1
|
Xiao Y, Xiang W, Ma X, Zheng A, Rong D, Zhang N, Yang N, Bayram H, Lorimer GH, Wang J. Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism. J Appl Toxicol 2024. [PMID: 39701085 DOI: 10.1002/jat.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD. However, research on the mechanism of environmental factors and ASD is still in its infancy. On this basis, we conducted a literature search and analysis to review epidemiological studies on the correlation between fine particulate matter (PM2.5) and inhalable particulate matter (PM10) and ASD. The signaling pathways and pathogenic mechanisms of PM in synaptic injury and neuroinflammation are presented, and the mechanism of the ASD candidate gene SHANK3 was reviewed. Additionally, the different sites of action of different particles in animal models and humans were highlighted, and the differences of their effects on the pathogenesis of ASD were explained. We summarized the aetiology and mechanisms of PM-induced autism and look forward to future research breakthroughs in improved assessment methods, multidisciplinary alliances and high-tech innovations.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Aijia Zheng
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Nimeng Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland, USA
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
3
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
5
|
Savage K, Sarris J, Hughes M, Bousman CA, Rossell S, Scholey A, Stough C, Suo C. Neuroimaging Insights: Kava's ( Piper methysticum) Effect on Dorsal Anterior Cingulate Cortex GABA in Generalized Anxiety Disorder. Nutrients 2023; 15:4586. [PMID: 37960239 PMCID: PMC10649338 DOI: 10.3390/nu15214586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Generalised Anxiety Disorder (GAD) is a prevalent, chronic mental health disorder. The measurement of regional brain gamma-aminobutyric acid (GABA) offers insight into its role in anxiety and is a potential biomarker for treatment response. Research literature suggests Piper methysticum (Kava) is efficacious as an anxiety treatment, but no study has assessed its effects on central GABA levels. This study investigated dorsal anterior cingulate (dACC) GABA levels in 37 adult participants with GAD. GABA was measured using proton magnetic resonance spectroscopy (1H-MRS) at baseline and following an eight-week administration of Kava (standardised to 120 mg kavalactones twice daily) (n = 20) or placebo (n = 17). This study was part of the Kava for the Treatment of GAD (KGAD; ClinicalTrials.gov: NCT02219880), a 16-week intervention study. Compared with the placebo group, the Kava group had a significant reduction in dACC GABA (p = 0.049) at eight weeks. Baseline anxiety scores on the HAM-A were positively correlated with GABA levels but were not significantly related to treatment. Central GABA reductions following Kava treatment may signal an inhibitory effect, which, if considered efficacious, suggests that GABA levels are modulated by Kava, independent of reported anxiety symptoms. dACC GABA patterns suggest a functional role of higher levels in clinical anxiety but warrants further research for symptom benefit. Findings suggest that dACC GABA levels previously un-examined in GAD could serve as a biomarker for diagnosis and treatment response.
