1
|
Nocentini G, MacLaren G, Bartlett R, De Luca D, Perdichizzi S, Stoppa F, Marano M, Cecchetti C, Biasucci DG, Polito A, AlGhobaishi A, Guner Y, Gowda SH, Hirschl RB, Di Nardo M. Perfluorocarbons in Research and Clinical Practice: A Narrative Review. ASAIO J 2023; 69:1039-1048. [PMID: 37549675 DOI: 10.1097/mat.0000000000002017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Perfluorocarbons (PFCs) are organic liquids derived from hydrocarbons in which some of the hydrogen atoms have been replaced by fluorine atoms. They are chemically and biologically inert substances with a good safety profile. They are stable at room temperature, easy to store, and immiscible in water. Perfluorocarbons have been studied in biomedical research since 1960 for their unique properties as oxygen carriers. In particular, PFCs have been used for liquid ventilation in unusual environments such as deep-sea diving and simulations of zero gravity, and more recently for drug delivery and diagnostic imaging. Additionally, when delivered as emulsions, PFCs have been used as red blood cell substitutes. This narrative review will discuss the multifaceted utilization of PFCs in therapeutics, diagnostics, and research. We will specifically emphasize the potential role of PFCs as red blood cell substitutes, as airway mechanotransducers during artificial placenta procedures, as a means to improve donor organ perfusion during the ex vivo assessment, and as an adjunct in cancer therapies because of their ability to reduce local tissue hypoxia.
Collapse
Affiliation(s)
- Giulia Nocentini
- From the Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bmbino Gesù Children's Hospital, Rome, Italy
| | - Graeme MacLaren
- Cardiothoracic Intensive Care Unit, National University Health System, Singapore
| | - Robert Bartlett
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A. Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
| | | | - Francesca Stoppa
- Pediatric Intensive Care Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Marco Marano
- Pediatric Intensive Care Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Corrado Cecchetti
- Pediatric Intensive Care Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Daniele G Biasucci
- Department of Clinical Science and Translational Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Angelo Polito
- Pediatric Intensive Care Unit, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Abdullah AlGhobaishi
- Pediatric Critical Care Unit, Department of Pediatrics, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Yit Guner
- Department of Pediatric Surgery, Children's Hospital of Orange County and University of California Irvine, Orange, California
| | - Sharada H Gowda
- Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Ronald B Hirschl
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Li G, Xu X, Zuo YY. Biophysical function of pulmonary surfactant in liquid ventilation. Biophys J 2023; 122:3099-3107. [PMID: 37353933 PMCID: PMC10432212 DOI: 10.1016/j.bpj.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Liquid ventilation is a mechanical ventilation technique in which the entire or part of the lung is filled with oxygenated perfluorocarbon (PFC) liquids rather than air in conventional mechanical ventilation. Despite its many ideal biophysicochemical properties for assisting liquid breathing, a general misconception about PFC is to use it as a replacement for pulmonary surfactant. Because of the high PFC-water interfacial tension (59 mN/m), pulmonary surfactant is indispensable in liquid ventilation to increase lung compliance. However, the biophysical function of pulmonary surfactant in liquid ventilation is still unknown. Here, we have studied the adsorption and dynamic surface activity of a natural surfactant preparation, Infasurf, at the PFC-water interface using constrained drop surfactometry. The constrained drop surfactometry is capable of simulating the intra-alveolar microenvironment of liquid ventilation under physiologically relevant conditions. It was found that Infasurf adsorbed to the PFC-water interface reduces the PFC-water interfacial tension from 59 mN/m to an equilibrium value of 9 mN/m within seconds. Atomic force microscopy revealed that after de novo adsorption, Infasurf forms multilayered structures at the PFC-water interface with an average thickness of 10-20 nm, depending on the adsorbing surfactant concentration. It was found that the adsorbed Infasurf film is capable of regulating the interfacial tension of the PFC-water interface within a narrow range, between ∼12 and ∼1 mN/m, during dynamic compression-expansion cycles that mimic liquid ventilation. These findings have novel implications in understanding the physiological and biophysical functions of the pulmonary surfactant film at the PFC-water interface, and may offer new translational insights into the development of liquid ventilation and liquid breathing techniques.
Collapse
Affiliation(s)
- Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii; Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| |
Collapse
|
3
|
Li G, Xu X, Zuo YY. Phase transitions of the pulmonary surfactant film at the perfluorocarbon-water interface. Biophys J 2023; 122:1772-1780. [PMID: 37041745 PMCID: PMC10209028 DOI: 10.1016/j.bpj.2023.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Pulmonary surfactant is a lipid-protein complex that forms a thin film at the air-water surface of the lungs. This surfactant film defines the elastic recoil and respiratory mechanics of the lungs. One generally accepted rationale of using oxygenated perfluorocarbon (PFC) as a respiratory medium in liquid ventilation is to take advantage of its low surface tensions (14-18 mN/m), which was believed to make PFC an ideal replacement of the exogenous surfactant. Compared with the extensive studies of the phospholipid phase behavior of the pulmonary surfactant film at the air-water surface, its phase behavior at the PFC-water interface is essentially unknown. Here, we reported the first detailed biophysical study of phospholipid phase transitions in two animal-derived natural pulmonary surfactant films, Infasurf and Survanta, at the PFC-water interface using constrained drop surfactometry. Constrained drop surfactometry allows in situ Langmuir-Blodgett transfer from the PFC-water interface, thus permitting direct visualization of lipid polymorphism in pulmonary surfactant films using atomic force microscopy. Our data suggested that regardless of its low surface tension, the PFC cannot be used as a replacement of pulmonary surfactant in liquid ventilation where the air-water surface of the lungs is replaced with the PFC-water interface that features an intrinsically high interfacial tension. The pulmonary surfactant film at the PFC-water interface undergoes continuous phase transitions at surface pressures less than the equilibrium spreading pressure of 50 mN/m and a monolayer-to-multilayer transition above this critical pressure. These results provided not only novel biophysical insight into the phase behavior of natural pulmonary surfactant at the oil-water interface but also translational implications into the further development of liquid ventilation and liquid breathing techniques.
Collapse
Affiliation(s)
- Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii; Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| |
Collapse
|
4
|
Tsagogiorgas C, Otto M. Semifluorinated Alkanes as New Drug Carriers-An Overview of Potential Medical and Clinical Applications. Pharmaceutics 2023; 15:pharmaceutics15041211. [PMID: 37111696 PMCID: PMC10146824 DOI: 10.3390/pharmaceutics15041211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fluorinated compounds have been used in clinical and biomedical applications for years. The newer class of semifluorinated alkanes (SFAs) has very interesting physicochemical properties including high gas solubility (e.g., for oxygen) and low surface tensions, such as the well-known perfluorocarbons (PFC). Due to their high propensity to assemble to interfaces, they can be used to formulate a variety of multiphase colloidal systems, including direct and reverse fluorocarbon emulsions, microbubbles and nanoemulsions, gels, dispersions, suspensions and aerosols. In addition, SFAs can dissolve lipophilic drugs and thus be used as new drug carriers or in new formulations. In vitreoretinal surgery and as eye drops, SFAs have become part of daily clinical practice. This review provides brief background information on the fluorinated compounds used in medicine and discusses the physicochemical properties and biocompatibility of SFAs. The clinically established use in vitreoretinal surgery and new developments in drug delivery as eye drops are described. The potential clinical applications for oxygen transport by SFAs as pure fluids into the lungs or as intravenous applications of SFA emulsions are presented. Finally, aspects of drug delivery with SFAs as topical, oral, intravenous (systemic) and pulmonary applications as well as protein delivery are covered. This manuscript provides an overview of the (potential) medical applications of semifluorinated alkanes. The databases of PubMed and Medline were searched until January 2023.
Collapse
Affiliation(s)
- Charalambos Tsagogiorgas
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Anaesthesiology and Critical Care Medicine, St. Elisabethen-Krankenhaus, Teaching Hospital of the University of Frankfurt, 60487 Frankfurt, Germany
| | - Matthias Otto
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Ansari SA, Ficiarà E, D’Agata F, Cavalli R, Nasi L, Casoli F, Albertini F, Guiot C. Step-by-Step Design of New Theranostic Nanoformulations: Multifunctional Nanovectors for Radio-Chemo-Hyperthermic Therapy under Physical Targeting. Molecules 2021; 26:molecules26154591. [PMID: 34361743 PMCID: PMC8348950 DOI: 10.3390/molecules26154591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = −29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = −18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.
