1
|
Liberati AS, Perrotta G. Neuroanatomical and functional correlates in tic disorders and Tourette's syndrome: A narrative review. IBRAIN 2024; 10:439-449. [PMID: 39691418 PMCID: PMC11649386 DOI: 10.1002/ibra.12177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 12/19/2024]
Abstract
Tic disorders represent a developmental neuropsychiatric condition whose causes can be attributed to a variety of environmental, neurobiological, and genetic factors. From a neurophysiological perspective, the disorder has classically been associated with neurochemical imbalances (particularly dopamine and serotonin) and structural and functional alterations affecting, in particular, brain areas and circuits involved in the processing and coordination of movements: the basal ganglia, thalamus, motor cortical area, and cingulate cortex; however, more recent research is demonstrating the involvement of many more brain regions and neurotransmission systems than previously observed, such as the prefrontal cortex and cerebellum. In this paper, therefore, we summarize the evidence to date on these abnormalities with the intent to illustrate and clarify the main neuroanatomical differences between patients with tic disorders and healthy individuals.
Collapse
Affiliation(s)
- Anna Sara Liberati
- Division of NeuropsychologyFaculty of Psychology, Università Telematica Internazionale “Uninettuno”RomeItaly
- Department of Psychological SciencesForensic Science AcademySalernoItaly
| | - Giulio Perrotta
- Department of Psychological SciencesForensic Science AcademySalernoItaly
- Division of PsychotherapyInstitute for the Study of Psychotherapies (I.S.P.), Via San Martino Della BattagliaRomeItaly
| |
Collapse
|
2
|
Ertürk H, Ertürk E, Aktepe E, Süzen LB. Neuroimaging assessment of basal ganglia volumes in Tourette Syndrome: a systematic review and meta-analysis. Cogn Neuropsychiatry 2024; 29:256-267. [PMID: 39671252 DOI: 10.1080/13546805.2024.2439800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION An increasing number of studies indicate that anatomical, physiological, and histological differences in the basal ganglia(BG) lie in the etiology of Tourette Syndrome(TS). However, the fact that there are very few studies on the anatomy of the BG in TS, small sample sizes, and unclear information as a consequence of these studies' contradictory findings is a significant gap in the scientific literature. The current systematic review and meta-analysis were performed to examine the differences in BG volumes between TS and controls. METHOD The protocol was registered with PROSPERO(CRD42023445845). Pertaining studies were ascertained via a search of the published literature in academic databases. The software Comprehensive Meta-Analysis was utilised for statistical analysis. RESULTS 527 articles were reached, and after the exclusion stages, 8 articles remained for the current systematic review and 7 articles for the quantitative meta-analysis. After evaluating each component of the BG individually, no difference was found between the BG volumes of controls and TS. CONCLUSION The failure to discover the predicted volume difference can be explained by either the severity of the tic or the exclusion of comorbidity. The difference in BG volume is likely related to TS cases with more severe tics and severe comorbidities.
Collapse
Affiliation(s)
- Hanife Ertürk
- Department of Therapy and Rehabilitation, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
- Department of Anatomy, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Emre Ertürk
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Evrim Aktepe
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Lütfiye Bikem Süzen
- Department of Anatomy, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
3
|
Yang C, Yao L, Liu N, Zhang W, Tao B, Cao H, Gong Q, Lui S. Microstructural Abnormalities of White Matter Across Tourette Syndrome: A Voxel-Based Meta-Analysis of Fractional Anisotropy. Front Neurol 2021; 12:659250. [PMID: 34566829 PMCID: PMC8458640 DOI: 10.3389/fneur.2021.659250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: Tourette syndrome (TS) is a neuropsychiatric disorder with multiple motor and vocal tics whose neural basis remains unclear. Diffusion tensor imaging (DTI) studies have demonstrated white matter microstructural alternations in TS, but the findings are inconclusive. In this study, we aimed to elucidate the most consistent white matter deficits in patients with TS. Method: By systematically searching online databases up to December 2020 for all DTI studies comparing fractional anisotropy (FA) between patients with TS and healthy controls (HCs), we conducted anisotropic effect size-signed differential mapping (AES-SDM) meta-analysis to investigate FA differences in TS, as well as performed meta-regression analysis to explore the effects of demographics and clinical characteristics on white matter abnormalities among TS. Results: A total of eight datasets including 168 patients with TS and 163 HCs were identified. We found that TS patients showed robustly decreased FA in the corpus callosum (CC) and right inferior longitudinal fasciculus (ILF) compared with HCs. These two regions preserved significance in the sensitivity analysis. No regions of increased FA were reported. Meta-regression analysis revealed that age, sex, tic severity, or illness duration of patients with TS were not linearly correlated with decreased FA. Conclusion: Patients with TS display deficits of white matter microstructure in the CC and right ILF known to be important for interhemispheric connections as well as long association fiber bundles within one hemisphere. Because the results reported in the primary literature were highly variable, future investigations with large samples would be required to support the identified white matter changes in TS.
Collapse
Affiliation(s)
- Chengmin Yang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Black KJ, Kim S, Schlaggar BL, Greene DJ. The New Tics study: A Novel Approach to Pathophysiology and Cause of Tic Disorders. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200012. [PMID: 32587895 PMCID: PMC7316401 DOI: 10.20900/jpbs.20200012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on the ongoing project "The New Tics Study: A Novel Approach to Pathophysiology and Cause of Tic Disorders," describing the work completed to date, ongoing studies and long-term goals. The overall goals of this research are to study the pathophysiology of Provisional Tic Disorder, and to study tic remission (or improvement) in a prospective fashion. Preliminary data collection for the project began almost 10 years ago. The current study is nearing completion of its third year, and has already reported several novel and important results. First, surprisingly, at least 90% of children who had experienced tics for only a mean of 3 months still had tics at the 12-month anniversary of their first tic, though in some cases tics were seen only with remote video observation of the child sitting alone. Thus almost all of them now had a DSM-5 diagnosis of Tourette's Disorder or Persistent (Chronic) Tic Disorder. Baseline clinical features that predicted 12-month outcome included tic severity, subsyndromal autism spectrum symptoms, an anxiety disorder, and a history of 3 or more phonic tics. Second, we found that poorer tic suppression ability when immediately rewarded for suppression predicted greater tic severity at follow-up. Third, striatal volumes did not predict outcome as hypothesized, but a larger hippocampus at baseline predicted worse severity at follow-up. Enrollment and data collection continue, including functional connectivity MRI (fcMRI) imaging, and additional analyses are planned once the full sample is enrolled.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Soyoung Kim
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L. Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205; and Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Deanna J. Greene
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Mirabella G, Upadhyay N, Mancini C, Giannì C, Panunzi S, Petsas N, Suppa A, Cardona F, Pantano P. Loss in grey matter in a small network of brain areas underpins poor reactive inhibition in Obsessive-Compulsive Disorder patients. Psychiatry Res Neuroimaging 2020; 297:111044. [PMID: 32078965 DOI: 10.1016/j.pscychresns.2020.111044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
Reactive inhibition correlates with the severity of symptoms in paediatric patients with Obsessive-Compulsive Disorder (OCD) though not in those with Tourette syndrome (TS). Here we assessed whether structural alterations in both grey (GM) and white matter (WM) volumes correlate with a measure of reactive inhibition, i.e. the stop-signal reaction time (SSRT), and with clinical scale scores. Nine OCD and 11 TS uncomplicated drug-naïve paediatric patients and 12 age-matched controls underwent 3T magnetic resonance imaging scanning. Between-group differences in GM and WM volumes across the whole brain were assessed. Outside the scanner, patients performed a reaching version of the stop-signal task. Both behavioural inhibitory control and neuroimaging measures were normal in TS patients. By contrast, OCD patients exhibited a significant loss in GM volume in five areas. The GM volume of the left inferior frontal gyrus was inversely correlated with the length of the SSRT, the left mid-cingulate gyrus and the right middle frontal gyrus were inversely correlated with the severity of OCD symptoms, and the left insula and the right medial orbitofrontal gyrus were inversely correlated with both. These results indicate that cortical areas showing GM loss in OCD patients are also involved in the network subserving reactive inhibition.