Collapse
Affiliation(s)
- Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, 427-451 Burwood Road, Melbourne 3122, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne University, Melbourne 3121, Australia
| | - Jerome Sarris
- Florey Institute of Neuroscience and Mental Health, Melbourne University, Melbourne 3121, Australia
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia
| | - Matthew Hughes
- Centre for Mental Health, Swinburne University of Technology, Melbourne 3122, Australia
| | - Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne 3122, Australia
- Mental Health, St Vincent’s Hospital Melbourne, Melbourne 3065, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, 427-451 Burwood Road, Melbourne 3122, Australia
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne 3168, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, 427-451 Burwood Road, Melbourne 3122, Australia
| | - Chao Suo
- Brain Park, Turner Institute of Brain and Mind, Monash University, Melbourne 3800, Australia
| |
Collapse
|
6
|
Zemestani M, Hoseinpanahi O, Salehinejad MA, Nitsche MA. The impact of prefrontal transcranial direct current stimulation (tDCS) on theory of mind, emotion regulation and emotional-behavioral functions in children with autism disorder: A randomized, sham-controlled, and parallel-group study. Autism Res 2022; 15:1985-2003. [PMID: 36069668 DOI: 10.1002/aur.2803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Advances in our knowledge about the neuropsychological mechanisms underlying core deficits in autism spectrum disorder (ASD) have produced several novel treatment modalities. One of these approaches is modulation of activity of the brain regions involved in ASD symptoms. This study examined the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) on autism symptom severity, theory of mind, emotion regulation strategies, and emotional-behavioral functions in children with ASD. Thirty-two children (Mage = 10.16, SD = 1.93, range 7-12 years) diagnosed with ASD were randomly assigned to active (N = 17) or sham stimulation (N = 15) groups in a randomized, sham-controlled, parallel-group design. Participants underwent 10 sessions of active (1.5 mA, 15 min, bilateral left anodal/right cathodal DLPFC, 2 sessions per week) or sham tDCS. Autism symptom severity, theory of mind, emotion regulation strategies, and emotional-behavioral functioning of the patients were assessed at baseline, immediately after the intervention, and 1 month after the intervention. A significant improvement of autism symptom severity (i.e., communication), theory of mind (i.e., ToM 3), and emotion regulation strategies was observed for the active as compared to the sham stimulation group at the end of the intervention, and these effects were maintained at the one-month follow-up. The results suggest that repeated tDCS with anodal stimulation of left and cathodal stimulation of right DLPFC improves autism symptom severity as well as social cognition and emotion regulation in ASD.
Collapse
Affiliation(s)
- Mehdi Zemestani
- Department of Psychology, University of Kurdistan, Sanandaj, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
7
|
Maier S, Düppers AL, Runge K, Dacko M, Lange T, Fangmeier T, Riedel A, Ebert D, Endres D, Domschke K, Perlov E, Nickel K, Tebartz van Elst L. Increased prefrontal GABA concentrations in adults with autism spectrum disorders. Autism Res 2022; 15:1222-1236. [PMID: 35587691 DOI: 10.1002/aur.2740] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
The excitatory-inhibitory imbalance hypothesis postulates dysregulation of the gamma-aminobutyric acid (GABA) and glutamate (Glu) neurotransmitter systems as a common underlying deficit in individuals with autism spectrum disorders (ASD). Previous studies suggest an important role of these systems in the pathophysiology of ASD, including a study of our group reporting decreased glutamate concentrations in the pregenual anterior cingulate cortex (ACC) of adults with ASD. The aim of this study was to replicate our previous findings of impaired glutamate metabolism in ASD in a new sample and to additionally quantify GABA in the ACC and dorsolateral prefrontal cortex (dlPFC). Concentrations of GABA and glutamate-glutamine (Glx; combined glutamate and glutamine signal) were quantified in the ACC and dlPFC of 43 adults with ASD and 43 neurotypical controls (NTC) by magnetic resonance spectroscopy (MRS). The ASD group showed increased absolute GABA concentrations and elevated GABA/creatine ratios in the left dlPFC compared to NTC, while no group differences were detected in the pregenual and dorsal ACC. Previous findings of altered Glx concentration in the pregenual ACC of the ASD group could not be replicated. Regarding Glx concentrations and Glx/creatine ratios, there were no significant differences in the dlPFC and ACC either. The study supports the hypothesis of an altered GABA and glutamate equilibrium, indicating an imbalance between excitatory and inhibitory metabolism in ASD patients. However, inconsistent results across studies and brain regions suggest a complex underlying phenomenon. LAY SUMMARY: Adults of the autism spectrum exhibit elevated levels of the inhibitory neurotransmitter GABA in the left dorsolateral prefrontal cortex. This finding supports the hypothesis of an imbalance between excitatory and inhibitory equilibrium in patients with autism spectrum disorders.
