1
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
2
|
Bilski M, Ciesielka M, Orzechowska M, Jarosz B, Całka P, Bilska S, Banach A, Czaja G, Fijuth J, Kuncman Ł. miR-200 family as new potential prognostic factor of overall survival of patients with WHO G2 and WHO G3 brain gliomas. Sci Rep 2024; 14:29345. [PMID: 39592656 PMCID: PMC11599569 DOI: 10.1038/s41598-024-80656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Gliomas are the predominant cause of cancer-related deaths among the young population. Even after incorporation of IDH1/2 mutations and 1p19q codeletion there are doubts regarding adjuvant treatment in WHO G2/G3 gliomas. miRNA molecules control about 30% of all genes, also many oncogenes, tumor suppressor genes and genes responsible for the response to ionizing radiation and systemic treatment. Patients with brain gliomas exhibit miRNA disorders. We aimed to evaluate the expression of miR-200 family members in relation to selected clinico-pathological factors and their prognostic value. We enrolled 53 patients diagnosed with WHO G2/G3 brain gliomas treated between 2012-2016. RT-qPCR based expression of miR-200 family was assessed in tumor and surrounding non-cancerous tissue. An analysis of selected clinico-pathological features was carried out. A logistic regression model was prepared for the miRNA signature. The predictive potential of the signature was assessed using the ROC curve. A stepwise backward regression model was used to select variables with a significant predictive potential related to OS. It was shown that miR-200a-3p, miR-200a-5p, miR-200c-5p, miR-141-3p and miR-429 can be independent predictors of survival. Better 2- and 5-year OS was associated with higher expression of miR-200a-3p, miR141-3p and lower expression of miR-200a-5p, miR-200c-5p, miR-429. The strongest predictors of survival were miR-200a-5p, miR-200b-3p, miR-200c-5p, miR-141-3p, miR-429, tumor volume and CTV. Members of the miR-200 family exhibit prognostic value for 2- and 5-year OS. Presented predictive models of survival may be clinically useful for treatment optimization.
Collapse
Affiliation(s)
- Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
- Department of Brachytherapy, St. John's Cancer Center, Lublin, Poland
- Department of Radiotherapy, St. John's Cancer Center, Lublin, Poland
| | - Marzanna Ciesielka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | | | - Bożena Jarosz
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Paulina Całka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Sylwia Bilska
- Clinical Genetics Center, St. John's Cancer Center, Lublin, Poland
| | - Agata Banach
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Gabriela Czaja
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Jacek Fijuth
- Department of Radiotherapy, Medical University of Łódź, Łódź, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Łódź, PL, Poland
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Łódź, Łódź, Poland.
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Łódź, PL, Poland.
| |
Collapse
|
3
|
Senyurek S, Aygun MS, Kilic Durankus N, Akdemir EY, Sezen D, Topkan E, Bolukbasi Y, Selek U. The Systemic Inflammation Response Index Efficiently Discriminates between the Failure Patterns of Patients with Isocitrate Dehydrogenase Wild-Type Glioblastoma Following Radiochemotherapy with FLAIR-Based Gross Tumor Volume Delineation. Brain Sci 2024; 14:922. [PMID: 39335417 PMCID: PMC11430255 DOI: 10.3390/brainsci14090922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to assess the connection between the systemic inflammation response index (SIRI) values and failure patterns of patients with IDH wild-type glioblastoma (GB) who underwent radiotherapy (RT) with FLAIR-based gross tumor volume (GTV) delineation. METHODS Seventy-one patients who received RT at a dose of 60 Gy to the GTV and 50 Gy to the clinical target volume (CTV) and had documented recurrence were retrospectively analyzed. Each patient's maximum distance of recurrence (MDR) from the GTV was documented in whichever plane it extended the farthest. The failure patterns were described as intra-GTV, in-CTV/out-GTV, distant, and intra-GTV and distant. For analytical purposes, the failure pattern was categorized into two groups, namely Group 1, intra-GTV or in-CTV/out-GTV, and Group 2, distant or intra-GTV and distant. The SIRI was calculated before surgery and corticosteroid administration. A receiver operating characteristic (ROC) curve analysis was used to determine the optimal SIRI cut-off that distinguishes between the different failure patterns. RESULTS Failure occurred as follows: intra-GTV in 40 (56.3%), in-CTV/out-GTV in 4 (5.6%), distant in 18 (25.4%), and intra-GTV + distant in 9 (12.7%) patients. The mean MDR was 13.5 mm, and recurrent lesions extended beyond 15 mm in only seven patients. Patients with an SIRI score ≥ 3 demonstrated a significantly higher incidence of Group 1 failure patterns than their counterparts with an SIRI score < 3 (74.3% vs. 50.0%; p = 0.035). CONCLUSIONS The present results show that using the SIRI with a cut-off value of ≥3 significantly predicts failure patterns. Additionally, the margin for the GTV can be safely reduced to 15 mm when using FLAIR-based target delineation in patients with GB.