Collapse
Affiliation(s)
- Giovanni Mirabella
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| | - Neeraj Upadhyay
- Department of Human Neuroscience, Sapienza University, Rome, Italy; DZNE, German Centre for Neurodegenerative Diseases, Bonn, Germany
| | - Christian Mancini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Sapienza University, Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Sara Panunzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Nikolaos Petsas
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS), Italy; Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Patrizia Pantano
- IRCCS Neuromed, Pozzilli (IS), Italy; Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive decline is associated with hippocampal volume, above and beyond its associations with traditional neuropathologic indices. Alzheimers Dement 2020; 16:209-218. [PMID: 31914231 PMCID: PMC6953608 DOI: 10.1002/alz.12009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Reduced hippocampal volume is associated with late-life cognitive decline, but prior studies have not determined whether this association persists after accounting for Alzheimer's disease (AD) and other neuropathologies. METHODS Participants were 531 deceased older adults from community-based cohort studies of aging who had undergone annual cognitive evaluations. At death, brain tissue underwent neuropathologic examination and magnetic resonance imaging (MRI). Linear mixed models examined whether hippocampal volume measured via MRI accounted for variation in decline rate of global cognition and five cognitive domains, above and beyond neuropathologic indices. RESULTS Demographics and indices of AD, cerebrovascular disease, Lewy body disease, hippocampal sclerosis, TDP-43, and atherosclerosis accounted for 42.6% of the variation in global cognitive decline. Hippocampal volume accounted for an additional 5.4% of this variation and made similar contributions in four of the five cognitive domains. DISCUSSION Hippocampal volume is associated with late-life cognitive decline, above and beyond contributions from common neuropathologic indices.
Collapse
Affiliation(s)
- Robert J. Dawe
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Lin L, Yu L, Xiang H, Hu X, Yuan X, Zhu H, Li H, Zhang H, Hou T, Cao J, Wu S, Su W, Li M. Effects of Acupuncture on Behavioral Stereotypies and Brain Dopamine System in Mice as a Model of Tourette Syndrome. Front Behav Neurosci 2019; 13:239. [PMID: 31680895 PMCID: PMC6803462 DOI: 10.3389/fnbeh.2019.00239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS), a developmental neurobehavioral disorder, is characterized by involuntary behavioral stereotypies. Clinical studies have confirmed the positive effect of acupuncture on treating TS, but the underlying mechanisms are not fully understood. In the present study, we used behavioral tests, Western blotting, double-immunofluorescence labeling, and fluorescence spectrophotometry to investigate whether acupuncture performed at acupoints "Baihui" (GV20) and "Yintang" (GV29) affected behavioral stereotypies and regulated the dopamine (DA) system in three different brain regions in Balb/c mice injected with 3,3'-iminodipropionitrile (IDPN) as a model for TS. We found that acupuncture alleviated behavioral stereotypies, down-regulated the expression of D1R and D2R in the striatum (STR) and substantia nigra pars compacta (SNpc), and decreased the concentration of DA in the STR, SNpc, and prefrontal cortex (PFC) as well. Moreover, acupuncture reduced the expression of tyrosine hydroxylase (TH) in the SNpc. Conclusively, acupuncture ameliorated behavioral stereotypies by regulating the DA system in the STR, SNpc, and PFC. Our findings provide novel evidence for the therapeutic effect of acupuncture on TS.
Collapse
Affiliation(s)
- Lixue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongchun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocui Yuan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Su
- Department of Pediatrics, Wuhan No. 1 Hospital, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Moreno-Alcázar A, Gonzalvo B, Canales-Rodríguez EJ, Blanco L, Bachiller D, Romaguera A, Monté-Rubio GC, Roncero C, McKenna PJ, Pomarol-Clotet E. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis. Front Psychiatry 2018; 9:175. [PMID: 29773998 PMCID: PMC5943550 DOI: 10.3389/fpsyt.2018.00175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001) of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001) and pallidum (p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05) and nucleus accumbens (p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.
Collapse
Affiliation(s)
- Ana Moreno-Alcázar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Centre Fòrum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Begoña Gonzalvo
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Blanco
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Diana Bachiller
- Addictions and Dual Diagnosis Unit, Vall d'Hebron University Hospital-Public Health Agency of Barcelona (ASPB), Barcelona, Spain
| | - Anna Romaguera
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Gemma C Monté-Rubio
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Carlos Roncero
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Addictions and Dual Diagnosis Unit, Vall d'Hebron University Hospital-Public Health Agency of Barcelona (ASPB), Barcelona, Spain.,Department of Psychiatry, Vall d'Hebron University Hospital, Barcelona, Spain.,Psychiatric Service, University of Salamanca Health Care Complex, Salamanca, Spain.,Institute of Biomedicine of Salamanca, University of Salamanca, Salamanca, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
9
|
Polyanska L, Critchley HD, Rae CL. Centrality of prefrontal and motor preparation cortices to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies. NEUROIMAGE-CLINICAL 2017; 16:257-267. [PMID: 28831377 PMCID: PMC5554925 DOI: 10.1016/j.nicl.2017.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/31/2023]
Abstract
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Collapse
Affiliation(s)
- Liliana Polyanska
- Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RY, UK.,Department of Neuroscience, Brighton & Sussex Medical School, Falmer BN1 9RY, UK.,Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RY, UK.,Department of Neuroscience, Brighton & Sussex Medical School, Falmer BN1 9RY, UK
| | - Charlotte L Rae
- Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RY, UK.,Department of Neuroscience, Brighton & Sussex Medical School, Falmer BN1 9RY, UK
| |
Collapse
|
10
|
Kogan A, Alpert K, Ambite JL, Marcus DS, Wang L. Northwestern University schizophrenia data sharing for SchizConnect: A longitudinal dataset for large-scale integration. Neuroimage 2015; 124:1196-1201. [PMID: 26087378 DOI: 10.1016/j.neuroimage.2015.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022] Open
Abstract
In this paper, we describe an instance of the Northwestern University Schizophrenia Data and Software Tool (NUSDAST), a schizophrenia-related dataset hosted at XNAT Central, and the SchizConnect data portal used for accessing and sharing the dataset. NUSDAST was built and extended upon existing, standard schemas available for data sharing on XNAT Central (http://central.xnat.org/). With the creation of SchizConnect, we were able to link NUSDAST to other neuroimaging data sources and create a powerful, federated neuroimaging resource.