Collapse
Affiliation(s)
- Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dacko
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Fangmeier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Luzerner Psychiatrie, Ambulante Dienste, Luzern, Switzerland
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinic for Psychiatry Luzern, Hospital St. Urban, St. Urban, Switzerland
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
James D, Lam VT, Jo B, Fung LK. Region-specific associations between gamma-aminobutyric acid A receptor binding and cortical thickness in high-functioning autistic adults. Autism Res 2022; 15:1068-1082. [PMID: 35261207 DOI: 10.1002/aur.2703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Abstract
The neurobiology of autism has been shown to involve alterations in cortical morphology and gamma-aminobutyric acid A (GABAA ) receptor density. We hypothesized that GABAA receptor binding potential (GABAA R BPND ) would correlate with cortical thickness, but their correlations would differ between autistic adults and typically developing (TD) controls. We studied 50 adults (23 autism, 27 TD, mean age of 27 years) using magnetic resonance imaging to measure cortical thickness, and [18 F]flumazenil positron emission tomography imaging to measure GABAA R BPND . We determined the correlations between cortical thickness and GABAA R BPND by cortical lobe, region-of-interest, and diagnosis of autism spectrum disorder (ASD). We also explored potential sex differences in the relationship between cortical thickness and autism characteristics, as measured by autism spectrum quotient (AQ) scores. Comparing autism and TD groups, no significant differences were found in cortical thickness or GABAA R BPND . In both autism and TD groups, a negative relationship between cortical thickness and GABAA R BPND was observed in the frontal and occipital cortices, but no relationship was found in the temporal or limbic cortices. A positive correlation was seen in the parietal cortex that was only significant for the autism group. Interestingly, in an exploratory analysis, we found sex differences in the relationships between cortical thickness and GABAA R BPND , and cortical thickness and AQ scores in the left postcentral gyrus. LAY SUMMARY: The thickness of the brain cortex and the density of the receptors associated with inhibitory neurotransmitter GABA have been hypothesized to underlie the neurobiology of autism. In this study, we found that these biomarkers correlate positively in the parietal cortex, but negatively in the frontal and occipital cortical regions of the brain. Furthermore, we collected preliminary evidence that the correlations between cortical thickness and GABA receptor density are sexdependent in a brain region where sensory inputs are registered.
Collapse
Affiliation(s)
- David James
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Vicky T Lam
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Lawrence K Fung
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Bernardino I, Dionísio A, Violante IR, Monteiro R, Castelo-Branco M. Motor Cortex Excitation/Inhibition Imbalance in Young Adults With Autism Spectrum Disorder: A MRS-TMS Approach. Front Psychiatry 2022; 13:860448. [PMID: 35492696 PMCID: PMC9046777 DOI: 10.3389/fpsyt.2022.860448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Excitatory/inhibitory imbalance has been suggested as a neurobiological substrate of the cognitive symptomatology in Autism Spectrum Disorder (ASD). Studies using magnetic resonance spectroscopy (MRS) attempted to characterize GABA and Glutamate brain levels in ASD. However mixed findings have been reported. Here, we characterize both neurochemical and physiological aspects of GABA system in ASD by implementing a more comprehensive approach combining MRS and transcranial magnetic stimulation (TMS). A group of 16 young ASD adults and a group of 17 controls participated in this study. We employed one MRS session to assess motor cortex GABA+ and Glutamate+Glutamine (Glx) levels using MEGAPRESS and PRESS sequences, respectively. Additionally, a TMS experiment was implemented including paired-pulse (SICI, ICF and LICI), input-output curve and cortical silent period to probe cortical excitability. Our results showed a significantly increased Glx, with unchanged GABA+ levels in the ASD group compared with controls. Single TMS measures did not differ between groups, although exploratory within-group analysis showed impaired inhibition in SICI5ms, in ASD. Importantly, we observed a correlation between GABA levels and measures of the input-output TMS recruitment curve (slope and MEP amplitude) in the control group but not in ASD, as further demonstrated by direct between group comparisons. In this exploratory study, we found evidence of increased Glx levels which may contribute to ASD excitatory/inhibitory imbalance while highlighting the relevance of conducting further larger-scale studies to investigate the GABA system from complementary perspectives, using both MRS and TMS techniques.
