1
|
Herreño-Pachón AM, Sawamoto K, Stapleton M, Khan S, Piechnik M, Álvarez JV, Tomatsu S. Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in Mucopolysaccharidosis IVA Mice. Hum Gene Ther 2024. [PMID: 39450470 DOI: 10.1089/hum.2024.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal congenital metabolic lysosomal disease caused by a deficiency of the N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) gene, leading to severe skeletal dysplasia. The available therapeutics for patients with MPS IVA, enzyme replacement therapy and hematopoietic stem cell transplantation, revealed limitations in the impact of skeletal lesions. Our previous study, a significant leap forward in MPS IVA research, showed that liver-targeted adeno-associated virus (AAV) gene transfer of human GALNS (hGALNS) restored GALNS enzymatic activity in blood and multiple tissues and partially improved the aberrant accumulation of storage materials. This promising approach was further validated in our current study, where we delivered AAV8 vectors expressing hGALNS, under the control of a liver-specific or ubiquitous promoter, into MPS IVA murine disease models. The results were highly encouraging, with both AAV8 vectors leading to supraphysiological enzymatic activity in plasma and improved cytoplasmic vacuolization of chondrocytes in bone lesions of MPS IVA mice. Notably, the ubiquitous promoter constructs, a potential game-changer, resulted in significantly greater enzyme activity levels in bone and improved pathological findings of cartilage lesions in these mice than in a liver-specific one during the 12-week monitoring period, reinforcing the positive outcomes of our research in MPS IVA treatment.
Collapse
Affiliation(s)
- Angélica María Herreño-Pachón
- Nemours Children's Health, Wilmington, Delaware, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, Delaware, USA
| | | | - Molly Stapleton
- Nemours Children's Health, Wilmington, Delaware, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, Delaware, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Lehigh Valley Health Network, 1200 S. Cedar Crest Blvd. Allentown PA 18103
| | - Shaukat Khan
- Nemours Children's Health, Wilmington, Delaware, USA
| | - Matthew Piechnik
- Nemours Children's Health, Wilmington, Delaware, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose Victor Álvarez
- Nemours Children's Health, Wilmington, Delaware, USA
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, Santiago de Compostela, Spain
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, Delaware, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, Delaware, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Jones J, Ali A, Harrison C, Rimoldi G. Radiographic, computed tomographic, and histologic characteristics of bone for clinically normal laying hens in a free-range housing system. Vet Radiol Ultrasound 2024. [PMID: 39360419 DOI: 10.1111/vru.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Laying hens are increasingly being kept in backyard flocks and considered family pets; however, diagnostic imaging characteristics of bone for clinically normal backyard hens are currently limited. This prospective, descriptive study was to describe radiographic, computed tomographic, and histologic characteristics of bone for a group of clinically normal laying hens housed in conditions comparable to those of backyard flocks. Sixteen 60-week-old Lohmann Brown laying hens were included. Hens were housed in a free-range unit with outdoor access at a university research and teaching farm. Hens were defined as clinically normal by the farm manager and a veterinary researcher in laying hen behavior and welfare. Findings from the horizontal beam, left lateral, sternal radiographs (n = 16), postmortem, and whole-body CT scans (n = 4) were recorded by a veterinary radiologist and a research technician. Histologic findings for sternal, femoral, and tibiotarsal bone samples (n = 5) were recorded by a veterinary pathologist. The most frequent radiographic findings for the sternal carina (keel bone) were smoothly marginated concave deviations of the ventral margin and caudal section fractures. Multiple punctate mineral opacities (PMOs) were present in radiographs and CT images for all hens and were involved in the sternal carina and multiple other bones in the axial and appendicular skeleton. No bone abnormalities were identified in any histologic sections where PMOs were radiographically detected. Authors propose that PMOs are normal radiographic and CT findings in the bones of mature, laying hens and may represent temporary calcium reservoirs formed during osteoclastic activities.