Collapse
Affiliation(s)
- Alex Kogan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA; Digital Government Research Center, Marina del Rey, CA, USA; Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Black KJ, Piccirillo ML, Koller JM, Hseih T, Wang L, Mintun MA. Levodopa effects on [ (11)C]raclopride binding in the resting human brain. F1000Res 2015; 4:23. [PMID: 26180632 PMCID: PMC4490799 DOI: 10.12688/f1000research.5672.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/12/2023] Open
Abstract
Rationale: Synaptic dopamine (DA) release induced by amphetamine or other experimental manipulations can displace [
11C]raclopride (RAC*) from dopamine D2-like receptors. We hypothesized that exogenous levodopa might increase dopamine release at striatal synapses under some conditions but not others, allowing a more naturalistic assessment of presynaptic dopaminergic function. Presynaptic dopaminergic abnormalities have been reported in Tourette syndrome (TS). Objective: Test whether levodopa induces measurable synaptic DA release in healthy people at rest, and gather pilot data in TS. Methods: This double-blind crossover study used RAC* and positron emission tomography (PET) to measure synaptic dopamine release 4 times in each of 10 carbidopa-pretreated, neuroleptic-naïve adults: before and during an infusion of levodopa on one day and placebo on another (in random order). Five subjects had TS and 5 were matched controls. RAC* binding potential (BP
ND) was quantified in predefined anatomical volumes of interest (VOIs). A separate analysis compared BP
ND voxel by voxel over the entire brain. Results: DA release declined between the first and second scan of each day (p=0.012), including on the placebo day. Levodopa did not significantly reduce striatal RAC* binding and striatal binding did not differ significantly between TS and control groups. However, levodopa’s effect on DA release differed significantly in a right midbrain region (p=0.002, corrected), where levodopa displaced RAC* by 59% in control subjects but
increased BP
ND by 74% in TS subjects. Discussion: Decreased DA release on the second scan of the day is consistent with the few previous studies with a similar design, and may indicate habituation to study procedures. We hypothesize that mesostriatal DA neurons fire relatively little while subjects rest, possibly explaining the non-significant effect of levodopa on striatal RAC* binding. The modest sample size argues for caution in interpreting the group difference in midbrain DA release with levodopa.
Collapse
Affiliation(s)
- Kevin J Black
- Departments of Psychiatry, Neurology, Radiology, and Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marilyn L Piccirillo
- School of Arts and Sciences, Washington University, St. Louis, MO, 63130, USA ; Temple University, Philadelphia, PA, USA
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tiffany Hseih
- School of Arts and Sciences, Washington University, St. Louis, MO, 63130, USA ; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Lei Wang
- Departments of Psychiatry & Behavioral Sciences, and Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark A Mintun
- Departments of Radiology, Psychiatry, Bioengineering, and Anatomy & Neurobiology, Washington University, St. Louis, MO, 63130, USA ; Avid Radiopharmaceuticals, Philadelphia, PA, USA
| |
Collapse
|
12
|
Farkas A, Bluschke A, Roessner V, Beste C. Neurofeedback and its possible relevance for the treatment of Tourette syndrome. Neurosci Biobehav Rev 2015; 51:87-99. [PMID: 25616186 DOI: 10.1016/j.neubiorev.2015.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Neurofeedback is an increasingly recognized therapeutic option in various neuropsychiatric disorders to treat dysfunctions in cognitive control as well as disorder-specific symptoms. In this review we propose that neurofeedback may also reflect a valuable therapeutic option to treat executive control functions in Gilles-de-la-Tourette syndrome (GTS). Deficits in executive control functions when ADHD symptoms appear in GTS likely reflect pathophysiological processes in cortico-thalamic-striatal circuits and may also underlie the motor symptoms in GTS. Such executive control deficits evident in comorbid GTS/ADHD depend on neurophysiological processes well-known to be modifiable by neurofeedback. However, so far efforts to use neurofeedback to treat cognitive dysfunctions are scarce. We outline why neurofeedback should be considered a promising treatment option, what forms of neurofeedback may prove to be most effective and how neurofeedback may be implemented in existing intervention strategies to treat comorbid GTS/ADHD and associated dysfunctions in cognitive control. As cognitive control deficits in GTS mostly appear in comorbid GTS/ADHD, neurofeedback may be most useful in this frequent combination of disorders.
Collapse
Affiliation(s)
- Aniko Farkas
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| |
Collapse
|
13
|
Abstract
Tourette syndrome has been examined using many different neuroimaging techniques. There has been a recent surge of neuroimaging research papers related to Tourette syndrome that are exploring many different aspects of the disorder and its comorbidities. This brief review focuses on recent MRI-based imaging studies of pediatric Tourette syndrome, including anatomical, functional, resting state, and diffusion tensor MRI techniques. Consistencies across studies are explored, and particularly important issues involved in acquiring data from this special population are discussed.
Collapse
Affiliation(s)
- Jessica A Church
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 ; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110 ; Department of Anatomy&Neurobiology, Washington University School of Medicine, St. Louis, MO 63110 ; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
14
|
Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci 2014; 34:5529-38. [PMID: 24741043 DOI: 10.1523/jneurosci.4745-13.2014] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.
Collapse
|
15
|
Filippi M, Agosta F, Caso F. The thalamus: a small but precious window on τ-related neurodegeneration? AJNR Am J Neuroradiol 2014; 35:904-5. [PMID: 24722314 DOI: 10.3174/ajnr.a3930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M Filippi
- Neuroimaging Research Unit Institute of Experimental Neurology Division of Neuroscience San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan, Italy
| | - F Agosta
- Neuroimaging Research Unit Institute of Experimental Neurology Division of Neuroscience San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan, Italy
| | - F Caso
- Neuroimaging Research Unit Institute of Experimental Neurology Division of Neuroscience San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan, Italy
| |
Collapse
|
16
|
Müller-Vahl KR, Grosskreutz J, Prell T, Kaufmann J, Bodammer N, Peschel T. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms. BMC Neurosci 2014; 15:6. [PMID: 24397347 PMCID: PMC3893393 DOI: 10.1186/1471-2202-15-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/31/2013] [Indexed: 01/18/2023] Open
Abstract
Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.
Collapse
Affiliation(s)
- Kirsten R Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Street 1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Wang L, Kogan A, Cobia D, Alpert K, Kolasny A, Miller MI, Marcus D. Northwestern University Schizophrenia Data and Software Tool (NUSDAST). Front Neuroinform 2013; 7:25. [PMID: 24223551 PMCID: PMC3819522 DOI: 10.3389/fninf.2013.00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/12/2013] [Indexed: 11/13/2022] Open
Abstract
The schizophrenia research community has invested substantial resources on collecting, managing and sharing large neuroimaging datasets. As part of this effort, our group has collected high resolution magnetic resonance (MR) datasets from individuals with schizophrenia, their non-psychotic siblings, healthy controls and their siblings. This effort has resulted in a growing resource, the Northwestern University Schizophrenia Data and Software Tool (NUSDAST), an NIH-funded data sharing project to stimulate new research. This resource resides on XNAT Central, and it contains neuroimaging (MR scans, landmarks and surface maps for deep subcortical structures, and FreeSurfer cortical parcellation and measurement data), cognitive (cognitive domain scores for crystallized intelligence, working memory, episodic memory, and executive function), clinical (demographic, sibling relationship, SAPS and SANS psychopathology), and genetic (20 polymorphisms) data, collected from more than 450 subjects, most with 2-year longitudinal follow-up. A neuroimaging mapping, analysis and visualization software tool, CAWorks, is also part of this resource. Moreover, in making our existing neuroimaging data along with the associated meta-data and computational tools publically accessible, we have established a web-based information retrieval portal that allows the user to efficiently search the collection. This research-ready dataset meaningfully combines neuroimaging data with other relevant information, and it can be used to help facilitate advancing neuroimaging research. It is our hope that this effort will help to overcome some of the commonly recognized technical barriers in advancing neuroimaging research such as lack of local organization and standard descriptions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Alex Kogan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Derin Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Anthony Kolasny
- Department of Biomedical Engineering, Center for Imaging Science, Johns Hopkins UniversityBaltimore, MD, USA
| | - Michael I. Miller
- Department of Biomedical Engineering, Center for Imaging Science, Johns Hopkins UniversityBaltimore, MD, USA
| | - Daniel Marcus
- Department of Radiology, Washington University School of MedicineSt. Louis, MO, USA
- Department of Psychology, Washington University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
18
|
Williams AC, McNeely ME, Greene DJ, Church JA, Warren SL, Hartlein JM, Schlaggar BL, Black KJ, Wang L. A pilot study of basal ganglia and thalamus structure by high dimensional mapping in children with Tourette syndrome. F1000Res 2013; 2:207. [PMID: 24715957 PMCID: PMC3976104 DOI: 10.12688/f1000research.2-207.v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2013] [Indexed: 01/18/2023] Open
Abstract
Background: Prior brain imaging and autopsy studies have suggested
that structural abnormalities of the basal ganglia (BG) nuclei may be present in Tourette Syndrome (TS). These studies have focused mainly on the volume differences of the BG structures and not their anatomical shapes. Shape differences of various brain structures have been demonstrated in other neuropsychiatric disorders using large-deformation, high dimensional brain mapping (HDBM-LD). A previous study of a small sample of adult TS patients demonstrated the validity of the method, but did not find significant differences compared to controls. Since TS usually begins in childhood and adult studies may show structure differences due to adaptations, we hypothesized that differences in BG and thalamus structure geometry and volume due to etiological changes in TS might be better characterized in children. Objective: Pilot the HDBM-LD method in children and estimate effect sizes. Methods: In this pilot study, T1-weighted MRIs were collected in 13 children with TS and 16 healthy, tic-free, control children. The groups were well matched for age. The primary outcome measures were the first 10 eigenvectors which are derived using HDBM-LD methods and represent the majority of the geometric shape of each structure, and the volumes of each structure adjusted for whole brain volume. We also compared hemispheric right/left asymmetry and estimated effect sizes for both volume and shape differences between groups. Results: We found no statistically significant differences between the TS subjects and controls in volume, shape, or right/left asymmetry. Effect sizes were greater for shape analysis than for volume. Conclusion: This study represents one of the first efforts to study the shape as opposed to the volume of the BG in TS, but power was limited by sample size. Shape analysis by the HDBM-LD method may prove more sensitive to group differences.
