, Feng XJ, Gong SJ, Chen JM, Wang SM, Xing DJ, Zhu MH, Zhang SH, Xu AM. microRNA-622 acts as a tumor suppressor in hepatocellular carcinoma. Cancer Biol Ther 2016; 16:1754-63. [PMID: 26467022 DOI: 10.1080/15384047.2015.1095402] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
microRNAs (miRNAs) are important regulators of tumor development and progression. In this study, we aimed to explore the expression and role of miR-622 in hepatocellular carcinoma (HCC). We found that miR-622 was significantly downregulated in human HCC specimens compared to adjacent noncancerous liver tissues. miR-622 downregulation was significantly associated with aggressive parameters and poor prognosis in HCC. Enforced expression of miR-622 significantly decreased the proliferation and colony formation and induced apoptosis of HCC cells. In vivo studies demonstrated that miR-622 overexpression retarded the growth of HCC xenograft tumors. Bioinformatic analysis and luciferase reporter assays revealed that miR-622 directly targeted the 3'-untranslated region (UTR) of mitogen-activated protein 4 kinase 4 (MAP4K4) mRNA. Ectopic expression of miR-622 led to a significant reduction of MAP4K4 expression in HCC cells and xenograft tumors. Overexpression of MAP4K4 partially restored cell proliferation and colony formation and reversed the induction of apoptosis in miR-622-overexpressing HCC cells. Inhibition of JNK and NF-κB signaling phenocopied the anticancer effects of miR-622 on HCC cells. Taken together, miR-622 acts as a tumor suppressor in HCC and restoration of miR-622 may provide therapeutic benefits in the treatment of HCC.
Collapse
Affiliation(s)
- Wei-Hua Song
- a Department of Interventional Oncology ; Renji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai , China
| | - Xiao-Jun Feng
- b Department of Pathology ; Yueyang Hospital; Shanghai University of Traditional Chinese Medicine ; Shanghai , China
| | - Shao-Juan Gong
- a Department of Interventional Oncology ; Renji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai , China
| | - Jian-Ming Chen
- a Department of Interventional Oncology ; Renji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai , China
| | - Shou-Mei Wang
- a Department of Interventional Oncology ; Renji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai , China.,b Department of Pathology ; Yueyang Hospital; Shanghai University of Traditional Chinese Medicine ; Shanghai , China
| | - Dong-Juan Xing
- a Department of Interventional Oncology ; Renji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai , China
| | - Ming-Hua Zhu
- c Department of Pathology ; Changhai Hospital and Institute of Liver Diseases; Second Military Medical University ; Shanghai , China
| | - Shu-Hui Zhang
- b Department of Pathology ; Yueyang Hospital; Shanghai University of Traditional Chinese Medicine ; Shanghai , China
| | - Ai-Min Xu
- a Department of Interventional Oncology ; Renji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shanghai , China
| |
Collapse
|
26
|
Virbasius JV, Czech MP. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol Metab 2016; 27:484-492. [PMID: 27160798 PMCID: PMC4912878 DOI: 10.1016/j.tem.2016.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
Mitogen-activated kinase kinase kinase kinase 4 (Map4k4), originally identified in small interfering (si)RNA screens and characterized by tissue-specific gene deletions, is emerging as a regulator of glucose homeostasis and cardiovascular health. Recent studies have shown that Map4k4 gene ablation or inhibition of its kinase activity attenuates hyperglycemia and plaque formation in mouse models of insulin resistance and atherosclerosis, and suggest roles for Map4k4 in multiple signaling systems, including NFκB activation, small GTPase regulation, the Hippo cascade, and regulation of cell dynamics by FERM domain proteins. This new and promising area of inquiry raises key questions that need to be addressed, such as defining which of the above or other effectors mediate Map4k4 control of metabolic and vascular functions, and identifying upstream activators of Map4k4.