Collapse
Affiliation(s)
- Sukran Senyurek
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Murat Serhat Aygun
- Department of Radiology, Altunizade Acibadem Hospital, 03457 Istanbul, Turkey;
| | - Nulifer Kilic Durankus
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Eyub Yasar Akdemir
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Duygu Sezen
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Erkan Topkan
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, 01120 Adana, Turkey;
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| |
Collapse
|
4
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Di Perri D, Hofstede D, Hartgerink D, Terhaag K, Houben R, Postma AA, Hoeben A, Anten M, Ackermans L, Compter I, Eekers DBP. Impact of clinical target volume margin reduction in glioblastoma patients treated with concurrent chemoradiation. Neurooncol Pract 2024; 11:249-254. [PMID: 38737612 PMCID: PMC11085847 DOI: 10.1093/nop/npad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Glioblastoma (GBM) is widely treated using large radiotherapy margins, resulting in substantial irradiation of the surrounding cerebral structures. In this context, the question arises whether these margins could be safely reduced. In 2018, clinical target volume (CTV) expansion was reduced in our institution from 20 to 15 mm around the gross target volume (GTV) (ie, the contrast-enhancing tumor/cavity). We sought to retrospectively analyze the impact of this reduction. Methods All adult patients with GBM treated between January 2015 and December 2020 with concurrent chemoradiation (60Gy/2Gy or 59.4Gy/1.8Gy) were analyzed. Patients treated using a 20 (CTV20, n = 57) or 15 mm (CTV15, n = 56) CTV margin were compared for target volumes, dose parameters to the surrounding organs, pattern of recurrence, and survival outcome. Results Mean GTV was similar in both groups (ie, CTV20: 39.7cm3; CTV15: 37.8cm3; P = .71). Mean CTV and PTV were reduced from 238.9cm3 to 176.7cm3 (P = .001) and from 292.6cm3 to 217.0cm3 (P < .001), for CTV20 and CTV15, respectively. As a result, average brain mean dose (Dmean) was reduced from 25.2Gy to 21.0Gy (P = .002). Significantly lower values were also observed for left hippocampus Dmean, brainstem D0.03cc, cochleas Dmean, and pituitary Dmean. Pattern of recurrence was similar, as well as patient outcome, ie, median progression-free survival was 8.0 and 7.0 months (P = .80), and median overall survival was 11.0 and 14.0 months (P = .61) for CTV20 and CTV15, respectively. Conclusions In GBM patients treated with chemoradiation, reducing the CTV margin from 20 to 15 mm appears to be safe and offers the potential for less treatment toxicity.