Collapse
Affiliation(s)
- Alton C Williams
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marie E McNeely
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA ; Current affiliation: Centene Corporation, St. Louis, MO 63105, USA
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica A Church
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Current affiliation: Department of Psychology in The College of Liberal, University of Texas- Austin, Austin, TX 78712, USA
| | - Stacie L Warren
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA ; Current affiliation: Department of Mental Health, St. Louis VA Medical Center, St. Louis, MO 63110, USA
| | - Johanna M Hartlein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L Schlaggar
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lei Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA ; Current affiliation: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL 60611, USA ; Current affiliation: Department of Radiology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Davis LK, Yu D, Keenan CL, Gamazon ER, Konkashbaev AI, Derks EM, Neale BM, Yang J, Lee SH, Evans P, Barr CL, Bellodi L, Benarroch F, Berrio GB, Bienvenu OJ, Bloch MH, Blom RM, Bruun RD, Budman CL, Camarena B, Campbell D, Cappi C, Cardona Silgado JC, Cath DC, Cavallini MC, Chavira DA, Chouinard S, Conti DV, Cook EH, Coric V, Cullen BA, Deforce D, Delorme R, Dion Y, Edlund CK, Egberts K, Falkai P, Fernandez TV, Gallagher PJ, Garrido H, Geller D, Girard SL, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Haddad S, Heiman GA, Hemmings SMJ, Hounie AG, Illmann C, Jankovic J, Jenike MA, Kennedy JL, King RA, Kremeyer B, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Liu C, Lochner C, Lowe TL, Macciardi F, McCracken JT, McGrath LM, Mesa Restrepo SC, Moessner R, Morgan J, Muller H, Murphy DL, Naarden AL, Ochoa WC, Ophoff RA, Osiecki L, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Rauch SL, Renner TJ, Reus VI, Richter MA, Riddle MA, Robertson MM, Romero R, Rosàrio MC, Rosenberg D, Rouleau GA, Ruhrmann S, Ruiz-Linares A, Sampaio AS, Samuels J, Sandor P, Sheppard B, Singer HS, Smit JH, Stein DJ, Strengman E, Tischfield JA, Valencia Duarte AV, Vallada H, Van Nieuwerburgh F, Veenstra-VanderWeele J, Walitza S, Wang Y, Wendland JR, Westenberg HGM, Shugart YY, Miguel EC, McMahon W, Wagner M, Nicolini H, Posthuma D, Hanna GL, Heutink P, Denys D, Arnold PD, Oostra BA, Nestadt G, Freimer NB, Pauls DL, Wray NR, Stewart SE, Mathews CA, Knowles JA, Cox NJ, Scharf JM. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet 2013; 9:e1003864. [PMID: 24204291 PMCID: PMC3812053 DOI: 10.1371/journal.pgen.1003864] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.
Collapse
Affiliation(s)
- Lea K. Davis
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Clare L. Keenan
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Eric R. Gamazon
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Anuar I. Konkashbaev
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Eske M. Derks
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Benjamin M. Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jian Yang
- The University of Queensland, Diamantina Institute, Queensland, Australia
- The University of Queensland, Queensland Brain Institute, Queensland, Australia
| | - S. Hong Lee
- The University of Queensland, Queensland Brain Institute, Queensland, Australia
| | - Patrick Evans
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cathy L. Barr
- The Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Fortu Benarroch
- Herman Dana Division of Child and Adolescent Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Oscar J. Bienvenu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael H. Bloch
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rianne M. Blom
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth D. Bruun
- North Shore-Long Island Jewish Medical Center, Manhasset, New York, United States of America
- New York University Medical Center, New York, New York, United States of America
| | - Cathy L. Budman
- North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
- Hofstra University School of Medicine, Hempstead, New York, United States of America
| | - Beatriz Camarena
- Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, Mexico
| | - Desmond Campbell
- University College London, London, United Kingdom
- Department of Psychiatry, University of Hong Kong, Hong Kong, China
| | - Carolina Cappi
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Danielle C. Cath
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical & Health Psychology, Utrecht University, Utrecht, The Netherlands
- Altrecht Academic Anxiety Center, Utrecht, The Netherlands
| | | | - Denise A. Chavira
- Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | | | - David V. Conti
- Department of Preventative Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Edwin H. Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Vladimir Coric
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Bernadette A. Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Fondation Fondamental, French National Science Foundation, Creteil, France
- AP-HP, Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
| | - Yves Dion
- Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Christopher K. Edlund
- Department of Preventative Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University of Munich, Munich, Germany
| | - Thomas V. Fernandez
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Patience J. Gallagher
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Helena Garrido
- Clinica Herrera Amighetti, Avenida Escazú, San José, Costa Rica
| | - Daniel Geller
- OCD Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, Helios-Hospital Stralsund, University Medicine Greifswald, Greifswald, Germany
| | - Marco A. Grados
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Benjamin D. Greenberg
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, Rhode Island, United States of America
| | - Varda Gross-Tsur
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Stephen Haddad
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gary A. Heiman
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sian M. J. Hemmings
- Department of Psychiatry, University of Stellenbosch, Stellenbosch, South Africa
| | - Ana G. Hounie
- Department of Psychiatry, Faculdade de Medicina da Universidade de Säo Paulo, Brazil
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Jenike
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - James L. Kennedy
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert A. King
- Yale Child Study Center, Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Roger Kurlan
- Atlantic Neuroscience Institute, Overlook Hospital, Summit, New Jersey, United States of America
| | | | - Marion Leboyer
- Fondation Fondamental, French National Science Foundation, Creteil, France
- AP-HP, Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
- Institut Mondor de Recherche Biomédicale, Psychiatric Genetics, Créteil, France
| | - James F. Leckman
- Child Study Center, Psychiatry, Pediatrics and Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Leonhard Lennertz
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Chunyu Liu
- Department of Psychiatry, Institute of Human Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Christine Lochner
- MRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, University of Stellenbosch, Stellenbosch, South Africa
| | - Thomas L. Lowe
- Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine (UCI), Irvine, California, United States of America
| | - James T. McCracken
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine (UCI), Irvine, California, United States of America
| | - Lauren M. McGrath
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | | | - Rainald Moessner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Jubel Morgan
- University of Utah, Salt Lake City, Utah, United States of America
| | - Heike Muller
- University College London, London, United Kingdom
| | - Dennis L. Murphy
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, Maryland, United States of America
| | - Allan L. Naarden
- Department of Clinical Research, Medical City Dallas Hospital, Dallas, Texas, United States of America
| | | | - Roel A. Ophoff
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andrew J. Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michele T. Pato
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Carlos N. Pato
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Christopher Pittenger
- Departments of Psychiatry and Psychology and the Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Yehuda Pollak
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Scott L. Rauch
- Partners Psychiatry and McLean Hospital, Boston, Massachusetts, United States of America
| | - Tobias J. Renner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Victor I. Reus
- Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Margaret A. Richter
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mark A. Riddle
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mary M. Robertson
- University College London, London, United Kingdom
- St George's Hospital and Medical School, London, United Kingdom
| | | | - Maria C. Rosàrio
- Child and Adolescent Psychiatry Unit (UPIA), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - David Rosenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University and the Detroit Medical Center, Detroit, Michigan, United States of America
| | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Aline S. Sampaio