Collapse
Affiliation(s)
- Shoeb Anwar Ansari
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| | - Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
- Correspondence:
| | - Federico D’Agata
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Lucia Nasi
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Francesca Casoli
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Franca Albertini
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| |
Collapse
|
6
|
Wolfram F, Böttcher J, Lesser TG. MR imaging of pulmonary lung nodules during one lung flooding: first morphological evaluation using an ex vivo human lung model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:537-547. [PMID: 31950391 DOI: 10.1007/s10334-020-00826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Magnetic resonance imaging in pulmonary oncology is limited because of unfavourable physical and physiological conditions in ventilated lung. Previous work showed operability of One Lung Flooding using saline in vivo in MR units, and that valuable conditions for ultrasound and thermal-based interventions exist. Therefore, this study investigates the morphological details of human lung during Lung Flooding to evaluate its further value focusing on MR-guided interventions. MATERIALS AND METHODS MR imaging was performed on 20 human lung lobes containing lung cancer and metastases. Lobes were intraoperatively flooded with saline and imaged using T1w Gradient Echo and T2 Spin Echo sequences at 1.5 T. Additionally, six patients received pre-operative MRI. RESULTS During lung flooding, all lung tumours and metastases were visualized and clearly demarked from the surrounding lung parenchyma. The tumour mass appeared hyperintense in T1w and hypointense in T2w MR imaging. Intra-pulmonary bronchial structures were well differentiated in T2w and calcification in T1w MR sequences. CONCLUSION Superior conditions with new features of lung MRI were found during lung flooding with an unrestricted visualization of malignant nodules and clear demarcation of intra-pulmonary structures. This could lead to new applications of MR-based pulmonary interventions such as laser or focused ultrasound-based thermal ablations.
Collapse
Affiliation(s)
- Frank Wolfram
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Strasse des Friedens 122, 07548, Gera, Germany.
| | - Joachim Böttcher
- Institute of Diagnostic and Interventional Radiology, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Gera, Germany
| | - Thomas Günther Lesser
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Strasse des Friedens 122, 07548, Gera, Germany
| |
Collapse
|
7
|
Wolfson MR, Enkhbaatar P, Fukuda S, Nelson CL, Williams RO, Surasarang SH, Sahakijpijarn S, Calendo G, Komissarov AA, Florova G, Sarva K, Idell SI, Shaffer TH. Perfluorochemical-facilitated plasminogen activator delivery to the airways: A novel treatment for inhalational smoke-induced acute lung injury. Clin Transl Med 2020; 10:258-274. [PMID: 32508014 PMCID: PMC7240845 DOI: 10.1002/ctm2.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Effective clinical management of airway clot and fibrinous cast formation of severe inhalational smoke-induced acute lung injury (ISALI) is lacking. Aerosolized delivery of tissue plasminogen activator (tPA) is confounded by airway bleeding; single-chain urokinase plasminogen activator (scuPA) moderated this adverse effect and supported transient improvement in gas exchange and lung mechanics. However, neither aerosolized plasminogen activator (PA) yielded durable improvements in physiologic responses or reduction in cast burden. Here, we hypothesized that perfluorochemical (PFC) liquids would facilitate PA distribution and sustain improvements in physiologic outcomes in ISALI. METHODS Spontaneously breathing adult sheep (n = 36) received anesthesia and analgesia and were instrumented, exposed to cotton smoke inhalation, and supported by mechanical ventilation for 48 h. Groups (n = 6/group) were studied without supplemental treatment, or, starting 4 h post injury, they received intratracheal low volume (8 mL) PFC liquid alone or a dose range of tPA/PFC or scuPA/PFC suspensions (4 or 8 mg in 8 mL PFC) every 8 h. Outcomes were evaluated by sequential measurements of cardiopulmonary parameters, lung histomorphology, and biochemical analyses of bronchoalveolar lavage fluid. RESULTS Dose-response and PA-type comparisons of outcomes demonstrated sustained superiority with low-volume PFC suspensions of scuPA over tPA or PFC alone, favoring the highest dose of scuPA/PFC suspension over lower doses, without airway bleeding. CONCLUSIONS We propose that this improved profile over previously reported aerosolized delivery is likely related to improved dose distribution. Sustained salutary responses to scuPA/PFC suspension delivery in this translational model are encouraging and support the possibility that the observed outcomes could be of clinical importance.
Collapse
Affiliation(s)
- Marla R. Wolfson
- Department of Thoracic Medicine & Surgery, Physiology & Pediatrics, and Temple Lung CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Perenlei Enkhbaatar
- Department of AnesthesiologyThe University of Texas Medical BranchGalvestonTexasUSA
| | - Satoshi Fukuda
- Department of AnesthesiologyThe University of Texas Medical BranchGalvestonTexasUSA
| | - Christina L. Nelson
- Department of AnesthesiologyThe University of Texas Medical BranchGalvestonTexasUSA
| | | | | | | | - Gennaro Calendo
- Department of Thoracic Medicine & Surgery, Physiology & Pediatrics, and Temple Lung CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Andrey A. Komissarov
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Galina Florova
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Krishna Sarva
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Steven I. Idell
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Thomas H. Shaffer
- Department of Thoracic Medicine & Surgery, Physiology & Pediatrics, and Temple Lung CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
- Biomedical ResearchSchool of Medicine Temple and Thomas Jefferson Schools of Medicine Alfred I. duPont Hospital for ChildrenWilmingtonDelawareUSA
| |
Collapse
|
8
|
A new paradigm for lung-conservative total liquid ventilation. EBioMedicine 2019; 52:102365. [PMID: 31447395 PMCID: PMC7033528 DOI: 10.1016/j.ebiom.2019.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Total liquid ventilation (TLV) of the lungs could provide radically new benefits in critically ill patients requiring lung lavage or ultra-fast cooling after cardiac arrest. It consists in an initial filling of the lungs with perfluorocarbons and subsequent tidal ventilation using a dedicated liquid ventilator. Here, we propose a new paradigm for a lung-conservative TLV using pulmonary volumes of perfluorocarbons below functional residual capacity (FRC). Methods and findings Using a dedicated technology, we showed that perfluorocarbon end-expiratory volumes could be maintained below expected FRC and lead to better respiratory recovery, preserved lung structure and accelerated evaporation of liquid residues as compared to complete lung filling in piglets. Such TLV below FRC prevented volutrauma through preservation of alveolar recruitment reserve. When used with temperature-controlled perfluorocarbons, this lung-conservative approach provided neuroprotective ultra-fast cooling in a model of hypoxic-ischemic encephalopathy. The scale-up and automating of the technology confirmed that incomplete initial lung filling during TLV was beneficial in human adult-sized pigs, despite larger size and maturity of the lungs. Our results were confirmed in aged non-human primates, confirming the safety of this lung-conservative approach. Interpretation This study demonstrated that TLV with an accurate control of perfluorocarbon volume below FRC could provide the full potential of TLV in an innovative and safe manner. This constitutes a new paradigm through the tidal liquid ventilation of incompletely filled lungs, which strongly differs from the previously known TLV approach, opening promising perspectives for a safer clinical translation. Fund ANR (COOLIVENT), FRM (DBS20140930781), SATT IdfInnov (project 273).
Collapse
|
9
|
Assessment of MR imaging during one-lung flooding in a large animal model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:581-590. [PMID: 31152266 DOI: 10.1007/s10334-019-00759-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of the lung remains challenging due to the low tissue density, susceptibility artefacts, unfavourable relaxation times and motion. Previously, we demonstrated in vivo that one-lung flooding (OLF) with saline is a viable and safe approach. This study investigates the feasibility of OLF in an MRI environment and evaluates the flooding process on MR images. METHODS OLF of the left lung was performed on five animals using a porcine model. Before, during and after OLF, standard T2w and T1w spin-echo (SE) and gradient-echo (GRE) sequences were applied at 3 T. RESULTS The procedure was successfully performed in all animals. On T1w MRI, the flooded lung appeared homogenous and isointense with muscle tissue. On T2w images, vascular structures were highly hypointense, while the bronchi were clearly demarcated with hypointense wall and hyperintense lumen. The anatomical demarcation of the flooded lung from the surrounding organs was superior on T2w images. No outflow effects were seen, and no respiration triggering was required. DISCUSSION OLF can be safely performed in an MR scanner with highly detailed visualization of the pulmonary structures on T2w images. The method provides new approaches to MRI-based image-guided pulmonary interventions using the presented experimental model.