Collapse
Affiliation(s)
- Inês Bernardino
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Inês R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
A single- and paired-pulse TMS-EEG investigation of the N100 and long interval cortical inhibition in autism spectrum disorder. Brain Stimul 2021; 15:229-232. [PMID: 34973461 DOI: 10.1016/j.brs.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
|
11
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
12
|
Moxon-Emre I, Daskalakis ZJ, Blumberger DM, Croarkin PE, Lyon RE, Forde NJ, Tani H, Truong P, Lai MC, Desarkar P, Sailasuta N, Szatmari P, Ameis SH. Modulation of Dorsolateral Prefrontal Cortex Glutamate/Glutamine Levels Following Repetitive Transcranial Magnetic Stimulation in Young Adults With Autism. Front Neurosci 2021; 15:711542. [PMID: 34690671 PMCID: PMC8527173 DOI: 10.3389/fnins.2021.711542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Altered excitatory and inhibitory neurotransmission has been implicated in autism spectrum disorder (ASD). Interventions using repetitive transcranial magnetic stimulation (rTMS) to enhance or inhibit cortical excitability are under study for various targets, though the mechanistic effects of rTMS have yet to be examined in ASD. Here, we examined whether an excitatory rTMS treatment course modulates glutamatergic (Glx) or γ-aminobutyric acid (GABA) metabolite levels in emerging adults with ASD. Twenty-eight participants with ASD and executive function impairment [23.3 ± 4.69 years; seven-female] underwent two magnetic resonance spectroscopy (MRS) scans of the left dorsolateral prefrontal cortex (DLPFC). MRS scans were acquired before and after participants with ASD were randomized to receive a 20-session course of active or sham rTMS to the DLPFC. Baseline MRS data was available for 19 typically developing controls [23.8 ± 4.47 years; six-female]. Metabolite levels for Glx and GABA+ were compared between ASD and control groups, at baseline, and metabolite level change, pre-to-post-rTMS treatment, was compared in ASD participants that underwent active vs. sham rTMS. Absolute change in Glx was greater in the active vs. sham-rTMS group [F(1,19) = 6.54, p = 0.02], though the absolute change in GABA+ did not differ between groups. We also examined how baseline metabolite levels related to pre/post-rTMS metabolite level change, in the active vs. sham groups. rTMS group moderated the relation between baseline Glx and pre-to-post-rTMS Glx change, such that baseline Glx predicted Glx change in the active-rTMS group only [b = 1.52, SE = 0.32, t(18) = 4.74, p < 0.001]; Glx levels increased when baseline levels were lower, and decreased when baseline levels were higher. Our results indicate that an interventional course of excitatory rTMS to the DLPFC may modulate local Glx levels in emerging adults with ASD, and align with prior reports of glutamatergic alterations following rTMS. Interventional studies that track glutamatergic markers may provide mechanistic insights into the therapeutic potential of rTMS in ASD. Clinical Trial Registration:Clinicaltrials.gov (ID: NCT02311751), https://clinicaltrials.gov/ct2/show/NCT02311751?term=ameis&rank=1; NCT02311751.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Rachael E Lyon
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie J Forde
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Hideaki Tani
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Szatmari
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie H Ameis
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
13
|
Sapey-Triomphe LA, Temmerman J, Puts NAJ, Wagemans J. Prediction learning in adults with autism and its molecular correlates. Mol Autism 2021; 12:64. [PMID: 34615532 PMCID: PMC8493731 DOI: 10.1186/s13229-021-00470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Background According to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates. Methods Twenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA + and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus). Results Neurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group. Limitations We used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions. Conclusions Autistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00470-6.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium. .,Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium.