- Department of Psychiatry, Faculdade de Medicina da Universidade de Säo Paulo, Brazil
- University Health Care Services - SMURB, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Jack Samuels
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul Sandor
- Department of Psychiatry, University of Toronto and University Health Network, Toronto Western Research Institute and Youthdale Treatment Centers, Toronto, Ontario, Canada
| | - Brooke Sheppard
- Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Harvey S. Singer
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jan H. Smit
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dan J. Stein
- University of Cape Town, Cape Town, South Africa
| | - E. Strengman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jay A. Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | | | - Homero Vallada
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Jeremy Veenstra-VanderWeele
- Departments of Psychiatry, Pediatrics, and Pharmacology, Kennedy Center for Research on Human Development, and Brain Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, University of Würzburg, Würzburg, Germany
| | - Ying Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jens R. Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, Maryland, United States of America
| | - Herman G. M. Westenberg
- Department of Psychiatry, Academic Medical Center and Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Yin Yao Shugart
- Unit on Statistical Genomics, NIMH Intramural Research Program, Bethesda, Maryland, United States of America
| | - Euripedes C. Miguel
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - William McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Humberto Nicolini
- National Institute of Genomic Medicine-SAP, Carracci Medical Group, Mexico City, Mexico
| | - Danielle Posthuma
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU Medical Centre, De Boelelaan, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Gregory L. Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter Heutink
- Section of Medical Genomics, Department of Clinical Genetics, VU University Medical Center Amsterdam, The Netherlands
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Paul D. Arnold
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - David L. Pauls
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Naomi R. Wray
- The University of Queensland, Queensland Brain Institute, Queensland, Australia
| | - S. Evelyn Stewart
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- British Columbia Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol A. Mathews
- Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - James A. Knowles
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nancy J. Cox
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jeremiah M. Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Division of Cognitive and Behavioral Neurology, Brigham and Womens Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Ceritoglu C, Tang X, Chow M, Hadjiabadi D, Shah D, Brown T, Burhanullah MH, Trinh H, Hsu JT, Ament KA, Crocetti D, Mori S, Mostofsky SH, Yantis S, Miller MI, Ratnanather JT. Computational analysis of LDDMM for brain mapping. Front Neurosci 2013; 7:151. [PMID: 23986653 PMCID: PMC3753595 DOI: 10.3389/fnins.2013.00151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/05/2013] [Indexed: 11/13/2022] Open
Abstract
One goal of computational anatomy (CA) is to develop tools to accurately segment brain structures in healthy and diseased subjects. In this paper, we examine the performance and complexity of such segmentation in the framework of the large deformation diffeomorphic metric mapping (LDDMM) registration method with reference to atlases and parameters. First we report the application of a multi-atlas segmentation approach to define basal ganglia structures in healthy and diseased kids' brains. The segmentation accuracy of the multi-atlas approach is compared with the single atlas LDDMM implementation and two state-of-the-art segmentation algorithms-Freesurfer and FSL-by computing the overlap errors between automatic and manual segmentations of the six basal ganglia nuclei in healthy subjects as well as subjects with diseases including ADHD and Autism. The high accuracy of multi-atlas segmentation is obtained at the cost of increasing the computational complexity because of the calculations necessary between the atlases and a subject. Second, we examine the effect of parameters on total LDDMM computation time and segmentation accuracy for basal ganglia structures. Single atlas LDDMM method is used to automatically segment the structures in a population of 16 subjects using different sets of parameters. The results show that a cascade approach and using fewer time steps can reduce computational complexity as much as five times while maintaining reliable segmentations.
Collapse
Affiliation(s)
- Can Ceritoglu
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | - Xiaoying Tang
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | - Margaret Chow
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | - Darian Hadjiabadi
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | - Damish Shah
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | - Timothy Brown
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | | | - Huong Trinh
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
| | - John T. Hsu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Katarina A. Ament
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger InstituteBaltimore, MD, USA
| | - Deana Crocetti
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger InstituteBaltimore, MD, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Stewart H. Mostofsky
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger InstituteBaltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Psychiatry, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Steven Yantis
- Department of Psychological and Brain Sciences, The Johns Hopkins UniversityBaltimore, MD, USA
| | - Michael I. Miller
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Computational Medicine, The Johns Hopkins UniversityBaltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimore, MD, USA
| | - J. Tilak Ratnanather
- Center for Imaging Science, The Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Computational Medicine, The Johns Hopkins UniversityBaltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
21
|
Neuner I, Schneider F, Shah NJ. Functional Neuroanatomy of Tics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:35-71. [DOI: 10.1016/b978-0-12-411546-0.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
22
|
Microstructure assessment of grey matter nuclei in adult tourette patients by diffusion tensor imaging. Neurosci Lett 2011; 487:22-6. [DOI: 10.1016/j.neulet.2010.09.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 01/18/2023]
|
23
|
Draganski B, Martino D, Cavanna AE, Hutton C, Orth M, Robertson MM, Critchley HD, Frackowiak RS. Multispectral brain morphometry in Tourette syndrome persisting into adulthood. ACTA ACUST UNITED AC 2010; 133:3661-75. [PMID: 21071387 PMCID: PMC2995885 DOI: 10.1093/brain/awq300] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change.
Collapse
Affiliation(s)
- Bogdan Draganski
- Département des Neurosciences Cliniques, CHUV, University of Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Miller AM, Bansal R, Hao X, Sanchez-Pena JP, Sobel LJ, Liu J, Xu D, Zhu H, Chakravarty MM, Durkin K, Ivanov I, Plessen KJ, Kellendonk CB, Peterson BS. Enlargement of thalamic nuclei in Tourette syndrome. ACTA ACUST UNITED AC 2010; 67:955-64. [PMID: 20819989 DOI: 10.1001/archgenpsychiatry.2010.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The basal ganglia and thalamus together connect in parallel closed-loop circuits with the cortex. Previous imaging studies have shown modifications of the basal ganglia and cortical targets in individuals with Tourette syndrome (TS), but less is known regarding the role of the thalamus in TS pathogenesis. OBJECTIVE To study the morphological features of the thalamus in children and adults with TS. DESIGN A cross-sectional, case-control study using anatomical magnetic resonance imaging. SETTING University research center. PARTICIPANTS The 283 participants included 149 with TS and 134 normal control individuals aged 6 to 63 years. MAIN OUTCOME MEASURES Conventional volumes and measures of surface morphology of the thalamus. RESULTS Analyses of conventional volumes and surface morphology were consistent in demonstrating an enlargement in TS-affected thalami. Overall volumes were 5% larger in the group composed of children and adults with TS. Statistical maps of surface contour demonstrated enlargement over the lateral thalamus. Post hoc testing indicated that differences in IQ, comorbid illnesses, and medication use did not account for these findings. CONCLUSIONS Morphological abnormalities in the thalamus, together with the disturbances reported in the sensorimotor cortex, striatum, and globus pallidus, support the hypothesis of a circuitwide disorder within motor pathways in TS. The connectivity and function of the numerous and diverse thalamic nuclei within cortical-subcortical circuits constitute an anatomical crossroad wherein enlargement of motor nuclei may represent activity-dependent hypertrophy within this component of cortical-subcortical motor circuits, or an adaptive response within a larger putative compensatory system that could thereby directly modulate activity in motor circuits to attenuate the severity of tics.