Collapse
Affiliation(s)
- Jeryl Jones
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
- South Carolina Translational Research Improving Musculoskeletal Health Center, Clemson University, Clemson, South Carolina, USA
| | - Ahmed Ali
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| | - Cerano Harrison
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| | - Guillermo Rimoldi
- Veterinary Diagnostic Center; College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Anderson MG, Johnson AM, Harrison C, Jones J, Ali A. Influence of perch provision during rearing on activity and musculoskeletal health of pullets. PLoS One 2024; 19:e0307114. [PMID: 39008511 PMCID: PMC11249234 DOI: 10.1371/journal.pone.0307114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Prior research suggests exercise during pullet rearing can mitigate lay-phase bone fractures by strengthening muscles, enhancing balance, and increasing bone mass. This study aimed to confirm that Hy-Line brown pullets with multi-tier perches show increased activity and improved musculoskeletal health. Pullets (n = 810) were randomly allocated to housing systems, either with multi-tier perches (P; n = 15 pens) or without (NP; n = 15 pens), spanning from 0-17 weeks of age. At 5, 11, and 17 weeks, individual birds were meticulously monitored for activity using accelerometers over three consecutive days (n = 90 randomly selected birds/week). At 11 and 17 weeks, 60 birds underwent euthanasia and computed tomography (CT) scans to ascertain tibiotarsal bone mineral density and cross-sectional area measurements. Post-CT scanning, birds were dissected for muscle size, tibiotarsal breaking strength, and tibiotarsal ash percentage measurements. Additionally, serum concentrations of bone-specific alkaline phosphatase and procollagen type 1 N-terminal propeptide were assessed as markers of bone formation (n = 90 birds/week). Pullet group P exhibited heightened vertical activity (P<0.05), with no discernible differences in overall activity (P>0.05) during weeks 5, 11, and 17 compared to group NP. Tibiotarsal bones of P pullets demonstrated superior total and cortical bone mineral density at week 11, alongside increased cortical bone cross-sectional areas and heightened total and cortical bone mineral densities at week 17 (P<0.05) compared to NP pullets. At week 11, P pullets displayed larger leg muscles, including triceps, pectoralis major and minor, and leg muscles at week 17 (P<0.05) compared to NP pullets. Notably, at both weeks, P pullets' tibiae exhibited greater breaking strengths, higher ash percentages, and elevated concentrations of bone-specific alkaline phosphatase and procollagen type 1 N-terminal propeptide compared to NP pullets (P<0.05). The study findings underscore the benefits of providing multi-tier perches for pullets, serving as a valuable tool for enhancing bird activity and musculoskeletal health preceding the lay phase.
Collapse
Affiliation(s)
- Mallory G. Anderson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
| | - Alexa M. Johnson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
| | - Cerano Harrison
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- South Carolina Translational Research Improving Musculoskeletal Health Center, Clemson, SC, United States of America
| | - Jeryl Jones
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- South Carolina Translational Research Improving Musculoskeletal Health Center, Clemson, SC, United States of America
| | - Ahmed Ali
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- Animal Behavior and Management, Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Different methionine to cysteine supplementation ratios altered bone quality of broilers with or without Eimeria challenge assessed by dual energy X-ray absorptiometry and microtomography. Poult Sci 2024; 103:103580. [PMID: 38428354 PMCID: PMC10912940 DOI: 10.1016/j.psj.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