| | - Joke Temmerman
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, King's College London, London, SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 8AF, UK
| | - Johan Wagemans
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Mo K, Sadoway T, Bonato S, Ameis SH, Anagnostou E, Lerch JP, Taylor MJ, Lai MC. Sex/gender differences in the human autistic brains: A systematic review of 20 years of neuroimaging research. Neuroimage Clin 2021; 32:102811. [PMID: 34509922 PMCID: PMC8436080 DOI: 10.1016/j.nicl.2021.102811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Our current understanding of autism is largely based on clinical experiences and research involving male individuals given the male-predominance in prevalence and the under-inclusion of female individuals due to small samples, co-occurring conditions, or simply being missed for diagnosis. There is a significantly biased 'male lens' in this field with autistic females insufficiently understood. We therefore conducted a systematic review to examine how sex and gender modulate brain structure and function in autistic individuals. Findings from the past 20 years are yet to converge on specific brain regions/networks with consistent sex/gender-modulating effects. Despite at least three well-powered studies identifying specific patterns of significant sex/gender-modulation of autism-control differences, many other studies are likely underpowered, suggesting a critical need for future investigation into sex/gender-based heterogeneity with better-powered designs. Future research should also formally investigate the effects of gender, beyond biological sex, which is mostly absent in the current literature. Understanding the roles of sex and gender in the development of autism is an imperative step to extend beyond the 'male lens' in this field.
Collapse
Affiliation(s)
- Kelly Mo
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Tara Sadoway
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sarah Bonato
- Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephanie H Ameis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
15
|
Thalamic and prefrontal GABA concentrations but not GABA A receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol Psychiatry 2021; 26:1634-1646. [PMID: 32376999 PMCID: PMC7644591 DOI: 10.1038/s41380-020-0756-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023]
Abstract
The gamma aminobutyric acid (GABA) neurotransmission system has been implicated in autism spectrum disorder (ASD). Molecular neuroimaging studies incorporating simultaneous acquisitions of GABA concentrations and GABAA receptor densities can identify objective molecular markers in ASD. We measured both total GABAA receptor densities by using [18F]flumazenil positron emission tomography ([18F]FMZ-PET) and GABA concentrations by using proton magnetic resonance spectroscopy (1H-MRS) in 28 adults with ASD and 29 age-matched typically developing (TD) individuals. Focusing on the bilateral thalami and the left dorsolateral prefrontal cortex (DLPFC) as our regions of interest, we found no differences in GABAA receptor densities between ASD and TD groups. However, 1H-MRS measurements revealed significantly higher GABA/Water (GABA normalized by water signal) in the left DLPFC of individuals with ASD than that of TD controls. Furthermore, a significant gender effect was observed in the thalami, with higher GABA/Water in males than in females. Hypothesizing that thalamic GABA correlates with ASD symptom severity in gender-specific ways, we stratified by diagnosis and investigated the interaction between gender and thalamic GABA/Water in predicting Autism-Spectrum Quotient (AQ) and Ritvo Autism Asperger's Diagnostic Scale-Revised (RAADS-R) total scores. We found that gender is a significant effect modifier of thalamic GABA/Water's relationship with AQ and RAADS-R scores for individuals with ASD, but not for TD controls. When we separated the ASD participants by gender, a negative correlation between thalamic GABA/Water and AQ was observed in male ASD participants. Remarkably, in female ASD participants, a positive correlation between thalamic GABA/Water and AQ was found.