Collapse
Affiliation(s)
- Ann M Miller
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mamah D, Conturo TE, Harms MP, Akbudak E, Wang L, McMichael AR, Gado MH, Barch DM, Csernansky JG. Anterior thalamic radiation integrity in schizophrenia: a diffusion-tensor imaging study. Psychiatry Res 2010; 183:144-50. [PMID: 20619618 PMCID: PMC3887223 DOI: 10.1016/j.pscychresns.2010.04.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 03/30/2010] [Accepted: 04/26/2010] [Indexed: 11/26/2022]
Abstract
The anterior limb of the internal capsule (ALIC) is a white matter structure, the medial portion of which includes the anterior thalamic radiation (ATR) carrying nerve fibers between thalamus and prefrontal cortex. ATR abnormalities have a possible link with cognitive abnormalities and negative symptoms in schizophrenia. We aimed to study the fiber integrity of the ATR more selectively by isolating the medial portion of the ALIC using region-of-interest based methodology. Diffusion-tensor imaging was used to measure the anisotropy of total ALIC (tALIC) and medial ALIC (mALIC) in 39 schizophrenia and 33 control participants, matched for age/gender/handedness. Relationships between anisotropy, psychopathology, and cognitive performance were analyzed. Compared with controls, schizophrenia participants had 4.55% lower anisotropy in right tALIC, and 5.38% lower anisotropy in right mALIC. There were no significant group anisotropy differences on the left. Significant correlations were observed between right ALIC integrity and relevant domains of cognitive function (e.g., executive function, working memory). Our study suggests an asymmetric microstructural change in ALIC in schizophrenia involving the right side, which is only minimally stronger in mALIC, and which correlates with cognitive impairment. Microstructural changes in the ALIC may be linked to cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - Thomas E. Conturo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Erbil Akbudak
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amanda R. McMichael
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Mokhtar H. Gado
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri,Department of Psychology, Washington University School of Medicine, St. Louis, Missouri
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
26
|
|
27
|
Somatosensory–motor bodily representation cortical thinning in Tourette: Effects of tic severity, age and gender. Cortex 2010; 46:750-60. [DOI: 10.1016/j.cortex.2009.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/27/2009] [Accepted: 06/10/2009] [Indexed: 11/23/2022]
|
28
|
Qiu A, Adler M, Crocetti D, Miller MI, Mostofsky SH. Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 2010; 49:539-51, 551.e1-4. [PMID: 20494264 DOI: 10.1016/j.jaac.2010.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/05/2010] [Accepted: 03/03/2010] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association with behavioral features of ASD, which may involve multiple frontal-subcortical circuits. METHOD Basal ganglia were manually delineated from MR images of 32 boys with ASD and 45 typically developing (TD) boys. Large deformation diffeomorphic metric mapping (LDDMM) was used to assess between-group differences in basal ganglia shape and to examine associations with motor, praxis, and reciprocal social and communicative impairments in ASD. RESULTS Boys with ASD showed changes in right basal ganglia shape as compared with TD boys; surface deformation was present in the caudate, putamen, and globus pallidus but did not stand up to correction for multiple comparisons. Brain-behavior correlation findings were more robust; analyses accounting for multiple comparisons revealed, in boys with ASD, surface inward deformation of the right posterior putamen predicted poorer motor skill, whereas surface inward deformation of the bilateral anterior and posterior putamen predicted poorer praxis. Surface outward deformation in the bilateral medial caudate head predicted greater reciprocal social and communicative impairment. CONCLUSIONS Motor, social, and communicative impairments in boys with ASD are associated with shape abnormalities in the basal ganglia. The findings suggest abnormalities within parallel frontal-subcortical circuits are differentially associated with impaired acquisition of motor and reciprocal social and communicative skills in ASD.
Collapse
Affiliation(s)
- Anqi Qiu
- Division of Bioengineering and Clinical Imaging Research Center, National University of Singapore and Singapore Institute for Clinical Sciences, Singapore.
| | | | | | | | | |
Collapse
|
29
|
Roessner V, Overlack S, Baudewig J, Dechent P, Rothenberger A, Helms G. No brain structure abnormalities in boys with Tourette's syndrome: a voxel-based morphometry study. Mov Disord 2010; 24:2398-403. [PMID: 19890999 DOI: 10.1002/mds.22847] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Morphometric findings in Tourette's syndrome (TS) are still inconsistent probably due to differences in analysis approaches as well as several confounders (coexisting psychiatric conditions, medication status, etc.). Our aim was to identify possible morphometric changes in a well-defined sample of drug-naïve boys with "pure" TS. High-resolution structural magnetic resonance images of 38 boys with TS were compared with those of 38 healthy boys matched for age and IQ using voxel-based morphometry (VBM). Coexisting psychiatric conditions and previous medication were excluded. The inclusion of 10- to 15-year-old boys minimized the well known compensatory changes due to tic suppression over many years. VBM analyses revealed no differences between the treatment naïve boys with "pure" TS and healthy controls. Brain morphology is not altered in boys with "pure" TS. Further studies should reveal whether previous findings might be ascribed to confounding factors like coexisting psychiatric conditions or long-term compensatory mechanisms due to voluntary tic suppression.
Collapse
Affiliation(s)
- Veit Roessner
- Department of Child and Adolescent Psychiatry, University Medical Center, University of Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Imaging evidence for anatomical disturbances and neuroplastic compensation in persons with Tourette syndrome. J Psychosom Res 2009; 67:559-73. [PMID: 19913660 PMCID: PMC4283588 DOI: 10.1016/j.jpsychores.2009.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/03/2009] [Accepted: 07/09/2009] [Indexed: 01/18/2023]
Abstract
BACKGROUND Tourette syndrome (TS) is a disorder of chronic motor and vocal tics that begins in childhood. METHODS A systematic Medline search was conducted to identify existing anatomical imaging studies in persons with TS. RESULTS Thirty studies were identified, and their methods and findings were reviewed. Findings of reduced caudate volumes across the life span and thinning of sensorimotor cortices that is proportional with tic severity in children with TS implicate these regions in the genesis of tics. Hypertrophy of limbic and prefrontal cortices and a smaller corpus callosum accompany fewer symptoms in children with TS, likely representing an activity-dependent plasticity within these regions that help to modulate tic severity. CONCLUSION Although existing studies differ with respect to sample size, gender composition, quality of clinical characterization, pulse sequences, and methods of image analysis, the preponderance of evidence suggests that disturbances in the development of the motor portions of cortical-subcortical circuits likely predispose to the development TS and that neuroplastic changes in control systems of the brain help to modulate the severity of symptom expression. These findings from cross-sectional studies require confirmation in more representative populations within longitudinal studies.