Collapse
Affiliation(s)
- Joseph V Virbasius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
27
|
Feng XJ, Pan Q, Wang SM, Pan YC, Wang Q, Zhang HH, Zhu MH, Zhang SH. MAP4K4 promotes epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. Tumour Biol 2016; 37:11457-67. [PMID: 27010469 DOI: 10.1007/s13277-016-5022-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/18/2016] [Indexed: 01/16/2023] Open
Abstract
Our previous study has reported that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) regulates the growth and survival of hepatocellular carcinoma (HCC) cells. This study was undertaken to explore the roles of MAP4K4 in the epithelial-mesenchymal transition (EMT) and metastasis in HCC. Effects of overexpression and knockdown of MAP4K4 on the migration, invasion, and EMT of HCC cells were examined. The in vivo role of MAP4K4 in lung metastasis of HCC was determined in nude mice. The relationship between MAP4K4 expression and EMT in human HCC specimens was determined by immunohistochemistry. MAP4K4 overexpression significantly enhanced the migration and invasion of MHCC-97L HCC cells, whereas MAP4K4 silencing hindered the migration and invasion of MHCC-97H HCC cells. MAP4K4-overexpressing cells undergo EMT, which was accompanied by downregulation of E-cadherin and upregulation of vimentin. In contrast, MAP4K4 silencing caused a reversion from a spindle morphology to cobblestone-like morphology and induction of E-cadherin and reduction of vimentin. Pretreatment with chemical inhibitors of JNK and NF-κB abolished MAP4K4-mediated migration, invasion, and regulation of EMT markers in MHCC-97L cells. Ectopic expression of MAP4K4 promoted and knockdown of MAP4K4 inhibited lung metastasis of HCC, which was associated with regulation of JNK and NF-κB signaling and EMT markers. High MAP4K4 immunoreactivity was inversely correlated with E-cadherin and was positively correlated with vimentin, phospho-JNK, and phospho-NF-κB in HCC specimens. Taken together, MAP4K4 promotes the EMT and invasiveness of HCC cells largely via activation of JNK and NF-κB signaling.
Collapse
Affiliation(s)
- Xiao-Jun Feng
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Changxing Chinese medicine hospital, Huzhou, Zhejiang Province, China
| | - Qing Pan
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shou-Mei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Cui Pan
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-Huan Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Hua Zhu
- Department of Pathology, Changhai Hospital and Institute of Liver Diseases, Second Military Medical University, Shanghai, China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
28
|
Wang B, Shen ZL, Gao ZD, Zhao G, Wang CY, Yang Y, Zhang JZ, Yan YC, Shen C, Jiang KW, Ye YJ, Wang S. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle 2015; 14:1046-58. [PMID: 25602366 DOI: 10.1080/15384101.2015.1007767] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor growth cascade is a complicated and multistep process with numerous obstacles. Until recently, evidences have shown the involvement of microRNAs (miRNAs) in tumorigenesis and tumor progression of various cancers, including colorectal cancer (CRC). In this study, we explored the role of miR-194 and its downstream pathway in CRC. We acquired data through miRNA microarray profiles, showing that the expression of miR-194 was significantly suppressed in CRC tissues compared with corresponding noncancerous tissues. Decreased miR-194 expression was obviously associated with tumor size and tumor differentiation, as well as TNM stage. Both Kaplan-Meier and multivariate survival analysis showed that downregulated miR-194 was associated with overall survival. Moreover, functional assays indicated that overexpression of miR-194 in CRC cell lines inhibited cell proliferation both in vitro and in vivo. In addition, using dual-luciferase reporter gene assay, we found MAP4K4 was the direct target of miR-194. Silencing of MAP4K4 resulted in similar biological behavior changes to that of overexpression of miR-194. We also observed through Human Gene Expression Array that MDM2 was one of the downstream targets of MAP4K4. Knockdown of MAP4K4 downregulated MDM2 expression through transcription factor c-Jun binding to the -1063 to -1057 bp of the promoter. These results suggest that miR-194, regulating the MAP4K4/c-Jun/MDM2 signaling pathway, might act as a tumor suppressor and serve as a novel target for CRC prevention and therapy.