Collapse
|
16
|
Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, Fitzgerald PB, Enticott PG. Fixel Based Analysis Reveals Atypical White Matter Micro- and Macrostructure in Adults With Autism Spectrum Disorder: An Investigation of the Role of Biological Sex. Front Integr Neurosci 2020; 14:40. [PMID: 32903660 PMCID: PMC7438780 DOI: 10.3389/fnint.2020.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Atypical white matter (WM) microstructure is commonly implicated in the neuropathophysiology of autism spectrum disorder (ASD). Fixel based analysis (FBA), at the cutting-edge of diffusion-weighted imaging, can account for crossing WM fibers and can provide indices of both WM micro- and macrostructure. We applied FBA to investigate WM structure between 25 (12 males, 13 females) adults with ASD and 24 (12 males, 12 females) matched controls. As the role of biological sex on the neuropathophysiology of ASD is of increasing interest, this was also explored. There were no significant differences in WM micro- or macrostructure between adults with ASD and matched healthy controls. When data were stratified by sex, females with ASD had reduced fiber density and cross-section (FDC), a combined metric comprised of micro- and macrostructural measures, in the corpus callosum, a finding not detected between the male sub-groups. We conclude that micro- and macrostructural WM aberrations are present in ASD, and may be influenced by biological sex.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care and Central Clinical School Monash University, Melbourne, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Negative association between left prefrontal GABA concentration and BDNF serum concentration in young adults. Heliyon 2020; 6:e04025. [PMID: 32490241 PMCID: PMC7260440 DOI: 10.1016/j.heliyon.2020.e04025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/31/2019] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The brain's major inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and the brain-derived neurotrophic factor (BDNF) play important roles in several stress-related disorders. Magnetic resonance spectroscopy (MRS) allows for non-invasive quantification of GABA concentration in the brain. We investigated the relationship between GABA concentration in the left dorsolateral prefrontal cortex (DLPFC) and BDNF concentration in the serum in a community-based sample of young subjects. Methods For the GABA measurement a single voxel MR spectrum was assessed in the prefrontal lobe (25 × 40 × 30 mm) using the MEGA-PRESS method in 276 subjects. BDNF serum concentrations were assessed with an ELISA kit. For 147 subjects we had both MRS and BDNF serum data, and for 79 subjects we had genotype data on the BDNF rs6265 polymorphism. Depressive psychopathology was assessed using Beck's Depression Inventory (BDI), Montgomery-Asberg Depression Rating Scale (MADRS) and Structured Clinical Interviews for Diagnostic and Statistical Manual of Mental Disorders (SCID) for DSM-IV. Results GABA concentration in the left DLPFC was negatively associated with BDNF serum concentration (r = -.264, p = .001). This correlation remained significant if corrected for sex (r = -.264, p = .001). BDNF serum concentration was also positively associated with volumes and surface areas of the left prefrontal cortex (p = .048, p = .005). There were no significant associations or interaction with depressive psychopathology (BDI, MADRS, SCID) or rs6265. Conclusion The results of this study suggest that GABA, BDNF and prefrontal brain volumes are interrelated, but do not show a strong association to depressive psychopathology, possibly due to the mild forms of psychiatric conditions present in our community-based sample.
Collapse
|
18
|
Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of Cortical GABA and Glutamate in Young Adults With Autism Spectrum Disorder. Autism Res 2020; 13:1111-1129. [PMID: 32297709 DOI: 10.1002/aur.2300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder, possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evidence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cortex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls. Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysical visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups, with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals. Autism Res 2020, 13: 1111-1129. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectroscopy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism. In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical adults. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Michael-Paul Schallmo
- Department of Psychology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Ruigrok ANV, Lai MC. Sex/gender differences in neurology and psychiatry: Autism. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:283-297. [PMID: 33008532 DOI: 10.1016/b978-0-444-64123-6.00020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Autism is a heterogenous set of early-onset neurodevelopmental conditions that are more prevalent in males than in females. Due to the high phenotypic, neurobiological, developmental, and etiological heterogeneity in the autism spectrum, recent research programs are increasingly exploring whether sex- and gender-related factors could be helpful markers to clarify the heterogeneity in autism and work toward a personalized approach to intervention and support. In this chapter, we summarize recent clinical and neuroscientific research addressing sex/gender influences in autism and explore how sex/gender-based investigations shed light on similar or different underlying neurodevelopmental mechanisms of autism by sex/gender. We review evidence that may help to explain some of the underlying sex-related biological mechanisms associated with autism, including genetics and the effects of sex steroid hormones in the prenatal environment. We conclude that current research points toward coexisting quantitative and, perhaps more evidently, qualitative sex/gender-modulation effects in autism across multiple neurobiological aspects. However, converging findings of specific neurobiological presentations and sex/gender-informed mechanisms cutting across the many subgroups within the autism spectrum are still lacking. Future research should use big data approaches and new stratification methods to decompose sex/gender-related heterogeneity in autism and work toward personalized, sex/gender-informed intervention and support for autistic people.