Collapse
|
31
|
Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer's disease. Neuroimage 2009; 49:1-8. [PMID: 19744568 DOI: 10.1016/j.neuroimage.2009.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/18/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is associated with neuronal loss not only in the hippocampus and amygdala but also in the thalamus. Anterodorsal, centromedial, and pulvinar nuclei are the main sites of degeneration in AD. Here we combined shape analysis and diffusion tensor imaging (DTI) tractography to study degeneration in AD in the thalamus and its connections. Structural and diffusion tensor MRI scans were obtained from 16 AD patients and 22 demographically similar healthy volunteers. The thalamus, hippocampus, and amygdala were automatically segmented using our locally developed algorithm, and group comparisons were carried out for each surface vertex. We also employed probabilistic diffusion tractography to obtain connectivity measures between individual thalamic voxels and hippocampus/amygdala voxels and to segment the internal medullary lamina (IML). Shape analysis showed significant bilateral regional atrophy in the dorsal-medial part of the thalamus in AD patients compared to controls. Probabilistic tractography demonstrated that these regions are mainly connected with the hippocampus, temporal, and prefrontal cortex. Intrathalamic FA comparisons showed reductions in the anterodorsal region of thalamus. Intrathalamic tractography from this region revealed that the IML was significantly smaller in AD patients than in controls. We suggest that these changes can be attributed to the degeneration of the anterodorsal and intralaminar nuclei, respectively. In addition, based on previous neuropathological reports, ventral and dorsal-medial shape change in the thalamus in AD patients is likely to be driven by IML atrophy. This combined shape and connectivity analysis provides MRI evidence of regional thalamic degeneration in AD.
Collapse
|
32
|
Wang L, Khan A, Csernansky JG, Fischl B, Miller MI, Morris JC, Beg MF. Fully-automated, multi-stage hippocampus mapping in very mild Alzheimer disease. Hippocampus 2009; 19:541-8. [PMID: 19405129 DOI: 10.1002/hipo.20616] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Landmark-based high-dimensional diffeomorphic maps of the hippocampus (although accurate) is highly-dependent on rater's anatomic knowledge of the hippocampus in the magnetic resonance images. It is therefore vulnerable to rater drift and errors if substantial amount of effort is not spent on quality assurance, training, and re-training. A fully-automated, FreeSurfer-initialized large-deformation diffeomorphic metric mapping procedure of small brain substructures, including the hippocampus, has been previously developed and validated in small samples. In this report, we demonstrate that this fully-automated pipeline can be used in place of the landmark-based procedure in a large-sample clinical study to produce similar statistical outcomes. Some direct comparisons of the two procedures are also presented.
Collapse
Affiliation(s)
- Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Albin RL, Koeppe RA, Wernette K, Zhuang W, Nichols T, Kilbourn MR, Frey KA. Striatal [11C]dihydrotetrabenazine and [11C]methylphenidate binding in Tourette syndrome. Neurology 2009; 72:1390-6. [PMID: 19380698 DOI: 10.1212/wnl.0b013e3181a187dd] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Tourette syndrome (TS) is a common neurodevelopmental disorder marked by tics and behavioral comorbidities. Clinical pharmacology suggests that dopaminergic signaling abnormalities are part of the pathophysiology of TS. Prior molecular imaging studies of nigrostriatal dopaminergic terminal markers report conflicting results. Our goal was to characterize the distribution of nigrostriatal dopaminergic terminals in subjects with TS. METHODS Thirty-three adult subjects with TS were studied with PET using [11C]dihydrotetrabenazine (DTBZ), a ligand for the type 2 vesicular monoamine transporter, and with [11C] methylphenidate (MP), a ligand for the plasmalemmal dopamine transporter. Subjects were characterized with standard rating instruments for tic severity, obsessive-compulsive behaviors, and attentional deficits. RESULTS We found no differences between subjects with TS and control subjects in DTBZ and MP binding in any striatal region. There was no correlation between binding measures and clinical variables. Ventral striatal DTBZ and MP binding distributions in subjects with TS were normal. CONCLUSIONS We found no evidence of increased striatal dopaminergic innervation in Tourette syndrome (TS). Discrepancy between our present results and those of other studies may be explained by heterogeneity of TS.
Collapse
Affiliation(s)
- R L Albin
- Geriatrics Research, Education, and Clinical Center, Ann Arbor VAMC, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Qiu A, Wang L, Younes L, Harms MP, Ratnanather JT, Miller MI, Csernansky JG. Neuroanatomical asymmetry patterns in individuals with schizophrenia and their non-psychotic siblings. Neuroimage 2009; 47:1221-9. [PMID: 19481156 DOI: 10.1016/j.neuroimage.2009.05.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/12/2009] [Accepted: 05/20/2009] [Indexed: 01/03/2023] Open
Abstract
Neuroanatomical endophenotypes may reveal insights into the processes by which genetic factors increase the risk of developing schizophrenia. To determine whether patterns of neuroanatomical asymmetries may be useful as schizophrenia-related endophenotypes, we compared patterns of structural asymmetries in patients with schizophrenia, healthy controls, and their respective siblings. The surfaces of the left and right amygdala, hippocampus, thalamus, caudate nucleus, putamen, globus pallidus, and nucleus accumbens were assessed in 40 pairs of healthy comparison controls (CON) and their siblings (CON-SIB) and 25 pairs of patients with schizophrenia (SCZ) and their siblings (SCZ-SIB) in magnetic resonance (MR) images using large deformation diffeomorphic metric mapping (LDDMM) and parallel transport techniques. The within-subject asymmetry deformation of each structure was first measured via LDDMM, and then translated to a global template via parallel transport for evaluation of the patterns of asymmetry both within and across siblings. Our results revealed that asymmetries observed in CON subjects occurred in the amygdala and the anterior segment of the hippocampus with more pronounced expansion deformation in the right-sided structures (R>L asymmetry) but not in the basal ganglia and thalamus. Disturbance in this pattern of asymmetries was observed in both SCZ and SCZ-SIB subjects. More specifically, exaggerations and reductions in the normative pattern of asymmetries were observed in the amygdala-hippocampus formation, basal ganglia, and thalamus. These altered patterns of asymmetries are present in subjects with schizophrenia and their siblings, and therefore may represent a schizophrenia-related endophenotype.