Despite the acknowledged significance of nutrition in bone development, effects of methionine (Met) and cysteine (Cys) on bone quality remain under-researched, particularly during Eimeria challenge. We investigated the effects of different supplemental Met to Cys ratios (MCR) on bone quality of broilers under Eimeria challenge. A total of 720 fourteen-day old Cobb500 broilers were allocated into a 5 × 2 factorial arrangement. Five diets with Met and Cys supplemented at MCR of 100:0, 75:25, 50:50, 25:75, and 0:100 were fed to the birds with or without Eimeria challenge. Body composition was measured by dual energy x-ray absorptiometry, and the femur bone characteristics were assessed by microtomography. Data were analyzed by two-way ANOVA and orthogonal polynomial contrast. The results reaffirmed the detrimental effects of Eimeria challenge on bone quality. On 9 d post inoculation (DPI), significant interaction effects were found for whole body bone mineral content (BMC), lean tissue weight, and body weight (P < 0.05); in the nonchallenged group (NCG), these parameters linearly decreased as MCR decreased (P < 0.05). In the challenged group (CG), body weight and lean tissue weight were unaffected by MCR, and BMC linearly increased as MCR decreased (P < 0.05). For the cortical bone of femoral metaphysis on 6 DPI, bone mineral density (BMD) linearly increased as MCR decreased (P < 0.05). Bone volume to tissue volume ratio (BV/TV) in the CG linearly increased as MCR decreased (P < 0.05). On 9 DPI, BMC and TV linearly increased as MCR decreased (P < 0.05) in the NCG. BMD and BV/TV changed quadratically as MCR decreased (P < 0.05). For the trabecular bone of femoral metaphysis on 9 DPI, BV/TV, and trabecular number linearly increased as MCR decreased (P < 0.05) in the NCG. For the femoral diaphysis, BV, TV, BMC on 6 DPI, and BMD on 9 DPI linearly increased as MCR decreased (P < 0.05). In conclusion, this study showed that both Eimeria challenge and varying supplemental MCR could influence bone quality of broilers.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Shi H, Lopes T, Tompkins YH, Liu G, Choi J, Sharma MK, Kim WK. Effects of phytase supplementation on broilers fed with calcium and phosphorus-reduced diets, challenged with Eimeria maxima and Eimeria acervulina: influence on growth performance, body composition, bone health, and intestinal integrity. Poult Sci 2024; 103:103511. [PMID: 38340661 PMCID: PMC10869301 DOI: 10.1016/j.psj.2024.103511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
An experiment was conducted to evaluate the effects of phytase in calcium (Ca) and available phosphorous (avP)-reduced diet on growth performance, body composition, bone health, and intestinal integrity of broilers challenged with Eimeria maxima and Eimeria acervulina. A total of 672 14-day-old male broilers were allocated to a 2 × 4 factorial arrangement with 6 replicates per treatment and 14 birds per replicate. Two factors were Eimeria challenge and 4 dietary treatments: 1) a positive control (PC; 0.84% Ca and 0.42% avP); 2) a negative control (NC; 0.74% Ca and 0.27% avP); 3) NC + 500 FTU/Kg of phytase (NC + 500PHY); and 4) NC + 1,500 FTU/Kg of phytase (NC + 1500PHY). On d 14, birds in the Eimeria-challenged groups received a solution containing 15,000 sporulated oocysts of E. maxima and 75,000 sporulated oocysts of E. acervulina via oral gavage. At 5 d postinoculation (DPI), the challenged birds showed a higher (P < 0.01) FITC-d level than the unchallenged birds. While the permeability of the NC group did not differ from the PC group, the phytase supplementation groups (NC + 500PHY and NC + 1500PHY) showed lower (P < 0.05) serum FITC-d levels compared to the NC group. Interaction effects (P < 0.05) of Eimeria challenge and dietary treatments on feed intake (FI), mucin-2 (MUC2) gene expression, bone ash concentration, and mineral apposition rate (MAR) were observed. On 0 to 6 and 0 to 9 DPI, Eimeria challenge decreased (P < 0.01) body weight (BW), body weight gain (BWG), FI, bone mineral density (BMD), bone mineral content (BMC), bone area, fat free bone weight (FFBW), bone ash weight, bone ash percentage and bone ash concentration; and it showed a higher FCR (P < 0.01) compared to the unchallenged group. The reduction Ca and avP in the diet (NC) did not exert adverse effects on all parameters in birds, and supplementing phytase at levels of 500 or 1,500 FTU/Kg improved body composition, bone mineralization, and intestinal permeability, with the higher dose of 1,500 FTU/Kg showing more pronounced enhancements. There was an observed increase in FI (P < 0.01) when phytase was supplemented at 1,500 FTU/Kg during 0 to 6 DPI. In conclusion, results from the current study suggest that dietary nutrients, such as Ca and avP, can be moderately reduced with the supplementation of phytase, particularly in birds infected with Eimeria spp., which has the potential to save feed cost without compromising growth performance, bone health, and intestinal integrity of broilers.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Taina Lopes
- Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
| | - Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Janghan Choi
- US National Poultry Research Center, United States Department of Agriculture Agricultural Research Service, Athens, GA, 30605, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Paneru D, Sharma MK, Shi H, Wang J, Kim WK. Aflatoxin B1 Impairs Bone Mineralization in Broiler Chickens. Toxins (Basel) 2024; 16:78. [PMID: 38393156 PMCID: PMC10893327 DOI: 10.3390/toxins16020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Aflatoxin B1 (AFB1), a ubiquitous mycotoxin in corn-based animal feed, particularly in tropical regions, impairs liver function, induces oxidative stress and disrupts cellular pathways, potentially worsening bone health in modern broilers. A 19-day experiment was conducted to investigate the effects of feeding increasing levels of AFB1-contaminated feed (<2, 75-80, 150, 230-260 and 520-560 ppb) on bone mineralization markers in broilers (n = 360). While growth performance remained unaffected up to Day 19, significant reductions in tibial bone ash content were observed at levels exceeding 260 ppb. Micro-computed tomography results showed that AFB1 levels at 560 ppb significantly decreased trabecular bone mineral content and density, with a tendency for reduced connectivity density in femur metaphysis. Moreover, AFB1 above 230 ppb reduced the bone volume and tissue volume of the cortical bone of femur. Even at levels above 75 ppb, AFB1 exposure significantly downregulated the jejunal mRNA expressions of the vitamin D receptor and calcium and phosphorus transporters. It can be concluded that AFB1 at levels higher than 230 ppb negatively affects bone health by impairing bone mineralization via disruption of the vitamin D receptor and calcium and phosphorus homeostasis, potentially contributing to bone health issues in broilers.
Collapse
Affiliation(s)
| | | | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (D.P.); (M.K.S.); (H.S.); (J.W.)
| |
Collapse
|
7
|
Lopes TSB, Shi H, White D, Araújo ICS, Kim WK. Effects of 25-hydroxycholecalciferol on performance, gut health, and bone quality of broilers fed with reduced calcium and phosphorus diet during Eimeria challenge. Poult Sci 2024; 103:103267. [PMID: 38113706 PMCID: PMC10770761 DOI: 10.1016/j.psj.2023.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023] Open
Abstract
This study evaluated the effects of 25-hydroxycholecalciferol (25-OHD) on performance, gut health, and bone quality of broilers fed with reduced calcium (Ca) and phosphorus (P) diet during Eimeria spp. challenge. A total of 576 fourteen-day-old Cobb 500 male chicks were randomly distributed in a 2 × 2 × 2 factorial arrangement, with 6 replicates of 12 birds each. The main factors were 25-OHD level (0 or 3,000 IU/kg of feed), mineral level (0.84% of Ca/0.42% of P, the levels recommended for the grower phase (NOR) or 0.64% of Ca/0.22% of P (RED), and mid-high mixed Eimeria challenge or nonchallenge. 25-OHD improved phosphorus retention (P = 0.019), bone ash weight (P = 0.04), cortical bone trabecular connectivity (P = 0.043) during coccidiosis. For birds fed with reduced mineral levels, 25-OHD supplementation increased bone ash weight (P = 0.04). However, 25-OHD did not improve bone ash weight when birds were challenged and fed with reduced mineral levels. The dietary 3,000 IU of 25-OHD supplementation did not improve performance or gut morphology but support bone health during coccidiosis. Future investigations are needed for better understand 25-OHD role on bone microarchitecture and oxidative metabolism during coccidiosis.