Collapse
|
10
|
Sage M, Stowe S, Adler A, Forand-Choinière C, Nadeau M, Berger C, Marouan S, Micheau P, Tissier R, Praud JP, Fortin-Pellerin É. Perflubron Distribution During Transition From Gas to Total Liquid Ventilation. Front Physiol 2018; 9:1723. [PMID: 30555353 PMCID: PMC6283896 DOI: 10.3389/fphys.2018.01723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Total liquid ventilation (TLV) using perfluorocarbons has shown promising results for the management of neonatal respiratory distress. However, one important safety consideration for TLV is a better understanding of the early events during the transition to TLV, especially regarding the fate of residual air in the non-dependent-lung regions. Our objective was to assess perflubron distribution during transition to TLV using electrical impedance tomography, complemented by fluoroscopy, in a neonatal lamb model of induced surfactant deficiency. Eight lambs were anesthetized and ventilated in supine position. Surfactant deficit was induced by saline lung lavage. After deflation, lungs were filled with 25 ml/kg perflubron over 18 s, and TLV was initiated. Electrical impedance tomography data was recorded from electrodes placed around the chest, during the first 10 and at 120 min of TLV. Lung perfusion was also assessed using hypertonic saline injection during apnea. In addition, fluoroscopic sequences were recorded during initial lung filling with perfluorocarbons, then at 10 and 60 min of TLV. Twelve lambs were used as controls for histological comparisons. Transition to TLV involved a short period of increased total lung volume (p = 0.01) secondary to recruitment of the dependent lung regions. Histological analysis shows that TLV was protective of these same regions when compared to gas-ventilated lambs (p = 0.03). The non-dependent lung regions filled with perflubron over at least 10 min, without showing signs of overdistention. Tidal volume distribution was more homogenous in TLV than during the preceding gas ventilation. Perflubron filling was associated with a non-significant increase in the anterior distribution of the blood perfusion signal, from 46 ± 17% to 53 ± 6% (p = 0.4). However, combined to the effects on ventilation, TLV had an instantaneous effect on ventilation-perfusion relationship (p = 0.03), suggesting better coupling. Conclusion: transition to TLV requires at least 10 min, and involves air evacuation or dissolution in perflubron, dependent lung recruitment and rapid ventilation-perfusion coupling modifications. During that time interval, the total lung volume transiently increases. Considering the potential deleterious effect of high lung volumes, one must manage this transition phase with care and, we suggest using a real-time monitoring system such as electrical impedance tomography.
Collapse
Affiliation(s)
- Michaël Sage
- Departments of Pediatrics and Pharmacology/Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Symon Stowe
- Department of Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Andy Adler
- Department of Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Claudia Forand-Choinière
- Departments of Pediatrics and Pharmacology/Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mathieu Nadeau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire Berger
- Department of Medicine, Université de Poitiers, Poitiers, France
| | - Sofia Marouan
- Department of Pathology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renaud Tissier
- INSERM, Unité 955, Equipe 03, École Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Paris, France
| | - Jean-Paul Praud
- Departments of Pediatrics and Pharmacology/Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fortin-Pellerin
- Departments of Pediatrics and Pharmacology/Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Xu X, Zhang R, Liu F, Ping J, Wen X, Wang H, Wang K, Sun X, Zou H, Shen B, Wu L. 19F MRI in orthotopic cancer model via intratracheal administration of ανβ3-targeted perfluorocarbon nanoparticles. Nanomedicine (Lond) 2018; 13:2551-2562. [PMID: 30338723 DOI: 10.2217/nnm-2018-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To demonstrate the feasibility of intratracheal administration in orthotopic lung cancer model with 19F MRI. Materials & methods: αvβ3-integrin targeting ability of the perfluorocarbon (PFC) nanoparticles was tested. Orthotopic lung cancer model was established in rabbits under computed tomography guidance. αvβ3-targeted PFC nanoparticles were administrated intratracheally or intravenously, and 19F MRI was performed before and up to 24 h after administration. Results: The targeted PFC nanoparticles could bind with αvβ3-integrin. PFC concentrations in the tumors of intratracheal group after administration were significantly higher than intravenous group. Conclusion: Intratracheal administration of PFC nanoparticles was shown to be feasible and efficacious. 19F MRI with αvβ3-targeted PFC nanoparticles provided quantitative assessment of nanoparticles distribution and tumor angiogenesis.
Collapse
Affiliation(s)
- Xiuan Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Ruixin Zhang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Fang Liu
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiaqi Ping
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaofei Wen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongbin Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongyan Zou
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Lina Wu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
12
|
Swystun V, Green FHY, Dennis JH, Rampakakis E, Lalli G, Fadayomi M, Chiu A, Shrestha G, El Shahat SG, Nelson DE, El Mays TY, Pieron CA, Leigh R. A phase IIa proof-of-concept, placebo-controlled, randomized, double-blind, crossover, single-dose clinical trial of a new class of bronchodilator for acute asthma. Trials 2018; 19:321. [PMID: 29914544 PMCID: PMC6006836 DOI: 10.1186/s13063-018-2720-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study evaluates a novel bronchodilator, S1226, for its efficacy in reversing allergen-induced bronchoconstriction in subjects with mild, allergic asthma. S1226 is a new class of bronchodilator that is an aerosol/vapor/gas mixture combining pharmacological and biophysical principles for a novel mode of action. It contains a potent bronchodilator gas (carbon dioxide or CO2) and nebulized perflubron (a synthetic surfactant possessing mucolytic properties). It has demonstrated rapid reversal of allergen-induced bronchoconstriction in an ovine study model. METHODS This was a phase IIa proof-of-concept, placebo-controlled, randomized, double-blind, crossover single-dose clinical trial to evaluate the safety, tolerability, and efficacy of S1226 (8% CO2) administered by nebulization following an allergen-induced early asthmatic response in 12 subjects with mild, allergic asthma. Primary safety endpoints were adverse events, vital signs, pulse oximetry, and spirometry. Efficacy endpoints included bronchodilator response (measured as the forced expiratory volume in 1 s or FEV1) over time, the area under the curve of FEV1 for the early asthmatic response over time, and achievement of responder status, defined as a 12% improvement after the allergen challenge. RESULTS No significant safety issues were observed. All adverse events were non-serious, mild, and transient. There was a statistically significant decrease in peripheral blood oxygenation levels over time in the placebo group following allergen inhalation, whereas blood oxygenation was maintained at normal levels in the S1226-treated subjects (P = 0.028). This effect was greatest 5 min after start of treatment (P < 0.001). The recovery rate was faster but not significantly so (P = 0.272) for S1226 compared to the placebo at earlier time points (5, 10, and 15 min), as assessed by ≥12% reversal of FEV1. The recovery of FEV1 over time was significantly greater (P = 0.04) with S1226 compared to the placebo. CONCLUSIONS S1226 was safe, tolerated well, and provided bronchodilation and improved blood oxygenation in subjects with mild atopic asthma following allergen-induced bronchoconstriction. Additional studies to optimize the therapeutic response are indicated. TRIAL REGISTRATION ClinicalTrials.gov, NCT02334553 . Registered on 12 November 2014.
Collapse
Affiliation(s)
- Veronica Swystun
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francis H Y Green
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada. .,SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada.
| | - John H Dennis
- SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada
| | | | - Gurkeet Lalli
- SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada
| | - Morenike Fadayomi
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada.,SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada
| | - Andrea Chiu
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada.,SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada
| | - Grishma Shrestha
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - David Evan Nelson
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Tamer Y El Mays
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada.,SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada
| | - Cora A Pieron
- SolAeroMed Inc, 120-4838 Richard Rd SW, Calgary, AB, T3E 6L1, Canada
| | - Richard Leigh
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Mongardon N, Kohlhauer M, Lidouren F, Hauet T, Giraud S, Hutin A, Costes B, Barau C, Bruneval P, Micheau P, Cariou A, Dhonneur G, Berdeaux A, Ghaleh B, Tissier R. A Brief Period of Hypothermia Induced by Total Liquid Ventilation Decreases End-Organ Damage and Multiorgan Failure Induced by Aortic Cross-Clamping. Anesth Analg 2017; 123:659-69. [PMID: 27482772 DOI: 10.1213/ane.0000000000001432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In animal models, whole-body cooling reduces end-organ injury after cardiac arrest and other hypoperfusion states. The benefits of cooling in humans, however, are uncertain, possibly because detrimental effects of prolonged cooling may offset any potential benefit. Total liquid ventilation (TLV) provides both ultrafast cooling and rewarming. In previous reports, ultrafast cooling with TLV potently reduced neurological injury after experimental cardiac arrest in animals. We hypothesized that a brief period of rapid cooling and rewarming via TLV could also mitigate multiorgan failure (MOF) after ischemia-reperfusion induced by aortic cross-clamping. METHODS Anesthetized rabbits were submitted to 30 minutes of supraceliac aortic cross-clamping followed by 300 minutes of reperfusion. They were allocated either to a normothermic procedure with conventional ventilation (control group) or to hypothermic TLV (33°C) before, during, and after cross-clamping (pre-clamp, per-clamp, and post-clamp groups, respectively). In all TLV groups, hypothermia was maintained for 75 minutes and switched to a rewarming mode before resumption to conventional mechanical ventilation. End points included cardiovascular, renal, liver, and inflammatory parameters measured 300 minutes after reperfusion. RESULTS In the normothermic (control) group, ischemia-reperfusion injury produced evidence of MOF including severe vasoplegia, low cardiac output, acute kidney injury, and liver failure. In the TLV group, we observed gradual improvements in cardiac output in post-clamp, per-clamp, and pre-clamp groups versus control (53 ± 8, 64 ± 12, and 90 ± 24 vs 36 ± 23 mL/min/kg after 300 minutes of reperfusion, respectively). Liver biomarker levels were also lower in pre-clamp and per-clamp groups versus control. However, acute kidney injury was prevented in pre-clamp, and to a limited extent in per-clamp groups, but not in the post-clamp group. For instance, creatinine clearance was 4.8 ± 3.1 and 0.5 ± 0.6 mL/kg/min at the end of the follow-up in pre-clamp versus control animals (P = .0004). Histological examinations of the heart, kidney, liver, and jejunum in TLV and control groups also demonstrated reduced injury with TLV. CONCLUSIONS A brief period of ultrafast cooling with TLV followed by rapid rewarming attenuated biochemical and histological markers of MOF after aortic cross-clamping. Cardiovascular and liver dysfunctions were limited by a brief period of hypothermic TLV, even when started after reperfusion. Conversely, acute kidney injury was limited only when hypothermia was started before reperfusion. Further work is needed to determine the clinical significance of our results and to identify the optimal duration and timing of TLV-induced hypothermia for end-organ protection in hypoperfusion states.