Collapse
Affiliation(s)
- Amber N V Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Centre for Addiction and Mental Health & The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Port RG, Oberman LM, Roberts TPL. Revisiting the excitation/inhibition imbalance hypothesis of ASD through a clinical lens. Br J Radiol 2019; 92:20180944. [PMID: 31124710 PMCID: PMC6732925 DOI: 10.1259/bjr.20180944] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) currently affects 1 in 59 children, although the aetiology of this disorder remains unknown. Faced with multiple seemingly disparate and noncontiguous neurobiological alterations, Rubenstein and Merzenich hypothesized that imbalances between excitatory and inhibitory neurosignaling (E/I imbalance) underlie ASD. Since this initial statement, there has been a major focus examining this exact topic spanning both clinical and preclinical realms. The purpose of this article is to review the clinical neuroimaging literature surrounding E/I imbalance as an aetiology of ASD. Evidence for E/I imbalance is presented from several complementary clinical techniques including magnetic resonance spectroscopy, magnetoencephalography and transcranial magnetic stimulation. Additionally, two GABAergic potential interventions for ASD, which explicitly attempt to remediate E/I imbalance, are reviewed. The current literature suggests E/I imbalance as a useful framework for discussing the neurobiological etiology of ASD in at least a subset of affected individuals. While not constituting a completely unifying aetiology, E/I imbalance may be relevant as one of several underlying neuropathophysiologies that differentially affect individuals with ASD. Such statements do not diminish the value of the E/I imbalance concept-instead they suggest a possible role for the characterization of E/I imbalance, as well as other underlying neuropathophysiologies, in the biologically-based subtyping of individuals with ASD for potential applications including clinical trial enrichment as well as treatment triage.
Collapse
Affiliation(s)
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Timothy PL Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Ajram LA, Pereira AC, Durieux AMS, Velthius HE, Petrinovic MM, McAlonan GM. The contribution of [1H] magnetic resonance spectroscopy to the study of excitation-inhibition in autism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:236-244. [PMID: 30248378 DOI: 10.1016/j.pnpbp.2018.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) affects over 1:100 of the population and costs the UK more than £32bn and the USA more than $175bn (£104bn) annually. Its core symptoms are social and communication difficulties, repetitive behaviours and sensory hyper- or hypo-sensitivities. A highly diverse phenotypic presentation likely reflects its etiological heterogeneity and makes finding treatment targets for ASD challenging. In addition, there are no means to identify biologically responsive individuals who may benefit from specific interventions. There is hope however, and in this review we consolidate how findings from magnetic resonance spectroscopy (MRS) add to the evidence that differences in the brain's excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) balance may be both a key biomarker and a tractable treatment target in ASD.