Collapse
Affiliation(s)
- Bo Wang
- a Department of Gastroenterological Surgery ; Peking University People's Hospital ; Beijing , PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Silencing of MAP4K4 by short hairpin RNA suppresses proliferation, induces G1 cell cycle arrest and induces apoptosis in gastric cancer cells. Mol Med Rep 2015; 13:41-8. [PMID: 26549737 PMCID: PMC4686070 DOI: 10.3892/mmr.2015.4510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
Gastric cancer (GC) is the second most common cause of cancer-associated mortality worldwide. Previous studies suggest that mitogen-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) is involved in cancer cell growth, apoptosis and migration. In the present study, bioinformatics analysis and reverse transcription-quantitative polymerase chain reaction were performed to determine if MAP4K4 was overexpressed in GC. The knockdown of MAP4K4 by RNA interference in GC cells markedly inhibited cell proliferation, which may be mediated by cell cycle arrest in the G1 phase. The silencing of MAP4K4 also induced cell apoptosis by increasing the ratio of Bax/Bcl-2. In addition, Notch signaling was markedly reduced by MAP4K4 silencing. The results of the present study suggested that inhibition of MAP4K4 may be a therapeutic strategy for GC.
Collapse
|
30
|
Santhana Kumar K, Tripolitsioti D, Ma M, Grählert J, Egli KB, Fiaschetti G, Shalaby T, Grotzer MA, Baumgartner M. The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma. SPRINGERPLUS 2015; 4:19. [PMID: 25625039 PMCID: PMC4302160 DOI: 10.1186/s40064-015-0784-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/02/2015] [Indexed: 01/20/2023]
Abstract
Medulloblastoma (MB) comprises four molecularly and genetically distinct subgroups of embryonal brain tumors that develop in the cerebellum. MB mostly affects infants and children and is difficult to treat because of frequent dissemination of tumor cells within the leptomeningeal space. A potential promoter of cell dissemination is the c-Met proto-oncogene receptor tyrosine kinase, which is aberrantly expressed in many human tumors including MB. Database analysis showed that c-Met is highly expressed in the sonic hedgehog (SHH) subgroup and in a small subset of Group 3 and Group 4 MB tumors. Using a cell-based three-dimensional cell motility assay combined with live-cell imaging, we investigated whether the c-Met ligand HGF could drive dissemination of MB cells expressing high levels of c-Met, and determined downstream effector mechanisms of this process. We detected variable c-Met expression in different established human MB cell lines, and we found that in lines expressing high c-Met levels, HGF promoted cell dissemination and invasiveness. Specifically, HGF-induced c-Met activation enhanced the capability of the individual cells to migrate in a JNK-dependent manner. Additionally, we identified the Ser/Thr kinase MAP4K4 as a novel driver of c-Met-induced invasive cell dissemination. This increased invasive motility was due to MAP4K4 control of F-actin dynamics in structures required for migration and invasion. Thus, MAP4K4 couples growth factor signaling to actin cytoskeleton regulation in tumor cells, suggesting that MAP4K4 could present a promising novel target to be evaluated for treating growth factor-induced dissemination of MB tumors of different subgroups and of other human cancers.
Collapse
Affiliation(s)
- Karthiga Santhana Kumar
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Dimitra Tripolitsioti
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Min Ma
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Jasmin Grählert
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Current address: Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Katja B Egli
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Giulio Fiaschetti
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Tarek Shalaby
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Michael A Grotzer
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Martin Baumgartner
- Department of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland.,University Children's Hospital Zürich, Department of Oncology, Children's Research Center, Neuro-Oncology group, August-Forel Strasse 1, CH-8008 Zürich, Switzerland
| |
Collapse
|
31
|
Zhang C, Zhou C, Wu XJ, Yang M, Yang ZH, Xiong HZ, Zhou CP, Lu YX, Li Y, Li XN. Human CD133-positive hematopoietic progenitor cells initiate growth and metastasis of colorectal cancer cells. Carcinogenesis 2014; 35:2771-7. [PMID: 25269803 DOI: 10.1093/carcin/bgu192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The tumour-specific 'pre-metastatic niche' has emerged as a potential driving force for tumour metastasis and has been confirmed using mouse models of cancer metastasis. Vascular endothelial growth factor receptor-1(+) hematopoietic progenitor cells (HPCs) have been shown to play an important role in metastasis, forming a 'pre-metastatic niche' at designated sites for distant tumour progression. Here, CD133+ human umbilical hematopoietic progenitor cells (HUHPCs) were purified from human umbilical cord blood and expanded in vitro. We studied the effects of CD133+ HUHPCs on the growth and metastasis of four colorectal cancer (CRC) cell lines by using cell-to-cell co-culture. Our results revealed that CD133+ HUHPCs promoted the proliferation and invasion of CRC cells in vitro and enhanced tumour