Collapse
Affiliation(s)
- Nicolas Mongardon
- From the *Inserm, U955, Equipe 3, Créteil, France; †Université Paris Est, UMR_S 955, UPEC, DHU A-TVB, Créteil, France; ‡Université Paris Est, Ecole Nationale Vétérinaire Alfort, Maisons Alfort, France; §Service d' Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France; ‖Inserm, U1082, Poitiers, France; ¶Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; #CHU de Poitiers, Service de Biochimie, Poitiers, France; **Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France; ††Université de Sherbrooke, Sherbrooke, Canada; and ‡‡Service de Réanimation Médicale, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1725-1739. [PMID: 28341439 DOI: 10.1016/j.bbamem.2017.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Pulmonary surfactant is a complex of lipids and proteins assembled and secreted by the alveolar epithelium into the thin layer of fluid coating the respiratory surface of lungs. There, surfactant forms interfacial films at the air-water interface, reducing dramatically surface tension and thus stabilizing the air-exposed interface to prevent alveolar collapse along respiratory mechanics. The absence or deficiency of surfactant produces severe lung pathologies. This review describes some of the most important surfactant-related pathologies, which are a cause of high morbidity and mortality in neonates and adults. The review also updates current therapeutic approaches pursuing restoration of surfactant operative films in diseased lungs, mainly through supplementation with exogenous clinical surfactant preparations. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Mercedes Echaide
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Chiara Autilio
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain.
| |
Collapse
|
15
|
Caridi-Scheible ME, Blum JM. Use of Perfluorodecalin for Bronchoalveolar Lavage in Case of Severe Pulmonary Hemorrhage and Extracorporeal Membrane Oxygenation. ACTA ACUST UNITED AC 2016; 7:215-218. [DOI: 10.1213/xaa.0000000000000389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Green FHY, Leigh R, Fadayomi M, Lalli G, Chiu A, Shrestha G, ElShahat SG, Nelson DE, El Mays TY, Pieron CA, Dennis JH. A phase I, placebo-controlled, randomized, double-blind, single ascending dose-ranging study to evaluate the safety and tolerability of a novel biophysical bronchodilator (S-1226) administered by nebulization in healthy volunteers. Trials 2016; 17:361. [PMID: 27464582 PMCID: PMC4964056 DOI: 10.1186/s13063-016-1489-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
Background A major challenge in treating acute asthma exacerbations is the need to open constricted airways rapidly enough to reestablish ventilation and allow delivery of conventional medication to diseased airways. The solution requires a new approach that considers both biophysical and pharmacological aspects of treatments used in acute asthma. The result of testing several formulations was S-1226: carbon dioxide-enriched air delivered in nebulized perflubron, a synthetic surfactant. These agents act synergistically to rapidly reopen closed airways within seconds. The bronchodilator effect is independent of β-adrenergic and cholinergic mediated-signaling pathways, offering a unique mechanism of action. S-1226 has a low toxicity profile and was effective in treating bronchoconstriction in animal models of asthma. The goal of the present study was to evaluate the safety and tolerability of S-1226 in healthy human subjects. Methods The phase I study was a single-center, randomized, double-blind, placebo-controlled, sequential, single-ascending-dose study conducted in Canada. Thirty-six subjects were distributed into three cohorts. Within each cohort, subjects were randomized to receive a single dose of S-1226 or a matching placebo administered over a 2-minute nebulization period. S-1226 was formulated with perflubron and 4 %, 8 %, or 12 % CO2. The dose of CO2 was sequentially escalated by cohort. The safety and tolerability of S-1226 were evaluated through assessment of adverse events, vital signs, 12-lead electrocardiograms, clinical laboratory parameters, and physical examinations. Results S-1226 was safe and well tolerated at all three CO2 levels (4 %, 8 %, and 12 %). A total of 28 adverse events were reported, and all were judged mild in severity. Twenty-four adverse events occurred in the S-1226 cohort, of which five were considered remotely related and six possibly related to S-1226. Conclusions S-1226 is a novel drug being developed for the treatment of acute asthma exacerbations. It consists of CO2-enriched air and perflubron and has potential to offer rapid and potent bronchodilation. The results of the study indicate that S-1226 is safe and well tolerated. All adverse events were mild, reversible, and likely due to known side effects of CO2 inhalation. Trial registration ClinicalTrials.gov NCT02616770. Registered on 25 November 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1489-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francis H Y Green
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| | - Richard Leigh
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Morenike Fadayomi
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andrea Chiu
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada.,SolAeroMed Inc., Calgary, AB, Canada
| | - Grishma Shrestha
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - David Evan Nelson
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Tamer Y El Mays
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
17
|
Kohlhauer M, Berdeaux A, Kerber RE, Micheau P, Ghaleh B, Tissier R. Liquid Ventilation for the Induction of Ultrafast Hypothermia in Resuscitation Sciences: A Review. Ther Hypothermia Temp Manag 2016; 6:63-70. [DOI: 10.1089/ther.2015.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthias Kohlhauer
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Alain Berdeaux
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Richard E. Kerber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Bijan Ghaleh
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Renaud Tissier
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| |
Collapse
|
18
|
Bonfanti M, Cammi A, Bagnoli P. Gas transfer model to design a ventilator for neonatal total liquid ventilation. Med Eng Phys 2015; 37:1133-40. [DOI: 10.1016/j.medengphy.2015.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 06/12/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
|
19
|
Sharma R, Khanal A, Corcoran TE, Garoff S, Przybycien TM, Tilton RD. Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 2: Low Deposition Flux Representative of Aerosol Delivery to Small Airways. J Aerosol Med Pulm Drug Deliv 2015; 28:394-405. [PMID: 25757067 PMCID: PMC4601626 DOI: 10.1089/jamp.2014.1167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is associated with the accumulation of dehydrated mucus in the pulmonary airways. This alters ventilation and aerosol deposition patterns in ways that limit drug delivery to peripheral lung regions. We investigated the use of surfactant-based, self-dispersing aerosol carriers that produce surface tension gradients to drive two-dimensional transport of aerosolized medications via Marangoni flows after deposition on the airway surface liquid (ASL). We considered the post-deposition spreading of individual aerosol droplets and two-dimensional expansion of a field of aerosol droplets, when deposited at low fluxes that are representative of aerosol deposition in the small airways. METHODS We used physically entangled aqueous solutions of poly(acrylamide) or porcine gastric mucin as simple ASL mimics that adequately capture the full miscibility but slow penetration of entangled macromolecular chains of the ASL into the deposited drop. Surfactant formulations were prepared with aqueous solutions of nonionic tyloxapol or FS-3100 fluorosurfactant. Fluorescein dye served as a model "drug" tracer and to visualize the extent of post-deposition spreading. RESULTS The surfactants not only enhanced post-deposition spreading of individual aerosol droplets due to localized Marangoni stresses, as previously observed with macroscopic drops, but they also produced large-scale Marangoni stresses that caused the deposited aerosol fields to expand into initially unexposed regions of the subphase. We show that the latter is the main mechanism for spreading drug over large distances when aerosol is deposited at low fluxes representative of the small airways. The large scale convective expansion of the aerosol field drives the tracer (drug mimic) over areas that would cover an entire airway generation or more, in peripheral airways, where sub-monolayer droplet deposition is expected during aerosol inhalation. CONCLUSIONS The results suggest that aerosolized surfactant formulations may provide the means to maximize deposited drug uniformity in and access to small airways.