Collapse
Affiliation(s)
- Dario Di Perri
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - David Hofstede
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Dianne Hartgerink
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Karin Terhaag
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Monique Anten
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
6
|
Seaberg MH, Kazda T, Youland RS, Laack NN, Pafundi DH, Anderson SK, Sarkaria JN, Galanis E, Brown PD, Brinkmann DH. Dosimetric patterns of failure in the era of novel chemoradiotherapy in newly-diagnosed glioblastoma patients. Radiother Oncol 2023; 188:109768. [PMID: 37385378 DOI: 10.1016/j.radonc.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Patterns of failure (POF) may provide an alternative quantitative endpoint to overall survival for evaluation of novel chemoradiotherapy regimens with glioblastoma. MATERIALS AND METHODS POF of 109 newly-diagnosed glioblastoma patients per 2016 WHO classification who received conformal radiotherapy with concomitant and adjuvant temozolomide were reviewed. Seventy-five of those patients also received an investigational chemotherapy agent (everolimus, erlotinib, or vorinostat). Recurrence volumes were defined with MRI contrast enhancement. POF at protocol (POFp), initial (POFi), and RANO (POFRANO) progression timepoints were characterized by the percentage of recurrence volume within the 95% dose region. POFp, POFi, and POFRANO of each patient were categorized (central, non-central, or both). RESULTS POF of the temozolomide-only control cohort were unchanged (79% central, 12% non-central, and 9% both) across protocol, initial, and RANO progression timepoints. Unlike the temozolomide-only cohort, POF of the collective novel chemotherapy cohort appeared increasingly non-central when comparing POFi with POFp, with a non-central component increasing from 16% to 29% (p = 0.078). POF did not correlate with overall survival or time to progression. CONCLUSION POF of patients receiving a novel chemotherapy appeared to be influenced by the timepoint of analysis and were increasingly non-central at protocol progression as compared with initial recurrence, suggesting that recurrence originates from the central region. Addition of everolimus and vorinostat appeared to influence POF, despite similar survival outcomes with the temozolomide-only control group. In studies dealing with novel therapeutic agents, robust and properly-timed dosimetric POF analysis may be helpful to evaluate biologic aspects of novel agents.
Collapse
Affiliation(s)
- Maasa H Seaberg
- University of California San Francisco Medical Center, Department of Radiation Oncology, San Francisco, CA, USA
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | - Nadia N Laack
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN, USA
| | - Deanna H Pafundi
- Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL, USA
| | | | - Jann N Sarkaria
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN, USA
| | | | - Paul D Brown
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN, USA
| | | |
Collapse
|
7
|
Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P, Munck Af Rosenschöld P, Ricardi U, van den Bent MJ, Weller M, Belka C, Minniti G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 2023; 184:109663. [PMID: 37059335 DOI: 10.1016/j.radonc.2023.109663] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sara C Erridge
- Edinburgh Centre for Neuro-Oncology, University of Edinburgh, Western General Hospital, Edinburgh EH4 1EU, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | | | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
8
|
Guberina N, Padeberg F, Pöttgen C, Guberina M, Lazaridis L, Jabbarli R, Deuschl C, Herrmann K, Blau T, Wrede KH, Keyvani K, Scheffler B, Hense J, Layer JP, Glas M, Sure U, Stuschke M. Location of Recurrences after Trimodality Treatment for Glioblastoma with Respect to the Delivered Radiation Dose Distribution and Its Influence on Prognosis. Cancers (Basel) 2023; 15:cancers15112982. [PMID: 37296942 DOI: 10.3390/cancers15112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND While prognosis of glioblastoma after trimodality treatment is well examined, recurrence pattern with respect to the delivered dose distribution is less well described. Therefore, here we examine the gain of additional margins around the resection cavity and gross-residual-tumor. METHODS All recurrent glioblastomas initially treated with radiochemotherapy after neurosurgery were included. The percentage overlap of the recurrence with the gross tumor volume (GTV) expanded by varying margins (10 mm to 20 mm) and with the 95% and 90% isodose was measured. Competing-risks analysis was performed in dependence on recurrence pattern. RESULTS Expanding the margins from 10 mm to 15 mm, to 20 mm, to the 95%- and 90% isodose of the delivered dose distribution with a median margin of 27 mm did moderately increase the proportion of relative in-field recurrence volume from 64% to 68%, 70%, 88% and 88% (p < 0.0001). Overall survival of patients with in-and out-field recurrence was similar (p = 0.7053). The only prognostic factor significantly associated with out-field recurrence was multifocality of recurrence (p = 0.0037). Cumulative incidences of in-field recurrences at 24 months were 60%, 22% and 11% for recurrences located within a 10 mm margin, outside a 10 mm margin but within the 95% isodose, or outside the 95% isodose (p < 0.0001). Survival from recurrence was improved after complete resection (p = 0.0069). Integrating these data into a concurrent-risk model shows that extending margins beyond 10 mm has only small effects on survival hardly detectable by clinical trials. CONCLUSIONS Two-thirds of recurrences were observed within a 10 mm margin around the GTV. Smaller margins reduce normal brain radiation exposure allowing for more extensive salvage radiation therapy options in case of recurrence. Prospective trials using margins smaller than 20 mm around the GTV are warranted.