growth and metastasis in vivo. Moreover, CD133+ HUHPCs were observed in the pre-metastatic liver tissue using immunohistochemical analysis after co-injection of SW480/EGFP(+) cells and HUHPCs. Further experiments were therefore conducted to uncover the molecular mechanisms by which CD133+ HUHPCs influenced colon carcinogenesis and cancer progression. Extracted proteins were separated using the two-dimensional difference in gel electrophoresis technology. Among the differentially expressed proteins, mitogen-activated protein 4 kinase 4, stromal cell-derived factor-1, matrix metallopeptidase 9, calumenin, peripherin, leucine zipper, putative tumour suppressor 1 and guanidinoacetate methyltransferase attracted our attention. Western blot analysis further confirmed the differential expression of these proteins. Altogether, these results suggest that CD133+ HUHPCs may induce proliferation or metastasis of CRC cells and impact their derived proteins by providing a pre-metastatic microenvironment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China and
| | - Chang Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China, Department of Anatomy and Histology, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Xiao-Jin Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Min Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhao-Hui Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Han-Zhen Xiong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Chun-Ping Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yuan Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China,
| |
Collapse
|
32
|
Chuang HC, Sheu WHH, Lin YT, Tsai CY, Yang CY, Cheng YJ, Huang PY, Li JP, Chiu LL, Wang X, Xie M, Schneider MD, Tan TH. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun 2014; 5:4602. [PMID: 25098764 PMCID: PMC4143962 DOI: 10.1038/ncomms5602] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Proinflammatory cytokines play important roles in insulin resistance. Here we report that mice with a T-cell-specific conditional knockout of HGK (T-HGK cKO) develop systemic inflammation and insulin resistance. This condition is ameliorated by either IL-6 or IL-17 neutralization. HGK directly phosphorylates TRAF2, leading to its lysosomal degradation and subsequent inhibition of IL-6 production. IL-6-overproducing HGK-deficient T cells accumulate in adipose tissue and further differentiate into IL-6/IL-17 double-positive cells. Moreover, CCL20 neutralization or CCR6 deficiency reduces the Th17 population or insulin resistance in T-HGK cKO mice. In addition, leptin receptor deficiency in T cells inhibits Th17 differentiation and improves the insulin sensitivity in T-HGK cKO mice, which suggests that leptin cooperates with IL-6 to promote Th17 differentiation. Thus, HGK deficiency induces TRAF2/IL-6 upregulation, leading to IL-6/leptin-induced Th17 differentiation in adipose tissue and subsequent insulin resistance. These findings provide insight into the reciprocal regulation between the immune system and the metabolism.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Wayne H. -H. Sheu
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, 160, Sec. 3, Chung-Kang Road, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Ting Lin
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Yu-Jhen Cheng
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Pau-Yi Huang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Ju-Pi Li
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Li-Li Chiu
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, 160, Sec. 3, Chung-Kang Road, Taichung 40705, Taiwan
| | - Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Min Xie
- UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Michael D. Schneider
- Faculty of Medicine, British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Characterization of the genomic architecture and mutational spectrum of a small cell prostate carcinoma. Genes (Basel) 2014; 5:366-84. [PMID: 24823478 PMCID: PMC4094938 DOI: 10.3390/genes5020366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
We present the use of a series of laboratory, analytical and interpretation methods to investigate personalized cancer care for a case of small cell prostate carcinoma (SCPC), a rare and aggressive tumor with poor prognosis, for which the underlying genomic architecture and mutational spectrum has not been well characterized. We performed both SNP genotyping and exome sequencing of a Virchow node metastasis from a patient with SCPC. A variety of methods were used to analyze and interpret the tumor genome for copy number variation, loss of heterozygosity (LOH), somatic mosaicism and mutations in genes from known cancer pathways. The combination of genotyping and exome sequencing approaches provided more information than either technique alone. The results showed widespread evidence of copy number changes involving most chromosomes including the possible loss of both alleles of CDKN1B (p27/Kip1). LOH was observed for the regions encompassing the tumor suppressors TP53, RB1, and CHD1. Predicted damaging somatic mutations were observed in the retained TP53 and RB1 alleles. Mutations in other genes that may be functionally relevant were noted, especially the recently reported high confidence cancer drivers FOXA1 and CCAR1. The disruption of multiple cancer drivers underscores why SCPC may be such a difficult cancer to manage.