Collapse
Affiliation(s)
- Anqi Qiu
- Division of Bioengineering, National University of Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang L, Mamah D, Harms MP, Karnik M, Price JL, Gado MH, Thompson PA, Barch DM, Miller MI, Csernansky JG. Progressive deformation of deep brain nuclei and hippocampal-amygdala formation in schizophrenia. Biol Psychiatry 2008; 64:1060-8. [PMID: 18814865 PMCID: PMC2855119 DOI: 10.1016/j.biopsych.2008.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND Progressive decreases in cortical gray matter volume have been reported in schizophrenia. However, studies of progressive change in deep brain nuclei and hippocampal-amygdala formation have not yielded consistent findings. METHODS Two high-resolution, T1-weighted magnetic resonance images were collected 2 years apart in 56 schizophrenia and 62 control subjects. Large-deformation high-dimensional brain mapping was used to generate surfaces for deep brain nuclei and hippocampal-amygdala formation at baseline and follow-up. Repeated-measures analysis of variance was used to test for longitudinal changes in volume and shape. RESULTS The pattern of progressive changes in the deep brain nuclei and hippocampal-amygdala formation in schizophrenia and control subjects was variable. Of the structures that receive direct projections from the cortex, the thalamus, caudate nucleus, nucleus accumbens, and hippocampus showed changes specific to subjects with schizophrenia, and changes in the amygdala and putamen were similar in both groups. Although different at baseline, no progressive change was observed in the globus pallidus, which does not receive direct projections from the cortex. CONCLUSIONS These findings suggest that the disease process of schizophrenia is associated with progressive effects on brain structure and that brain structures that receive direct, excitatory connections from the cortex may be more likely to show progressive changes, compared with brain structures that receive indirect, inhibitory connections from the cortex. These findings are also somewhat consistent with the hypothesis that overactivity of excitatory pathways in the brain may contribute to the neural degeneration that occurs in at least a subgroup of individuals with schizophrenia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Validation of alternating Kernel mixture method: application to tissue segmentation of cortical and subcortical structures. J Biomed Biotechnol 2008; 2008:346129. [PMID: 18695738 PMCID: PMC2495022 DOI: 10.1155/2008/346129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 02/28/2008] [Accepted: 06/25/2008] [Indexed: 11/18/2022] Open
Abstract
This paper describes the application of the alternating Kernel mixture (AKM) segmentation algorithm to high resolution MRI subvolumes acquired from a 1.5T scanner (hippocampus, n = 10 and prefrontal cortex, n = 9) and a 3T scanner (hippocampus, n = 10 and occipital lobe, n = 10). Segmentation of the subvolumes into cerebrospinal fluid, gray matter, and white matter tissue is validated by comparison with manual segmentation. When compared with other segmentation methods that use traditional Bayesian segmentation, AKM yields smaller errors (P < .005, exact Wilcoxon signed rank test) demonstrating the robustness and wide applicability of AKM across different structures. By generating multiple mixtures for each tissue compartment, AKM mimics the increased variation of manual segmentation in partial volumes due to the highly folded tissues. AKM's superior performance makes it useful for tissue segmentation of subcortical and cortical structures in large-scale neuroimaging studies.
Collapse
|
37
|
Abstract
As a result of clinical, epidemiological, neuroimaging, and therapy studies that took place in the late 1980s, obsessive-compulsive disorder (OCD) has been well-characterized in the field of anxiety disorders. Other disorders attracted attention for their similarities to OCD, and were located in the orbit of the disorder. OCD has become known as the "primary domain" of a scientific "metaphor" comprising the putative cluster of OCD-related disorders (OCRDs). It is a "paradigm" with which to explore basal ganglia dysfunction. The OCRDs share common phenomenology, comorbidities, lifetime course, demographics, possible genetics, and frontostriatal dysfunction (particularly caudate hyperactivity.) The adoption of this metaphor analogy has proven useful. However, 15 years since its emergence, the spectrum of obsessive-compulsive disorders remains controversial. Questions under debate include whether OCD is a unitary or split condition, whether it is an anxiety disorder, and whether there exists only one spectrum or several possible spectrums. Further work is needed to clarify obsessive-compulsive symptoms, subtypes, and endophenotypes. There is need to integrate existing databases, better define associated symptom domains, and create a more comprehensive endophenotyping protocol for OCRDs. There is also a need to integrate biological and psychological perspectives, concepts, and data to drive this evolution. By increasing research in this field, the OCD spectrum may evolve from a fragmented level of conceptualization as a "metaphor" to one that is more comprehensive and structured.
Collapse
|
38
|
Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biol Psychiatry 2008; 64:111-20. [PMID: 18295189 PMCID: PMC2486271 DOI: 10.1016/j.biopsych.2008.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/10/2007] [Accepted: 01/04/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Abnormalities of basal ganglia structure in schizophrenia have been attributed to the effects of antipsychotic drugs. Our aim was to test the hypothesis that abnormalities of basal ganglia structure are intrinsic features of schizophrenia by assessing basal ganglia volume and shape in the unaffected siblings of schizophrenia subjects. METHOD The study involved 25 pairs of schizophrenia subjects and their unaffected siblings and 40 pairs of healthy control subjects and their siblings. Large-deformation, high-dimensional brain mapping was used to obtain surface representations of the caudate, putamen, and globus pallidus. Surfaces were derived from transformations of anatomic templates, and shapes were analyzed using reduced-dimensional measures of surface variability (i.e., principal components and canonical analysis). Canonical functions were derived using schizophrenia and control groups and were then used to compare shapes in the sibling groups. To visualize shape differences, maps of the estimated surface displacement between groups were created. RESULTS In the caudate, putamen, and globus pallidus, the degree of shape abnormality observed in the siblings of the schizophrenia subjects was intermediate between the schizophrenia and control subjects. In the schizophrenia subjects, significant correlations were observed between measures of caudate, putamen, and globus pallidus structure and the selected measures of lifetime psychopathology. CONCLUSIONS Attenuated abnormalities of basal ganglia structure are present in the unaffected siblings of schizophrenia subjects. This finding implies that basal ganglia structural abnormalities observed in subjects with schizophrenia are at least in part an intrinsic feature of the illness.
Collapse
|
39
|
FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping. Neuroimage 2008; 41:735-46. [PMID: 18455931 DOI: 10.1016/j.neuroimage.2008.03.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/20/2022] Open
Abstract
Fully-automated brain segmentation methods have not been widely adopted for clinical use because of issues related to reliability, accuracy, and limitations of delineation protocol. By combining the probabilistic-based FreeSurfer (FS) method with the Large Deformation Diffeomorphic Metric Mapping (LDDMM)-based label-propagation method, we are able to increase reliability and accuracy, and allow for flexibility in template choice. Our method uses the automated FreeSurfer subcortical labeling to provide a coarse-to-fine introduction of information in the LDDMM template-based segmentation resulting in a fully-automated subcortical brain segmentation method (FS+LDDMM). One major advantage of the FS+LDDMM-based approach is that the automatically generated segmentations generated are inherently smooth, thus subsequent steps in shape analysis can directly follow without manual post-processing or loss of detail. We have evaluated our new FS+LDDMM method on several databases containing a total of 50 subjects with different pathologies, scan sequences and manual delineation protocols for labeling the basal ganglia, thalamus, and hippocampus. In healthy controls we report Dice overlap measures of 0.81, 0.83, 0.74, 0.86 and 0.75 for the right caudate nucleus, putamen, pallidum, thalamus and hippocampus respectively. We also find statistically significant improvement of accuracy in FS+LDDMM over FreeSurfer for the caudate nucleus and putamen of Huntington's disease and Tourette's syndrome subjects, and the right hippocampus of Schizophrenia subjects.
Collapse
|
40
|
Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 2008; 27:13835-42. [PMID: 18077695 DOI: 10.1523/jneurosci.2571-07.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deficits in the volume of the thalamus have been observed in both individuals with schizophrenia and their nonpsychotic relatives. However, no studies to date have examined the underlying pattern of thalamic shape change in relatives of individuals with schizophrenia. This study examined the volume and shape of the thalamus in schizophrenia subjects, their siblings, and healthy control individuals. T1-weighted magnetic resonance scans were collected in a group of young subjects with schizophrenia (mean age, 23 years) and their nonpsychotic siblings (n = 25 pairs), and control subjects and their siblings (n = 40 pairs). Thalamic surfaces were generated using high-dimensional brain mapping. A canonical weighting function was derived from the contrast between schizophrenia and control subjects and then used to generate a canonical shape score for all subjects. Maps of the estimated surface displacement between groups were also created to visualize the thalamic shape differences between groups. The thalamic canonical scores of the siblings of the schizophrenia probands were intermediate between the probands and healthy control subjects. These siblings also displayed an intermediate degree of the inward surface deformation of the anterior and posterior thalamus that was present between schizophrenia probands and controls. There was no main effect of group status on thalamic volume and no significant correlations of the structural measures with measures of psychopathology or cognitive function. Our results indicate that thalamic shape abnormalities are present in relatively young individuals with schizophrenia and their siblings. Inward deformation of the anterior and posterior regions of the thalamus represents a potential neuroanatomical endophenotype of schizophrenia.
Collapse
|