Collapse
Affiliation(s)
- Ramankur Sharma
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amsul Khanal
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Timothy E. Corcoran
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen Garoff
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Todd M. Przybycien
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D. Tilton
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Horvat CM, Carcillo JA, Dezfulian C. Liquid fluorocarbon lavage to clear thrombus from the distal airways after severe pulmonary hemorrhage requiring extracorporeal life support (ECLS). Respir Med Case Rep 2015; 15:7-8. [PMID: 26236589 PMCID: PMC4501460 DOI: 10.1016/j.rmcr.2015.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Massive pulmonary hemorrhage can pose a significant therapeutic challenge. Traditional methods of airway clearance using saline lavage and direct thrombus removal via bronchoscopy have limited ability to retrieve thrombi from deep airways. We report a patient on extracorporeal life support with massive pulmonary hemorrhage resulting in extensive alveolar and airway thrombus extending well beyond the proximal airways and the novel use of perfluorodecalin lavage to facilitate airway clearance and lung recruitment. Clinical trial registration None.
Collapse
Affiliation(s)
- Christopher M Horvat
- Department of Critical Care, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph A Carcillo
- Department of Critical Care, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cameron Dezfulian
- Department of Critical Care, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Nadeau M, Micheau P, Robert R, Avoine O, Tissier R, Germim PS, Vandamme J, Praud JP, Walti H. Core Body Temperature Control by Total Liquid Ventilation Using a Virtual Lung Temperature Sensor. IEEE Trans Biomed Eng 2014; 61:2859-68. [DOI: 10.1109/tbme.2014.2332293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Intrapulmonary instillation of perflurooctylbromide improves lung growth, alveolarization, and lung mechanics in a fetal rabbit model of diaphragmatic hernia. Pediatr Crit Care Med 2014; 15:e379-88. [PMID: 25370070 DOI: 10.1097/pcc.0000000000000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fetal tracheal occlusion of hypoplastic rabbit lungs results in lung growth and alveolarization although the surfactant protein messenger RNA expression is decreased and the transforming growth factor-β pathway induced. The prenatal filling of healthy rabbit lungs with perfluorooctylbromide augments lung growth without suppression of surfactant protein synthesis. We hypothesizes that Intratracheal perfluorooctylbromide instillation improves lung growth, mechanics, and extracellular matrix synthesis in a fetal rabbit model of lung hypoplasia induced by diaphragmatic hernia. SETTING AND INTERVENTIONS On day 23 of gestation, DH was induced by fetal surgery in healthy rabbit fetuses. Five days later, 0.8ml of perfluorooctylbromide (diaphragmatic hernia-perfluorooctylbromide) or saline (diaphragmatic hernia-saline) was randomly administered into the lungs of previously operated fetuses. After term delivery (day 31), lung mechanics, lung to body weight ratio, messenger RNA levels of target genes, assessment of lung histology, and morphological distribution of elastin and collagen were determined. Nonoperated fetuses served as controls. MEASUREMENTS AND MAIN RESULTS Fetal instillation of perfluorooctylbromide in hypoplastic lungs resulted in an improvement of lung-to-body weight ratio (0.016 vs 0.013 g/g; p = 0.05), total lung capacity (23.4 vs 15.4 μL/g; p = 0.03), and compliance (2.4 vs 1.2 mL/cm H2O; p = 0.007) as compared to diaphragmatic hernia-saline. In accordance with the results from lung function analysis, elastin staining of pulmonary tissue revealed a physiological distribution of elastic fiber to the tips of the secondary crests in the diaphragmatic hernia-perfluorooctylbromide group. Likewise, messenger RNA expression was induced in genes associated with extracellular matrix remodeling (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-2). Surfactant protein expression was similar in the diaphragmatic hernia-perfluorooctylbromide and diaphragmatic hernia-saline groups. Distal airway size, mean linear intercept, as well as airspace and tissue fractions were similar in diaphragmatic hernia-perfluorooctylbromide, diaphragmatic hernia-saline, and control groups. CONCLUSIONS Fetal perfluorooctylbromide treatment improves lung growth, lung mechanics, and extracellular matrix remodeling in hypoplastic lungs, most probably due to transient pulmonary stretch, preserved fetal breathing movements, and its physical characteristics. Perfluorooctylbromide instillation is a promising approach for prenatal therapy of lung hypoplasia.
Collapse
|
23
|
Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2014; 115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilaria Tirotta
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" and ‡Fondazione Centro Europeo Nanomedicina, Politecnico di Milano , Milan 20131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chenoune M, De Rochefort L, Bruneval P, Lidouren F, Kohlhauer M, Seemann A, Ghaleh B, Korn M, Dubuisson RM, Ben Yahmed A, Maître X, Isabey D, Ricard JD, Kerber RE, Darrasse L, Berdeaux A, Tissier R. Evaluation of lung recovery after static administration of three different perfluorocarbons in pigs. BMC Pharmacol Toxicol 2014; 15:53. [PMID: 25253660 PMCID: PMC4177717 DOI: 10.1186/2050-6511-15-53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The respiratory properties of perfluorocarbons (PFC) have been widely studied for liquid ventilation in humans and animals. Several PFC were tested but their tolerance may depend on the species. Here, the effects of a single administration of liquid PFC into pig lungs were assessed and compared. Three different PFC having distinct evaporative and spreading coefficient properties were evaluated (Perfluorooctyl bromide [PFOB], perfluorodecalin [PFD] and perfluoro-N-octane [PFOC]). METHODS Pigs were anesthetized and submitted to mechanical ventilation. They randomly received an intra-tracheal administration of 15 ml/kg of either PFOB, PFD or PFOC with 12 h of mechanical ventilation before awakening and weaning from ventilation. A Control group was submitted to mechanical ventilation with no PFC administration. All animals were followed during 4 days after the initial PFC administration to investigate gas exchanges and clinical recovery. They were ultimately euthanized for histological analyses and assessment of PFC residual concentrations within the lungs using dual nuclei fluorine and hydrogen Magnetic Resonance Imaging (MRI). Sixteen animals were included (4/group). RESULTS In the PFD group, animals tended to be hypoxemic after awakening. In PFOB and PFOC groups, blood gases were not significantly different from the Control group after awakening. The poor tolerance of PFD was likely related to a large amount of residual PFC, as observed using MRI in all lung samples (≈10% of lung volume). This percentage was lower in the PFOB group (≈1%) but remained significantly greater than in the Control group. In the PFOC group, the percentage of residual PFC was not significantly different from that of the Control group (≈0.1%). Histologically, the most striking feature was an alveolar infiltration with foam macrophages, especially in the groups treated by PFD or PFOB. CONCLUSIONS Of the three tested perfluorocarbons, PFOC offered the best tolerance in terms of lung function, gas exchanges and residuum in the lung. PFOC was rapidly cleared from the lungs and virtually disappeared after 4 days whereas PFOB persisted at significant levels and led to foam macrophage infiltration. PFOC could be relevant for short term total liquid ventilation with a rapid weaning.