Collapse
Affiliation(s)
- T S B Lopes
- Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - H Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - D White
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - I C S Araújo
- Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Shi H, Wang J, White D, Martinez OJT, Kim WK. Impacts of phytase and coccidial vaccine on growth performance, nutrient digestibility, bone development, and intestinal gene expression of broilers fed a nutrient reduced diet. Poult Sci 2023; 102:103062. [PMID: 37742452 PMCID: PMC10520538 DOI: 10.1016/j.psj.2023.103062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
An experiment was conducted to evaluate effects of phytase and coccidial vaccine on growth performance, bone ash, bone 3-D microstructure, nutrient digestibility, and gene expression of intestinal biomarkers in broilers fed a regular or nutrient-reduced diet. The experiment was conducted in a 2 × 4 factorial arrangement with 6 replicates per treatment and 10 birds per replicate. Two main factors were coccidial vaccine and dietary treatments. The dietary treatments included: 1) a positive control (PC; normal nutrient levels); 2) a negative control (NC; with a reduction of 0.15% of Ca and avP and 5% of essential amino acid (EAA) and crude protein relative to PC); 3) NC + 500 FTU/kg of phytase; and 4) NC + 1,500 FTU/kg of phytase. No interaction effect of phytase and coccidial vaccine on growth performance, bone ash, and apparent ileal digestibility (AID) was observed. For the main effect, birds fed the NC diet showed lower (P = 0.007) BWG during d 0 to 21 compared to PC birds, whereas supplementing 500 or 1,500 FTU/kg phytase increased BWG to the similar level to the PC. During d 0 to 21, vaccinated birds had a lower (P < 0.001) FI and better (P = 0.045) FCR compared to unvaccinated birds. Birds fed the NC diet resulted a decrease in tibia fat-free dry bone weight (P = 0.012), ash weight (P = 0.005), ash percentage (P < 0.001), and ash concentration (P = 0.019) compared to the PC group at d 21, whereas supplementing phytase at 500 or 1,500 FTU/kg in NC diet was able to improve these bone parameters to the similar level to the PC; however, vaccination did not have any effect on bone ash. Similarly, birds fed with the NC diet showed had significant lower bone microstructure levels including bone volume, bone mineral density, and bone mineral content (P < 0.001), and supplementing phytase at 1,500 FTU/kg improved these parameters. Vaccination improved AID of nitrogen (P < 0.001). Birds from the NC and both phytase supplementation groups had a higher (P = 0.001) AID of Ca compared to the PC. Supplementing phytase at 500 FTU/kg or 1,500 FTU/kg improved (P < 0.001) AID of P compared to the NC. Additionally, the NC had a lower AID of DM than the PC, whereas supplementing phytase at 500 FTU/kg or 1,500 FTU/kg improved DM digestibility (P = 0.0299). In conclusion, supplementation of phytase at 500 or 1,500 FTU/kg improved growth performance, bone mineralization, and nutrient digestibility regardless of vaccination, with a more pronounced effect when supplementing phytase at 1,500 FTU/kg.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Dima White
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Zhao J, Duan X, Yan S, Liu Y, Wang K, Hu M, Chai Q, Liu L, Ge C, Jia J, Dou T. Transcriptomics reveals the molecular regulation of Chinese medicine formula on improving bone quality in broiler. Poult Sci 2023; 102:103044. [PMID: 37717480 PMCID: PMC10507442 DOI: 10.1016/j.psj.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Skeletal disorder is of concern to the poultry industry as it affects animal welfare and production performance. Traditional Chinese medicine could improve bone quality and reduce the incidence of bone disease, but the molecular regulation of Chinese medicine formula (CMF) on improving bone quality in broilers is still unclear. This study was performed to research the effects of CMF on skeletal performance of Cobb broilers and reveal the molecular regulation. A total of 120 one-day-old Cobb broilers were randomly allocated into 4 equal groups of 30 chickens, with 5 replicates and 6 chickens in each replicate. The control (CON) group was fed a diet without CMF, while the CMF1, CMF2, and CMF3 groups were supplemented with different CMF at 6,000 mg/kg diet, respectively. The broilers were raised to 60 d of age, then bone tissues were collected for biomechanical properties, micro-CT detection and transcriptomic sequencing analysis. The results showed that CMF3 improved the biomechanical properties of broiler tibia, via increasing the elastic modulus (P < 0.05), yield strength (P > 0.05), maximum stress (P < 0.05) and fracture stress (P < 0.05) of the tibia. Micro-CT analysis indicated that CMF3 increased the bone mineral density (BMD), bone volume/total volume (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and decreased the trabecular separation (Tb.Sp) of femur cancellous bone (P < 0.05). RNA-seq analysis revealed 2,177 differentially expressed genes (DEGs) (|log2FoldChange| ≥ 1, FDR < 0.05) between the CMF3 group and CON group. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis showed 13 pathways mostly associated with bone growth and development and bone metabolism, and we identified 39 bone-related DEGs. This study suggests that CMF3 could improve bone strength and bone microstructure of broilers, and showed a positive effect on bone performance. Our research could provide a theoretical reference for the development of pollution-free feed additives to improve the skeletal performance of broilers, which could help promote healthy farming of chickens.