Collapse
|
34
|
Crawford TD, Ndubaku CO, Chen H, Boggs JW, Bravo BJ, Delatorre K, Giannetti AM, Gould SE, Harris SF, Magnuson SR, McNamara E, Murray LJ, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Stanley M, Vitorino P, Wang L, West K, Wu P, Ye W. Discovery of selective 4-Amino-pyridopyrimidine inhibitors of MAP4K4 using fragment-based lead identification and optimization. J Med Chem 2014; 57:3484-93. [PMID: 24673130 DOI: 10.1021/jm500155b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is a serine/threonine kinase implicated in the regulation of many biological processes. A fragment-based lead discovery approach was used to generate potent and selective MAP4K4 inhibitors. The fragment hit pursued in this article had excellent ligand efficiency (LE), an important attribute for subsequent successful optimization into drug-like lead compounds. The optimization efforts eventually led us to focus on the pyridopyrimidine series, from which 6-(2-fluoropyridin-4-yl)pyrido[3,2-d]pyrimidin-4-amine (29) was identified. This compound had low nanomolar potency, excellent kinase selectivity, and good in vivo exposure, and demonstrated in vivo pharmacodynamic effects in a human tumor xenograft model.
Collapse
Affiliation(s)
- Terry D Crawford
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rizzardi AE, Rosener NK, Koopmeiners JS, Isaksson Vogel R, Metzger GJ, Forster CL, Marston LO, Tiffany JR, McCarthy JB, Turley EA, Warlick CA, Henriksen JC, Schmechel SC. Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer 2014; 14:244. [PMID: 24708576 PMCID: PMC4101830 DOI: 10.1186/1471-2407-14-244] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prognostic multibiomarker signatures in prostate cancer (PCa) may improve patient management and provide a bridge for developing novel therapeutics and imaging methods. Our objective was to evaluate the association between expression of 33 candidate protein biomarkers and time to biochemical failure (BF) after prostatectomy. METHODS PCa tissue microarrays were constructed representing 160 patients for whom clinicopathologic features and follow-up data after surgery were available. Immunohistochemistry for each of 33 proteins was quantified using automated digital pathology techniques. Relationships between clinicopathologic features, staining intensity, and time to BF were assessed. Predictive modeling using multiple imputed datasets was performed to identify the top biomarker candidates. RESULTS In univariate analyses, lymph node positivity, surgical margin positivity, non-localized tumor, age at prostatectomy, and biomarkers CCND1, HMMR, IGF1, MKI67, SIAH2, and SMAD4 in malignant epithelium were significantly associated with time to BF. HMMR, IGF1, and SMAD4 remained significantly associated with BF after adjusting for clinicopathologic features while additional associations were observed for HOXC6 and MAP4K4 following adjustment. In multibiomarker predictive models, 3 proteins including HMMR, SIAH2, and SMAD4 were consistently represented among the top 2, 3, 4, and 5 most predictive biomarkers, and a signature comprised of these proteins best predicted BF at 3 and 5 years. CONCLUSIONS This study provides rationale for investigation of HMMR, HOXC6, IGF1, MAP4K4, SIAH2, and SMAD4 as biomarkers of PCa aggressiveness in larger cohorts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Stephen C Schmechel
- Department of Pathology, University of Washington, Mailcode 359791, 908 Jefferson St, Seattle, WA 98104, USA.