Collapse
|
25
|
Nebulized perflubron and carbon dioxide rapidly dilate constricted airways in an ovine model of allergic asthma. Respir Res 2014; 15:98. [PMID: 25355286 PMCID: PMC4172894 DOI: 10.1186/s12931-014-0098-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Background The low toxicity of perfluorocarbons (PFCs), their high affinity for respiratory gases and their compatibility with lung surfactant have made them useful candidates for treating respiratory diseases such as adult respiratory distress syndrome. We report results for treating acute allergic and non-allergic bronchoconstriction in sheep using S-1226 (a gas mixture containing carbon dioxide and small volumes of nebulized perflubron). The carbon dioxide, which is highly soluble in perflubron, was used to relax airway smooth muscle. Methods Sheep previously sensitized to house dust mite (HDM) were challenged with HDM aerosols to induce early asthmatic responses. At the maximal responses (characterised by an increase in lung resistance), the sheep were either not treated or treated with one of the following; nebulized S-1226 (perflubron + 12% CO2), nebulized perflubron + medical air, 12% CO2, salbutamol or medical air. Lung resistance was monitored for up to 20 minutes after cessation of treatment. In additional naïve sheep, a segmental bronchus was pre-contracted with methacholine (MCh) and treated with nebulized S-1226 administered via a bronchoscope catheter. Subsequent bronchodilatation was monitored by real time digital video recording. Results Treatment with S-1226 for 2 minutes following HDM challenge resulted in a more rapid, more profound and more prolonged decline in lung resistance compared with the other treatment interventions. Video bronchoscopy showed an immediate and complete (within 5 seconds) re-opening of MCh-constricted airways following treatment with S-1226. Conclusions S-1226 is a potent and rapid formulation for re-opening constricted airways. Its mechanism(s) of action are unknown. The formulation has potential as a rescue treatment for acute severe asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0098-x) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Bartusik D, Aebisher D. 19F applications in drug development and imaging – a review. Biomed Pharmacother 2014; 68:813-7. [DOI: 10.1016/j.biopha.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
|
27
|
|
28
|
Davies MW, Dunster KR, Fraser JF, Colditz PB. Cerebral blood flow is not affected during perfluorocarbon dosing with volume-controlled ventilation. J Paediatr Child Health 2013; 49:1010-8. [PMID: 23782029 DOI: 10.1111/jpc.12297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
Abstract
AIMS Perfluorocarbon administration increases cerebral blood flow. This can be mitigated by preventing a rise in carbon dioxide by adjusting pressure-controlled ventilation. Volume-controlled ventilation should prevent increases in arterial carbon dioxide and cerebral blood flow. This study aims to determine if cerebral blood flow is increased during administration of 10 mL/kg of perfluorocarbon while using volume-controlled ventilation. METHODS Two New Zealand white rabbits, ventilated with volume-control, were each allocated to six dosing events where each dosing event was randomly allocated to one of two dosing strategies: a control group - given a sham dose of air (10 mL/kg) over 20 min; or a partial liquid ventilation group - given 10 mL/kg FC-77 slowly over 20 min. Data were recorded for 1 min before and 30 min after the start of each dosing event. No adjustment of ventilation (except fraction of inspired oxygen) was allowed during each dosing event. RESULTS There were no significant changes over time and no differences between groups for carotid blood flow (P = 0.48 at the end of the dose). There were slight increases in cortical cerebral blood flow in both groups; there was no statistically significant difference between groups (P = 0.56 at end dose and P = 0.49 at time of maximum difference). There was no difference between groups for the variability in carotid blood flow or cortical cerebral blood flow. CONCLUSIONS Cerebral blood flow was not significantly increased during administration of a dose of 10 mL/kg of perfluorocarbon during commencement of partial liquid ventilation when using volume-controlled ventilation.
Collapse
Affiliation(s)
- Mark W Davies
- Grantley Stable Neonatal Unit, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Department of Paediatrics and Child Health, The University of Queensland, Brisbane, Queensland, Australia; Perinatal Research Centre, The University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
29
|
Nadeau M, Micheau P, Robert R, Avoine O, Tissier R, Germim PS, Walti H. Control of rapid hypothermia induction by total liquid ventilation: preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:3757-3760. [PMID: 24110548 DOI: 10.1109/embc.2013.6610361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mild therapeutic hypothermia (MTH) consists in cooling the body temperature of a patient to between 32 and 34 °C. This technique helps to preserve tissues and neurological functions in multi-organ failure by preventing ischemic injury. Total liquid ventilation (TLV) ensures gas exchange in the lungs with a liquid, typically perfluorocarbon (PFC). A liquid ventilator is responsible for ensuring cyclic renewal of tidal volume of oxygenated and temperature-controlled PFC. Hence, TLV using the lung as a heat exchanger and PFC as a heat carrier allows ultra fast cooling of the whole body which can help improve outcome after ischemic injuries. The present study was aimed to evaluate the control performance and safety of automated ultrarapid MTH induction by TLV. Experimentation was conducted using the Inolivent-5.0 liquid ventilator equipped with a PFC treatment unit that allows PFC cooling and heating from the flow of energy carrier water inside a double wall installed on an oxygenator. A water circulating bath is used to manage water temperature. A feedback controller was developed to modulate inspired PFC temperature and control body temperature. Such a controller is important since, with MTH induction, heart temperature should not reach 28 °C because of a high risk of fibrillation. The in vivo experimental protocol was conducted on a male newborn lamb of 4.7 kg which, after anesthetization, was submitted to conventional gas ventilation and instrumented with temperature sensors at the femoral artery, oesophagus, right ear drum and rectum. After stabilization, TLV was initiated with fast automated MTH induction to 33.5 °C until stabilization of all temperatures. MTH could be reached safely in 3 minutes at the femoral artery, in 3.6 minutes at the esophagus, in 7.7 minutes at the eardrum and in 15 minutes at the rectum. All temperatures were stable at 33.5 ± 0.5 °C within 15 minutes. The present results reveal that ultra-fast MTH induction by TLV with Inolivent-5.0 is safe for the heart while maintaining esophageal and arterial temperature over 32.6 °C.
Collapse
|
30
|
Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata. Bioprocess Biosyst Eng 2012. [DOI: 10.1007/s00449-012-0860-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Garcia A, Stolar CJH. Congenital diaphragmatic hernia and protective ventilation strategies in pediatric surgery. Surg Clin North Am 2012; 92:659-68, ix. [PMID: 22595714 DOI: 10.1016/j.suc.2012.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Infants affected with congenital diaphragmatic hernias (CDH) suffer from some degree of respiratory insufficiency arising from a combination of pulmonary hypoplasia and pulmonary hypertension. Respiratory care strategies to optimize blood gasses lead to significant barotrauma, increased morbidity, and overuse of extracorporeal membrane oxygenation (ECMO). Newer permissive hypercapnia/spontaneous ventilation protocols geared to accept moderate hypercapnia at lower peak airway pressures have led to improved outcomes. High-frequency oscillatory ventilation can be used in infants who continue to have persistent respiratory distress despite conventional ventilation. ECMO can be used successfully as a resuscitative strategy to minimize further barotrauma in carefully selected patients.
Collapse
Affiliation(s)
- Alejandro Garcia
- Division of Pediatric Surgery, Columbia University College of Physicians and Surgeons, 3959 Broadway, CHN 214, New York, NY 10032, USA
| | | |
Collapse
|
32
|
Krafft MP. Strasbourg's SOFFT team—Soft functional systems self-assembled from perfluoroalkylated molecular components. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2011.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Kamigaito T, Noguchi T, Narumi K, Takashima R, Hamada S, Sanada H, Hasuko M, Hayashi H, Masumura K, Nohmi T. Evaluation of the in vivo Mutagenicity of Nickel Subsulfide in the Lung of F344 gpt delta Transgenic Rats Exposed by Intratracheal Instillation: A Collaborative Study for the gpt delta Transgenic Rat Mutation Assay. Genes Environ 2012. [DOI: 10.3123/jemsge.34.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Beaulieu A, Bossé D, Micheau P, Avoine O, Praud JP, Walti H. Measurement of fractional order model parameters of respiratory mechanical impedance in total liquid ventilation. IEEE Trans Biomed Eng 2011; 59:323-31. [PMID: 21947517 DOI: 10.1109/tbme.2011.2169257] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study presents a methodology for applying the forced-oscillation technique in total liquid ventilation. It mainly consists of applying sinusoidal volumetric excitation to the respiratory system, and determining the transfer function between the delivered flow rate and resulting airway pressure. The investigated frequency range was f ∈ [0.05, 4] Hz at a constant flow amplitude of 7.5 mL/s. The five parameters of a fractional order lung model, the existing "5-parameter constant-phase model," were identified based on measured impedance spectra. The identification method was validated in silico on computer-generated datasets and the overall process was validated in vitro on a simplified single-compartment mechanical lung model. In vivo data on ten newborn lambs suggested the appropriateness of a fractional-order compliance term to the mechanical impedance to describe the low-frequency behavior of the lung, but did not demonstrate the relevance of a fractional-order inertance term. Typical respiratory system frequency response is presented together with statistical data of the measured in vivo impedance model parameters. This information will be useful for both the design of a robust pressure controller for total liquid ventilators and the monitoring of the patient's respiratory parameters during total liquid ventilation treatment.
Collapse
Affiliation(s)
- Alexandre Beaulieu
- Department ofMechanical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Perfluorochemical liquid-adenovirus suspensions enhance gene delivery to the distal lung. Pulm Med 2011; 2011:918036. [PMID: 21876799 PMCID: PMC3159382 DOI: 10.1155/2011/918036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/24/2011] [Indexed: 11/17/2022] Open
Abstract
WE COMPARED LUNG DELIVERY METHODS OF RECOMBINANT ADENOVIRUS (RAD): (1) rAd suspended in saline, (2) rAd suspended in saline followed by a pulse-chase of a perfluorochemical (PFC) liquid mixture, and (3) a PFC-rAd suspension. Cell uptake, distribution, and temporal expression of rAd were examined using A549 cells, a murine model using luciferase bioluminescence, and histological analyses. Relative to saline, a 4X increase in transduction efficiency was observed in A549 cells exposed to PFC-rAd for 2-4 h. rAd transgene expression was improved in alveolar epithelial cells, and the level and distribution of luciferase expression when delivered in PFC-rAd suspensions consistently peaked at 24 h. These results demonstrate that PFC-rAd suspensions improve distribution and enhance rAd-mediated gene expression which has important implications in improving lung function by gene therapy.