Collapse
Affiliation(s)
- Laura A Ajram
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Faculty of Medicine, ICNAS - Institute of Nuclear Sciences Applied to Health, University of Coimbra, Polo 3, 3000-548 Coimbra, Portugal
| | - Alice M S Durieux
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Hester E Velthius
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
22
|
Sapey-Triomphe LA, Lamberton F, Sonié S, Mattout J, Schmitz C. Tactile hypersensitivity and GABA concentration in the sensorimotor cortex of adults with autism. Autism Res 2019; 12:562-575. [PMID: 30632707 DOI: 10.1002/aur.2073] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Sensory hypersensitivity is frequently encountered in autism spectrum disorder (ASD). Gamma-aminobutyric acid (GABA) has been hypothesized to play a role in tactile hypersensitivity. The aim of the present study was twofold. First, as a study showed that children with ASD have decreased GABA concentrations in the sensorimotor cortex, we aimed at determining whether the GABA reduction remained in adults with ASD. For this purpose, we used magnetic resonance spectroscopy to measure GABA concentration in the sensorimotor cortex of neurotypical adults (n = 19) and ASD adults (n = 18). Second, we aimed at characterizing correlations between GABA concentration and tactile hypersensitivity in ASD. GABA concentration in the sensorimotor cortex of adults with ASD was lower than in neurotypical adults (decrease by 17%). Interestingly, GABA concentrations were positively correlated with self-reported tactile hypersensitivity in adults with ASD (r = 0.50, P = 0.01), but not in neurotypical adults. In addition, GABA concentrations were negatively correlated with the intra-individual variation during threshold measurement, both in neurotypical adults (r = -0.47, P = 0.04) and in adults with ASD (r = -0.59, P = 0.01). In other words, in both groups, the higher the GABA level, the more precise the tactile sensation. These results highlight the key role of GABA in tactile sensitivity, and suggest that atypical GABA modulation contributes to tactile hypersensitivity in ASD. We discuss the hypothesis that hypersensitivity in ASD could be due to suboptimal predictions about sensations. Autism Research 2019, 12: 562-575. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: People with autism spectrum disorder (ASD) often experience tactile hypersensitivity. Here, our goal was to highlight a link between tactile hypersensitivity and the concentration of gamma-aminobutyric acid (GABA) (an inhibitory neurotransmitter) in the brain of adults with ASD. Indeed, self-reported hypersensitivity correlated with reduced GABA levels in brain areas processing touch. Our study suggests that this neurotransmitter may play a key role in tactile hypersensitivity in autism.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France.,Laboratory of Experimental Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Franck Lamberton
- SFR East Lyon Health, CNRS UMS 3453, INSERM US7, Lyon 1 University, Lyon, France.,CERMEP, Imagerie du Vivant, Lyon, France
| | - Sandrine Sonié
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France.,Centre de Ressource Autisme Rhône-Alpes, Centre Hospitalier Le Vinatier, Bron, France.,Hôpital Saint-Jean-de-Dieu, Lyon, France
| | - Jérémie Mattout
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Christina Schmitz
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
23
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
24
|
Wang B, Li HH, Yue XJ, Jia FY, DU L. [A review on the role of γ-aminobutyric acid signaling pathway in autism spectrum disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:974-978. [PMID: 30477634 PMCID: PMC7389027 DOI: 10.7499/j.issn.1008-8830.2018.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
The etiology and pathogenesis of autism spectrum disorder (ASD) are not yet clear. Studies have shown that there are many neurotransmitter abnormalities in children with ASD, mainly involving in glutamate, γ-aminobutyric acid (GABA), dopamine, 5-HT and oxytocin. The imbalance of excitatory glutamatergic neurotransmitters and inhibitory GABAergic neurotransmitters is closely related to the pathogenesis of ASD. Both animal model studies and clinical studies on ASD suggest that GABA signaling pathway may play an important role in the pathogenesis of ASD. This article reviews the research on the association between GABA signaling pathway and the pathogenesis of ASD to further explore the pathogenesis of ASD and provide theoretical basis for the treatment of ASD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Developmental and Behaviorial Pediatrics, First Hospital of Jilin University, Changchun 130021, China.
| | | | | | | | | |
Collapse
|