Collapse
Affiliation(s)
- Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Xiaohua Duan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China; Yunnan University of Chinese Medicine, 650500 Kunming, China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Mei Hu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Qian Chai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China; Yunnan Vocational and Technical College of Agriculture, 650031 Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China.
| |
Collapse
|
10
|
Sharma MK, Liu G, White DL, Tompkins YH, Kim WK. Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0-6 wk of age). Poult Sci 2023; 102:102888. [PMID: 37542924 PMCID: PMC10428119 DOI: 10.1016/j.psj.2023.102888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 08/07/2023] Open
Abstract
An experiment was carried out to evaluate the impact of mixed Eimeria challenge on skeletal health of Hy-Line W-36 pullets. A total of 540, 16-day-old pullets were randomly allocated into 5 treatment groups, including a nonchallenged control. A mixed Eimeria species solution containing 50,000 E. maxima, 50,000 E. tenella, and 250,000 E. acervulina oocysts per mL was prepared and challenged to 1 group as a high-dose treatment. The 2-fold serial dilution was done to prepare the medium-high (25,000 E. maxima; 25,000 E. tenella; 125,000 E. acervulina), the medium-low (12,500 E. maxima; 12,500 E. tenella; 62,500 E. acervulina), and the low (6,250 E. maxima; 6,250 E. tenella; 31,250 E. acervulina) dose treatments which were challenged to 3 corresponding groups, respectively. The mineral apposition rate (MAR) was measured from 0 to 14 d post inoculation (DPI) and 14 to 28 DPI using calcein injection. The microstructural architecture of the femur was analyzed using the Skyscan X-ray microtomography (microCT) on 6, 14, and 28 DPI. The results showed that the MAR decreased linearly with an increase in the challenged dose (P < 0.05) during 0 to 14 DPI. The results of microCT revealed that cortical and total BMD, BMC, bone volume (BV), and bone volume as a fraction of tissue volume (BV/TV) of femur decreased both linearly (P < 0.05). Conversely, the total number of pores increased linearly with an increase in challenge dosages on 6 and 14 DPI. Trabecular BMD, BV, BV/TV, trabecular number, and trabecular thickness decreased linearly with an increase in the challenge dosages (P < 0.05) on 6 DPI. Furthermore, Eimeria infection significantly increased the number of osteoclasts and osteoclastic activity (P = 0.001). The result of this study suggests that the mixed Eimeria challenge negatively impacts the quality of skeletal health in a linear or quadratic manner with an increase in the concentration of Eimeria oocysts. The negative impact on long bone development might be due to malabsorption, nutrient deficiency during the infection, along with oxidative stress/inflammation disrupting the balance of osteoblastic and osteoclastic cells and their functions.
Collapse
Affiliation(s)
- Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Dima L White
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA.