Collapse
Affiliation(s)
- Nika Guberina
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Florian Padeberg
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Pöttgen
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Maja Guberina
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Jörg Hense
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Julian P Layer
- Department of Radiation Oncology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Martin Glas
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
9
|
Minniti G, Tini P, Giraffa M, Capone L, Raza G, Russo I, Cinelli E, Gentile P, Bozzao A, Paolini S, Esposito V. Feasibility of clinical target volume reduction for glioblastoma treated with standard chemoradiation based on patterns of failure analysis. Radiother Oncol 2023; 181:109435. [PMID: 36529439 DOI: 10.1016/j.radonc.2022.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To analyze recurrence patterns in patients with glioblastoma (GBM) after standard chemoradiation according to different target volume delineation strategies. METHODS AND MATERIALS Two hundred seven patients with GBM who recurred after standard chemoradiation were evaluated. According to ESTRO target volume delineation guideline, the CTV was generated by adding a 2-cm margin to the GTV, defined as the resection cavity plus residual tumor. Patterns of failure were analyzed using dose-volume histogram. Recurrent lesions were defined as in-field, marginal, or distant if > 80 %, 20-80 %, or < 20 % of the intersecting volume was included in the 95 % isodose line.For each patient, a theoretical plan consisting of reduced 1-cm GTV-to-CTV margin was created to compare patterns of failure and radiation doses to normal brain. RESULTS Median overall survival and progression-free survival times were 15.3 months and 7.8 months, respectively, from the date of surgery. Recurrences were in-field in 180, marginal in 5, and distant in 22 patients. According to MGMT promoter methylation, distant recurrences occurred in 18.6 % of methylated and 6 % of unmethylated tumors (p = 0.0046). Following replanning with 1-cm reduced margin, dosimetric analysis showed similar patterns of failure. Recurrences were in-field, marginal, and distant in 177, 3, and 27 plans, respectively, although radiation doses to the healthy brain and hippocampi were significantly lower compared with standard target delineation (p = 0.0001). CONCLUSION Current provide the rationale for evaluating GTV-to-CTV margin reduction in future clinical trials with the aim of limiting the cognitive sequelae of GBM irradiation while maintaining survival benefits of standard chemoradiation.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy; IRCCS Neuromed, 86077 Pozzilli, IS, Italy.