Collapse
|
36
|
Chenoune M, Lidouren F, Adam C, Pons S, Darbera L, Bruneval P, Ghaleh B, Zini R, Dubois-Randé JL, Carli P, Vivien B, Ricard JD, Berdeaux A, Tissier R. Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits. Circulation 2011; 124:901-11, 1-7. [PMID: 21810660 DOI: 10.1161/circulationaha.111.039388] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND In animal models of cardiac arrest, the benefit afforded by hypothermia is closely linked to the rapidity of the decrease in body temperature after resuscitation. Because total liquid ventilation (TLV) with temperature-controlled perfluorocarbons induces a very rapid and generalized cooling, we aimed to determine whether this could limit the post-cardiac arrest syndrome in a rabbit model. We especially focused on neurological, cardiac, pulmonary, liver and kidney dysfunctions. METHODS AND RESULTS Anesthetized rabbits were submitted to either 5 or 10 minutes of untreated ventricular fibrillation. After cardiopulmonary resuscitation and resumption of a spontaneous circulation, the animals underwent either normothermic life support (control) or therapeutic hypothermia induced by TLV. The latter procedure decreased esophageal and tympanic temperatures to 32°C to 33°C within only 10 minutes. After rewarming, the animals submitted to TLV exhibited an attenuated neurological dysfunction and decreased mortality 7 days later compared with control. The neuroprotective effect of TLV was confirmed by a significant reduction in brain histological damages. We also observed limitation of myocardial necrosis, along with a decrease in troponin I release and a reduced myocardial caspase 3 activity, with TLV. The beneficial effects of TLV were directly related to the rapidity of hypothermia induction because neither conventional cooling (cold saline infusion plus external cooling) nor normothermic TLV elicited a similar protection. CONCLUSIONS Ultrafast cooling instituted by TLV exerts potent neurological and cardiac protection in an experimental model of cardiac arrest in rabbits. This could be a relevant approach to provide a global and protective hypothermia against the post-cardiac arrest syndrome.
Collapse
|
37
|
The pharmacology of acute lung injury in sepsis. Adv Pharmacol Sci 2011; 2011:254619. [PMID: 21738527 PMCID: PMC3130333 DOI: 10.1155/2011/254619] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/03/2011] [Indexed: 01/21/2023] Open
Abstract
Acute lung injury (ALI) secondary to sepsis is one of the leading causes of death in sepsis. As such, many pharmacologic and nonpharmacologic strategies have been employed to attenuate its course. Very few of these strategies have proven beneficial. In this paper, we discuss the epidemiology and pathophysiology of ALI, commonly employed pharmacologic and nonpharmacologic treatments, and innovative therapeutic modalities that will likely be the focus of future trials.
Collapse
|
38
|
Chowdhury O, Greenough A. Neonatal ventilatory techniques - which are best for infants born at term? Arch Med Sci 2011; 7:381-7. [PMID: 22295020 PMCID: PMC3258760 DOI: 10.5114/aoms.2011.23400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022] Open
Abstract
Few studies have examined ventilatory modes exclusively in infants born at term. Synchronous intermittent mandatory ventilation (SIMV) compared to intermittent mandatory ventilation (IMV) is associated with a shorter duration of ventilation. The limited data on pressure support, volume targeted ventilation and neurally adjusted ventilatory assist demonstrate only short term benefits in term born infants. Favourable results of high-frequency oscillatory ventilation (HFOV) in infants with severe respiratory failure were not confirmed in the two randomised trials. Nitric oxide (NO) in term born infants, except in those with congenital diaphragmatic hernia (CDH), reduces the combined outcome of death and requirement for extracorporeal membrane oxygenation (ECMO). In infants with severe refractory hypoxaemic respiratory failure, ECMO, except in infants with CDH, reduced mortality and the combined outcome of death and severe disability at long-term follow-up. Randomised studies with long term outcomes are required to determine the optimum modes of ventilation in term born infants.
Collapse
Affiliation(s)
- Olie Chowdhury
- Division of Asthma, Allergy and Lung Biology, MRC Asthma Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom
| | | |
Collapse
|
39
|
Total liquid ventilation efficacy in an ovine model of severe meconium aspiration syndrome. Crit Care Med 2011; 39:1097-103. [DOI: 10.1097/ccm.0b013e31820ead1a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Dembinski R, Bensberg R, Marx G, Rossaint R, Quintel M, Vohmann C, Kuhlen R. Semi-fluorinated alkanes as carriers for drug targeting in acute respiratory failure. Exp Lung Res 2011; 36:499-507. [PMID: 20939753 DOI: 10.3109/01902141003721457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Partial liquid ventilation (PLV) with perfluorocarbons may cause pulmonary recruitment in acute lung injury (ALI). Semi-fluorinated alkanes (SFAs) provide biochemical properties similar to perfluorocarbons. Additionally, SFAs are characterized by increased lipophilicity. Therefore, SFA-PLV may be considered for deposition of certain therapeutic drugs into atelectatic lung areas. In this experimental study SFA-PLV was evaluated to demonstrate feasibility, pulmonary recruitment, and efficacy of drug deposition. Feasibility of SFA-PLV was determined in pigs with and without experimental ALI. Animals were randomized to PLV with SFAs up to a cumulative amount of 30 mL x kg⁻¹ or to conventional mechanical ventilation. Pulmonary recruitment effects were determined by analyzing ventilation-perfusion distributions. Efficacy of intrapulmonary drug deposition was evaluated in further experiments by measuring drug serum concentrations in the course of PLV with SFA-dissolved α-tocopherol and ibuprofen. Increasing SFA doses caused progressive reduction of intrapulmonary shunt in animals with ALI, indicating pulmonary recruitment. PLV with SFA-dissolved α-tocopherol had no effect on serum levels of α-tocopherol, whereas PLV with SFA-dissolved ibuprofen caused a rapid increase of serum levels of ibuprofen. The authors conclude that SFA-PLV is feasible and causes pulmonary recruitment in ALI. Effectiveness of drug deposition in the lung obviously depends on the partitioning drugs out of the SFA phase into blood.
Collapse
Affiliation(s)
- Rolf Dembinski
- Department of Intensive Care Medicine, RWTH University Hospital Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bossé D, Walti H, Robert R, Lebon J, Lesur O, Praud JP, Micheau P. Experimental validation of cardiac index measurement using transpulmonary thermodilution technique in neonatal total liquid ventilation. ASAIO J 2011; 56:557-62. [PMID: 21245803 DOI: 10.1097/mat.0b013e3181f1cd72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study aimed to assess the precision and the interchangeability of cardiac index measurement by transpulmonary thermodilution (TPTD) and pulmonary thermodilution (PTD) devices on a neonatal animal model of acute respiratory distress syndrome under total liquid ventilation (TLV) and conventional mechanical ventilation (CMV). After acute respiratory distress induction by tracheal instillation of hydrochloric acid, transpulmonary (CI(TPTD)) and pulmonary (CI(PTD)) cardiac index were simultaneously measured every 30 minutes for a 240-minute experiment. Reproducibility of both thermodilution techniques was very good to excellent in both groups of ventilation with intrainstrument intraclass correlation coefficient >0.60. Disagreement was found between TPTD and PTD in TLV and CMV. Bland-Altman analysis revealed mean biases of 0.98 L/min/m² (22.8%) with limits of agreement of -1.33 to 3.25 L/min/m² in CMV and 1.28 L/min/m² (17.3%) with limits of agreement of -1.17 to 3.72 L/min/m² in TLV. Bias between TPTD and PTD was not statistically different in TLV than in CMV (p = 0.11). Transpulmonary thermodilution and PTD remained precise but not interchangeable techniques under TLV as well as CMV. Because TLV does not bring additional bias between both thermodilution techniques, we advocate the use of the less-invasive TPTD under TLV as currently recommended in CMV.
Collapse
Affiliation(s)
- Dominick Bossé
- Département de Physiologie-Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Weigel JK, Steinmann D, Emerich P, Stahl CA, v Elverfeldt D, Guttmann J. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung. Physiol Meas 2010; 32:251-62. [PMID: 21193813 DOI: 10.1088/0967-3334/32/2/008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO(2) carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-(19)F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-(19)F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-(19)F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-(19)F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH(2)O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH(2)O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure.