| |
Collapse
|
36
|
Gu XM, Fu J, Feng XJ, Huang X, Wang SM, Chen XF, Zhu MH, Zhang SH. Expression and prognostic relevance of centromere protein A in primary osteosarcoma. Pathol Res Pract 2014; 210:228-33. [DOI: 10.1016/j.prp.2013.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
|
37
|
Ma M, Baumgartner M. Intracellular Theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton. PLoS Pathog 2014; 10:e1004003. [PMID: 24626571 PMCID: PMC3953445 DOI: 10.1371/journal.ppat.1004003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/01/2014] [Indexed: 11/18/2022] Open
Abstract
The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. The protozoan parasite Theileria annulata causes the often fatal leukoproliferative disorder Tropical Theileriosis in their ruminant host animals, which is the result of widespread dissemination and proliferation of cytokine secreting, parasite-infected cells. This host cell behavior is induced by and dependent on the intracellular presence of the parasite and is reminiscent of metastatic dissemination of human cancer cells. We investigated how the intracellular parasite modulates cell motility and invasiveness, to better understand the pathogenesis of Tropical Theileriosis and to reveal conserved mechanisms of eukaryotic cell motility regulation. We found that the parasite drives host cell motility and invasiveness through the induction and activation of the host cell protein MAP4K4. We show that MAP4K4 induction is driven by the inflammatory cytokine TNFα and causes dynamic changes in the cytoskeleton of the host cell that facilitate cell motility. Thus, our findings reveal how the intracellular Theileria parasite can influence morphology and behavior of its host cell in a way that suits its propagation and highlight a novel function of chronic TNFα production for the pathogenesis of Tropical Theileriosis. Furthermore, our study revealed a novel aspect of inflammatory cytokine action, namely cell mobilization through the induction of the evolutionary conserved protein kinase MAP4K4.
Collapse
Affiliation(s)
- Min Ma
- Neuro-Oncology, Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, Zürich, Switzerland
- Molecular Pathobiology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martin Baumgartner
- Neuro-Oncology, Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, Zürich, Switzerland
- Molecular Pathobiology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Chen S, Li X, Lu D, Xu Y, Mou W, Wang L, Chen Y, Liu Y, Li X, Li LY, Liu L, Stupack D, Reisfeld RA, Xiang R, Li N. SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 2013; 35:613-23. [PMID: 24233838 DOI: 10.1093/carcin/bgt371] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies have implicated cancer stem cells in tumor recurrence and revealed that the stem cell gene SOX2 plays an important role in the tumor cell resistance to apoptosis. Nonetheless, the mechanism by which SOX2 regulates apoptosis signals remained undefined. Here, we demonstrated the surprising finding that silencing of the SOX2 gene effectively induces apoptosis via the activation of death receptor and mitochondrial signaling pathways in human non-small cell lung cancer cells. Unexpectedly, reverse transcription-PCR analysis suggested that downregulation of SOX2 leads to activation of MAP4K4, previously implicated in cell survival. Evaluation of the apoptotic pathways revealed an increased expression of key inducers of apoptosis, including tumor necrosis factor-α and p53, with concurrent attenuation of Survivin. Although p53 appeared dispensable for this pathway, the loss of Survivin in SOX2-deficient cells appeared critical for the observed MAP4K4 induced cell death. Rescue experiments revealed that SOX2-silencing-mediated killing was blocked by ectopic expression of Survivin, or by reduction of MAP4K4 expression. Clinically, expressions of Survivin and SOX2 were highly correlated with each other. The results reveal a key target of SOX2 expression and highlight the unexpected context-dependent role for MAP4K4, a pluripotent activator of several mitogen-activated protein kinase pathways, in regulating tumor cell survival.
Collapse
Affiliation(s)
- Si Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Haas DA, Bala K, Büsche G, Weidner-Glunde M, Santag S, Kati S, Gramolelli S, Damas M, Dittrich-Breiholz O, Kracht M, Rückert J, Varga Z, Keri G, Schulz TF. The inflammatory kinase MAP4K4 promotes reactivation of Kaposi's sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells. PLoS Pathog 2013; 9:e1003737. [PMID: 24244164 PMCID: PMC3820715 DOI: 10.1371/journal.ppat.1003737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/15/2013] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. Kaposi's sarcoma (KS) is a tumour caused by Kaposi's sarcoma herpesvirus (KSHV) and dysregulated inflammation. Both factors contribute to the high angiogenicity and invasiveness of KS. Various cellular kinases have been reported to regulate the KSHV latent-lytic switch and thereby virus pathogenicity. In this study, we have identified a STE20 kinase family member – MAP4K4 – as a modulator of KSHV lytic cycle and invasive phenotype of KSHV-infected endothelial cells. Moreover, we were able to link MAP4K4 to a known mediator of inflammation and invasiveness, cyclooxygenase-2, which also contributes to KSHV lytic replication. Finally, we could show that MAP4K4 is highly expressed in KS lesions, suggesting an important role for this kinase in tumour development and invasion.