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Martina Giraffa
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Luca Capone
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Giorgio Raza
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Ivana Russo
- UPMC Hillman Cancer Center, Villa Maria, Mirabella Eclano, AV, Italy
| | - Elisa Cinelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | | | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | | | | |
Collapse
|
10
|
Popp I, Oehlke O, Nieder C, Grosu AL. Brain Gliomas of Adulthood. TARGET VOLUME DEFINITION IN RADIATION ONCOLOGY 2023:1-20. [DOI: 10.1007/978-3-031-45489-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Optimization of brain tumours irradiation determining the set-up margin. NUCLEAR TECHNOLOGY AND RADIATION PROTECTION 2022. [DOI: 10.2298/ntrp2203235z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The aim of this work was to evaluate whether the excising margin of the
clinical tumor volume and planning target volume correspond with calculated
radiation margin based on systematic errors, and definition of radiation
margins of individual brain lobes. This research was a retrospective
cross-sectional study. We checked the systematic errors and calculated their
average and the size of radiation margins. The average systematic errors
were calculated in four directions: lateral, longitudinal, vertical, and
rotation. The largest average systematic error was calculated in the lateral
direction in the cerebellar area, and the error was also statistically significant(p < 0.05). In rotational direction we notice the statistically
significant difference in frontal lopbe (p = 0.037), and cerebellar area (p = 0.002). The largest safety margin, as measured by the apverage
systematic errors, is requirped for irradiation of the cerebellum. The
safety margin size of 6.94 mm was calculated according to the formula of Van
Herk. However, the smallest safety margin can be used for irradiation of the
occipital lobe of the brain, namely 4.85 mm. The linear regression results
that only cerebellar lesions affect lateral displacements. Based on our
calculation of the mean systematic errors, we estimate that the clinical
target volume - planning target volume safety margin can't be reduced
further from the current 5 mm to a size of 3 mm without the use of image
guided radiotherapy.
Collapse
|
12
|
Teyateeti A, Geno CS, Stafford SS, Mahajan A, Yan ES, Merrell KW, Laack NN, Parney IF, Brown PD, Jethwa KR. Does the dural resection bed need to be irradiated? Patterns of recurrence and implications for postoperative radiotherapy for temporal lobe gliomas. Neurooncol Pract 2020; 8:190-198. [PMID: 33898052 DOI: 10.1093/nop/npaa073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Patterns of recurrence and survival with different surgical and radiotherapy (RT) techniques were evaluated to guide RT target volumes for patients with temporal lobe glioma. Methods and Materials This retrospective cohort study included patients with World Health Organization grades II to IV temporal lobe glioma treated with either partial (PTL) or complete temporal lobectomy (CTL) followed by RT covering both the parenchymal and dural resection bed (whole-cavity radiotherapy [WCRT]) or the parenchymal resection bed only (partial-cavity radiotherapy [PCRT]). Patterns of recurrence, progression-free survival (PFS) and overall survival (OS) were evaluated. Results Fifty-one patients were included and 84.3% of patients had high-grade glioma (HGG). CTL and PTL were performed for 11 (21.6%) and 40 (78.4%) patients, respectively. Median RT dose was 60 Gy (range, 40-76 Gy). There were 82.4% and 17.6% of patients who received WCRT and PCRT, respectively. Median follow-up time was 18.4 months (range, 4-161 months). Forty-six patients (90.2%) experienced disease recurrence, most commonly at the parenchymal resection bed (76.5%). No patients experienced an isolated dural recurrence. The median PFS and OS for the PCRT and WCRT cohorts were 8.6 vs 10.8 months (P = .979) and 19.9 vs 18.6 months (P = .859), respectively. PCRT was associated with a lower RT dose to the brainstem, optic, and ocular structures, hippocampus, and pituitary. Conclusion We identified no isolated dural recurrence and similar PFS and OS regardless of postoperative RT volume, whereas PCRT was associated with dose reduction to critical structures. Omission of dural RT may be considered a reasonable alternative approach. Further validation with larger comparative studies is warranted.