Collapse
Affiliation(s)
- Julia K Weigel
- Department of Anaesthesia and Critical Care Medicine, University Hospital Freiburg, Hugstetter Strasse 55, D 79106 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Robert R, Micheau P, Avoine O, Beaudry B, Beaulieu A, Walti H. A Regulator for Pressure-Controlled Total-Liquid Ventilation. IEEE Trans Biomed Eng 2010; 57:2267-76. [DOI: 10.1109/tbme.2009.2031096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Bossé D, Beaulieu A, Avoine O, Micheau P, Praud JP, Walti H. Neonatal total liquid ventilation: is low-frequency forced oscillation technique suitable for respiratory mechanics assessment? J Appl Physiol (1985) 2010; 109:501-10. [PMID: 20538848 DOI: 10.1152/japplphysiol.01042.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to implement low-frequency forced oscillation technique (LFFOT) in neonatal total liquid ventilation (TLV) and to provide the first insight into respiratory impedance under this new modality of ventilation. Thirteen newborn lambs, weighing 2.5 + or - 0.4 kg (mean + or - SD), were premedicated, intubated, anesthetized, and then placed under TLV using a specially design liquid ventilator and a perfluorocarbon. The respiratory mechanics measurements protocol was started immediately after TLV initiation. Three blocks of measurements were first performed: one during initial respiratory system adaptation to TLV, followed by two other series during steady-state conditions. Lambs were then divided into two groups before undergoing another three blocks of measurements: the first group received a 10-min intravenous infusion of salbutamol (1.5 microg x kg(-1) x min(-1)) after continuous infusion of methacholine (9 microg x kg(-1) x min(-1)), while the second group of lambs was chest strapped. Respiratory impedance was measured using serial single-frequency tests at frequencies ranging between 0.05 and 2 Hz and then fitted with a constant-phase model. Harmonic test signals of 0.2 Hz were also launched every 10 min throughout the measurement protocol. Airway resistance and inertance were starkly increased in TLV compared with gas ventilation, with a resonant frequency < or = 1.2 Hz. Resistance of 0.2 Hz and reactance were sensitive to bronchoconstriction and dilation, as well as during compliance reduction. We report successful implementation of LFFOT to neonatal TLV and present the first insight into respiratory impedance under this new modality of ventilation. We show that LFFOT is an effective tool to track respiratory mechanics under TLV.
Collapse
Affiliation(s)
- Dominick Bossé
- Faculté de Médecine et des Sciences de la Santé, Département de Pédiatrie, 3001, 12e Ave. Nord, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
45
|
Chiu PP, Langer JC. Surgical Conditions of the Diaphragm: Posterior Diaphragmatic Hernias in Infants. Thorac Surg Clin 2009; 19:451-61. [DOI: 10.1016/j.thorsurg.2009.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system. Med Biol Eng Comput 2009; 47:931-9. [DOI: 10.1007/s11517-009-0517-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 07/01/2009] [Indexed: 01/10/2023]
|
47
|
Spiess BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol (1985) 2009; 106:1444-52. [PMID: 19179651 DOI: 10.1152/japplphysiol.90995.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perfluorocarbon (PFC) emulsions are halogen-substituted carbon nonpolar oils with resultant enhanced dissolved respiratory gas (O(2), N(2), CO(2), nitric oxide) capabilities. In the first demonstration of enhanced O(2) solubility, inhaled PFC could sustain rat metabolism. Intravenous emulsions were then trialed as "blood substitutes." In the last 10 yr, biocomputational modeling has enhanced our mechanistic understanding of PFCs. Contemporary research is now taking advantage of these physiological discoveries and applying PFCs as "oxygen therapeutics," as well as ways to enhance other gas movements. One particularly promising area of research is the treatment of gas embolism (arterial and venous emboli/decompression sickness). An expansive understanding of PFC-enhanced diffusive gas movements through tissue and vasculature may have analogous applications for O(2) or other respiratory gases and should provide a revolution in medicine. This review will stress the fundamental knowledge we now have regarding how respiratory gas movements are changed when intravenous PFC is present.
Collapse
Affiliation(s)
- Bruce D Spiess
- Department of Anesthesiology and Emergency Medicine, Virginia Commonwealth University Reanimation Engineering Shock Center, Richmond, Virginia, USA.
| |
Collapse
|
48
|
High vapor pressure perfluorocarbons cause vesicle fusion and changes in membrane packing. Biophys J 2008; 95:4737-47. [PMID: 18689464 DOI: 10.1529/biophysj.108.133496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perfluorocarbons (PFCs) hold great promise for biomedical applications. However, relatively little is known about the impact of these chemicals on membranes. We used unilamellar vesicles to explore the effects of PFCs on membrane packing and vesicle stability. Four clinically relevant PFCs with varying vapor pressures (PP1, 294 mbar; PP2, 141 mbar; PP4, 9.6 mbar; and PP9, 2.9 mbar) were examined. Microscopy imaging and spectroscopic measurements suggest that PFCs, especially those with high vapor pressures, lead to vesicle fusion within hours. Upon exposure to PP1 and PP2 for 72 h, vesicles retained a spherical shape, but the size changed from approximately 200 nm to approximately 20-40 mum. In addition, membrane packing underwent marked changes during this timeframe. A significant decrease in water content in the lipid polar headgroup regions occurred during the first 1-2-h exposure to PFCs, followed by a steady increase in water content over time. Possible mechanisms were proposed to explain these dramatic structural changes. The finding that chemically inert PFCs exhibited fusogenic activity and marked changes in membrane surface packing is novel, and should be considered when using PFCs for biomedical applications.
Collapse
|
49
|
Lehmler HJ, Xu L, Vyas SM, Ojogun VA, Knutson BL, Ludewig G. Synthesis, physicochemical properties and in vitro cytotoxicity of nicotinic acid ester prodrugs intended for pulmonary delivery using perfluorooctyl bromide as vehicle. Int J Pharm 2007; 353:35-44. [PMID: 18164563 DOI: 10.1016/j.ijpharm.2007.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 10/15/2007] [Accepted: 11/07/2007] [Indexed: 12/01/2022]
Abstract
This study explores perfluorooctyl bromide (PFOB) as a potential vehicle for the pulmonary delivery of a series of prodrugs of nicotinic acid using cell culture studies. The prodrugs investigated have PFOB-water (logK(p)=0.78 to >2.2), perfluoromethylcyclohexane-toluene (logK(p)=-2.62 to 0.13) and octanol-water (logK(p)=0.90-10.2) partition coefficients spanning several orders of magnitude. In confluent NCI-H358 human lung cancer cells, the toxicity of prodrugs administered in culture medium or PFOB depends on the medium of administration, with EC20's above 8 mM and 2.5 mM for culture medium and PFOB, respectively. Short-chain nicotinates administered both in PFOB and medium increase cellular NAD/NADP levels at 1mM nicotinate concentrations. Long-chain nicotinates, which could not be administered in medium due to their poor aqueous solubility, increased NAD/NADP levels if administered in PFOB at concentrations > or =10 mM. These findings suggest that even highly lipophilic prodrugs can partition out of the PFOB phase into cells, where nicotinic acid is released and converted to NAD. Thus, PFOB may be a novel and biocompatible vehicle for the delivery of lipophilic prodrugs of nicotinic acid and other drugs directly to the lung of laboratory animals and humans.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, College of Public Health, Iowa City, IA 52242-5000, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Lindemann R, Rajka T, Henrichsen T, Vinorum OG, de Lange C, Erichsen A, Fugelseth D. Bronchioalveolar lavage with perfluorochemical liquid during conventional ventilation. Pediatr Crit Care Med 2007; 8:486-8. [PMID: 17693917 DOI: 10.1097/01.pcc.0000282757.25347.6c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Therapeutic approaches with bronchioalveolar lavage are currently used in infants with severe alveolar space-occupying material. In many circumstances, bronchioalveolar lavage has been performed in conjunction with extracorporeal membrane oxygenation. CASE REPORT A 2-month-old boy with severe respiratory failure requiring assisted ventilation did not respond to any conventional treatments, including surfactant. An open-lung biopsy showed intra-alveolar accumulation of proteinaceous material and foamy macrophages but was not diagnostically conclusive. Therapeutic trials with bronchioalveolar lavage using normal saline were unsuccessful, causing episodes of severe hypoxemia. Then, bronchioalveolar lavage during conventional mechanical ventilation was performed with the use of a medical-grade perfluorochemical liquid (perfluordecalin). After instillation of liquid (10 mL/kg), the lungs were refilled three times during the first 24 hrs and repeated 48 hrs later. During perfluorochemical liquid treatment, the infant's condition remained stable, with small improvements in pulmonary mechanics. Suction from the endotracheal cannula yielded only small amounts of gelatinous material. Considering the progression of the disease and just minimal pulmonary improvements by this intervention, further treatment was considered futile. Support was, thus, minimized, and the infant died a few days later. An autopsy revealed the diagnosis to be consistent with Niemann-Pick C2 disease. CONCLUSION This study demonstrated that bronchioalveolar lavage with perfluorochemical liquid could be performed safely during conventional mechanical ventilation without the additional support of extracorporeal membrane oxygenation in infants with severe alveolar space-occupying material.
Collapse
Affiliation(s)
- Rolf Lindemann
- Paediatric Intensive Care Unit, Department of Paediatrics, Ulleval University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|