Collapse
Affiliation(s)
- Darya A Haas
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao G, Wang B, Liu Y, Zhang JG, Deng SC, Qin Q, Tian K, Li X, Zhu S, Niu Y, Gong Q, Wang CY. miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther 2013; 12:2569-80. [PMID: 24013097 DOI: 10.1158/1535-7163.mct-13-0296] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
miRNAs are associated with various types of cancer due to their ability to affect expression of genes that modulate tumorigenesis. In this study, we explored the role of miR-141 in pancreatic cancer. The analysis of clinical characteristics showed that miR-141 was significantly downregulated in tissues and cell lines of pancreatic cancer. Moreover, the decreased miR-141 level was significantly associated with tumor size and TNM stage, as well as lymph node and distant metastasis. Meanwhile, both Kaplan-Meier and multivariate survival analysis showed decreased miR-141 were associated with overall survival. Overexpression of miR-141 in pancreatic cancer cells inhibited cell proliferation, clonogenicity, and invasion; induced G1 arrest and apoptosis; and enhanced chemosensitivity. To understand how miR-141 mediates the phenotype of pancreatic cancer cells, a bioinformatics tool was used to identify MAP4K4 as a potential target of miR-141. The Dual-Luciferase reporter gene assay showed that miR-141 binds directly to the 3'-untranslated region (3'UTR) of MAP4K4 to inhibit MAP4K4 expression. Western blot and quantitative real-time PCR (qRT-PCR) analyses revealed that MAP4K4 expression was inversely correlated with miR-141 expression both in pancreatic cancer samples and cell lines. Knockdown of MAP4K4 inhibited cell proliferation, clonogenicity, and invasion, induced G1 arrest and apoptosis, and enhanced chemosensitivity. In a nude mouse xenograft model, both overexpression of miR-141 and knockdown of MAP4K4 significantly repressed pancreatic cancer cell growth. Therefore, we conclude that miR-141 targets MAP4K4, acts as a tumor suppressor in pancreatic cancer cells, and may serve as a novel therapeutic agent for miRNA-based pancreatic cancer therapy.
Collapse
Affiliation(s)
- Gang Zhao
- Corresponding Authors: Gang Zhao, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei Province 430022, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jin T, Fu J, Feng XJ, Wang SM, Huang X, Zhu MH, Zhang SH. SiRNA-targeted carboxypeptidase D inhibits hepatocellular carcinoma growth. Cell Biol Int 2013; 37:929-39. [PMID: 23589395 DOI: 10.1002/cbin.10113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/03/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Tao Jin
- The First Department of Surgery; Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang University of Traditional Chinese Medicine; Hangzhou, P.R.; China
| | - Jie Fu
- Department of Radiation Oncology; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University; Shanghai, P.R.; China
| | - Xiao-Jun Feng
- Department of Pathology; Yueyang Hospital, Shanghai University of Traditional Chinese Medicine; Shanghai, P.R.; China
| | - Shou-Mei Wang
- Department of Pathology; Yueyang Hospital, Shanghai University of Traditional Chinese Medicine; Shanghai, P.R.; China
| | - Xue Huang
- Department of Pathology; Yueyang Hospital, Shanghai University of Traditional Chinese Medicine; Shanghai, P.R.; China
| | - Ming-Hua Zhu
- Department of Pathology; Changhai Hospital and Institute of Liver Diseases, Second Military Medical University; Shanghai, P.R.; China
| | - Shu-Hui Zhang
- Department of Pathology; Yueyang Hospital, Shanghai University of Traditional Chinese Medicine; Shanghai, P.R.; China
| |
Collapse
|