Collapse
Affiliation(s)
- Achiraya Teyateeti
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US.,Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Connie S Geno
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, US
| | - Scott S Stafford
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Elizabeth S Yan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Kenneth W Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, US
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, US
| |
Collapse
|
13
|
Wee CW, Kim KS, Kim CY, Han JH, Kim YJ, Kim IA. Feasibility of hippocampus-sparing VMAT for newly diagnosed glioblastoma treated by chemoradiation: pattern of failure analysis. Radiat Oncol 2020; 15:98. [PMID: 32375876 PMCID: PMC7204282 DOI: 10.1186/s13014-020-01552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background To identify the pattern of failure and oncological safety of hippocampus (HC)-sparing IMRT (HSRT) in newly diagnosed glioblastoma (GBM) patients. Materials and methods Eighty-two GBM patients treated with temozolomide-based chemoradiation using HSRT between 2014 and 2018 were retrospectively reviewed. HSRT consisted of a sparing of Dmax of the contralateral HC < 17 Gy. Fifteen patients were unable to achieve the dose-constraints for adequate target coverage. The dose to ipsilateral HC was kept as low as possible. The pattern of failure was investigated, focusing on the area in the vicinity of the spared HC (organ and + 1 cm area). The median HSRT dose was 60 Gy in 30 fractions. Results The median follow-up for survivors was 11.7 months. The median progression-free and overall survival were 9.7 and 23.5 months, respectively. Six (7.3%) and eight (9.8%) patients eventually demonstrated progressive disease at the contralateral HC and HC + 1 cm, respectively. The 12-month contralateral HC and HC + 1 cm failure-free rate were 97.2 and 93.4%, respectively. However, no patient (0%) and two patients (2.4%) showed failure at contralateral HC and HC + 1 cm at initial progression, respectively. The dominant pattern of failure at the contralateral HC was by subependymal seeding (66.7%). Conclusion The incidence of failure at the contralateral HC and HC + 1 cm is very low and mostly accompanied by disseminated disease progression after HSRT. Since HSRT does not compromise oncological outcomes, it could be considered especially for GBM patients who are expected to have favorable survival outcomes.
Collapse
Affiliation(s)
- Chan Woo Wee
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea. .,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Kruser TJ, Bosch WR, Badiyan SN, Bovi JA, Ghia AJ, Kim MM, Solanki AA, Sachdev S, Tsien C, Wang TJC, Mehta MP, McMullen KP. NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J Neurooncol 2019; 143:157-166. [PMID: 30888558 DOI: 10.1007/s11060-019-03152-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/11/2019] [Indexed: 01/19/2023]
Abstract
INTRODUCTION NRG protocols for glioblastoma allow for clinical target volume (CTV) reductions at natural barriers; however, literature examining CTV contouring and the relevant white matter pathways is lacking. This study proposes consensus CTV guidelines, with a focus on areas of controversy while highlighting common errors in glioblastoma target delineation. METHODS Ten academic radiation oncologists specializing in brain tumor treatment contoured CTVs on four glioblastoma cases. CTV expansions were based on NRG trial guidelines. Contour consensus was assessed and summarized by kappa statistics. A meeting was held to discuss the mathematically averaged contours and form consensus contours and recommendations. RESULTS Contours of the cavity plus enhancement (mean kappa 0.69) and T2-FLAIR signal (mean kappa 0.74) showed moderate to substantial agreement. Experts were asked to trim off anatomic barriers while respecting pathways of spread to develop their CTVs. Submitted CTV_4600 (mean kappa 0.80) and CTV_6000 (mean kappa 0.81) contours showed substantial to near perfect agreement. Simultaneous truth and performance level estimation (STAPLE) contours were then reviewed and modified by group consensus. Anatomic trimming reduced the amount of total brain tissue planned for radiation targeting by a 13.6% (range 8.7-17.9%) mean proportional reduction. Areas for close scrutiny of target delineation were described, with accompanying recommendations. CONCLUSIONS Consensus contouring guidelines were established based on expert contours. Careful delineation of anatomic pathways and barriers to spread can spare radiation to uninvolved tissue without compromising target coverage. Further study is necessary to accurately define optimal target volumes beyond isometric expansion techniques for individual patients.
Collapse
Affiliation(s)
- Tim J Kruser
- Department of Radiation Oncology, Northwestern Memorial Hospital, 251 E Huron St, LC-178, Galter Pavilion, Chicago, IL, 60611, USA.
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Joseph A Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amol J Ghia
- Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern Memorial Hospital, 251 E Huron St, LC-178, Galter Pavilion, Chicago, IL, 60611, USA
| | - Christina Tsien
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|