| |
Collapse
|
11
|
Li Y, Liu X, Chu Y, Li C, Gao T, Jiang X, Zhu Z, Sheng Q, Han L. Effect of high-fructose consumption in pregnancy on the bone growth of offspring rats. Front Nutr 2023; 10:1203063. [PMID: 37662593 PMCID: PMC10469680 DOI: 10.3389/fnut.2023.1203063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Growing evidence suggests that bone health is programmed in early life. Maternal diet may influence the skeletal development of offspring. We aimed to determine the possible effects of high-fructose intake during pregnancy on different aspects of long bone morphology in the offspring of rats and to initially explore the possible mechanisms. Pregnant Sprague-Dawley rats were randomly divided into four groups and intragastrically administered the same dose of distilled water (CON, n = 12), 20 g/kg/day glucose (GLU, n = 12), 10 g/kg/day fructose (LFRU, n = 12), or 20 g/kg/day fructose (HFRU, n = 12) for 21 days during gestation. Computed tomography was used to analyze the cortical and cancellous bones of the distal femur of the offspring rats, and circulating bone metabolic biomarkers were measured using enzyme immunoassay. The results showed that high-fructose intake during pregnancy could decrease body weight, impair glucose metabolism, and increase serum leptin and uric acid in offspring. The offspring in the HFRU group had higher levels of the N-terminal propeptide of type I procollagen (PINP) and the C-telopeptide of type I collagen (CTX). The bone mean density (BMD), the total cross-sectional area inside the periosteal envelope (Tt.Ar), cortical bone area (Ct.Ar), medullary (or marrow) area (Ma.Ar), and trabecular mean density of the offspring in the HFRU group were lower than those in the CON group. Tartrate-resistant acid phosphatase (Trap) staining showed that high-fructose intake during pregnancy could increase the number of osteoclasts and increase the absorption area. Our results suggested that excessive fructose intake during pregnancy could inhibit skeletal development in offspring. Thus, attention to fructose intake during pregnancy is important for bone development in offspring.
Collapse
Affiliation(s)
- Yijing Li
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoqian Liu
- Maternal, Child & Adolescent Health, Qingdao University, Qingdao, China
| | - Yuning Chu
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cai Li
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiuli Jiang
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zihan Zhu
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Sheng
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Han
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Lee J, Tompkins Y, Kim DH, Kim WK, Lee K. Increased sizes and improved qualities of tibia bones by myostatin mutation in Japanese quail. Front Physiol 2023; 13:1085935. [PMID: 36685194 PMCID: PMC9846741 DOI: 10.3389/fphys.2022.1085935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Production of large amounts of meat within a short growth period from modern broilers provides a huge economic benefit to the poultry industry. However, poor bone qualities of broilers caused by rapid growth are considered as one of the problems in the modern broilers industry. After discovery and investigation of myostatin (MSTN) as an anti-myogenic factor to increase muscle mass by targeted knockout in various animal models, additional positive effects of MSTN mutation on bone qualities have been reported in MSTN knockout mice. Although the same beneficial effects on muscle gain by MSTN mutation have been confirmed in MSTN mutant quail and chickens, bone qualities of the MSTN mutant birds have not been investigated, yet. In this study, tibia bones were collected from MSTN mutant and wild-type (WT) quail at 4 months of age and analyzed by Micro-Computed Tomography scanning to compare size and strength of tibia bone and quality parameters in diaphysis and metaphysis regions. Length, width, cortical thickness, and bone breaking strength of tibia bones in the MSTN mutant group were significantly increased compared to those of the WT group, indicating positive effects of MSTN mutation on tibia bone sizes and strength. Furthermore, bone mineral contents and bone volume of whole diaphysis, diaphyseal cortical bone, whole metaphysis, and metaphyseal trabecular and cortical bones were significantly increased in the MSTN mutant group compared to the WT group, indicating increased mineralization in the overall tibia bone by MSTN mutation. Especially, higher bone mineral density (BMD) of whole diaphysis, higher total surface of whole metaphysis, and higher BMD, trabecular thickness, and total volume of metaphyseal trabecular bones in the MSTN mutant group compared to the WT group suggested improvements in bone qualities and structural soundness of both diaphysis and metaphysis regions with significant changes in trabecular bones by MSTN mutation. Taken together, MSTN can be considered as a potential target to not only increase meat yield, but also to improve bone qualities that can reduce the incidence of leg bone problems for the broiler industry.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Yuguo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States,*Correspondence: Woo Kyun Kim, ; Kichoon Lee,
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States,*Correspondence: Woo Kyun Kim, ; Kichoon Lee,
| |
Collapse
|
13
|
White D, Chen C, Kim WK. Effect of the combination of 25-hydroxyvitamin D3 and higher level of calcium and phosphorus in the diets on bone 3D structural development in pullets. Front Physiol 2023; 14:1056481. [PMID: 37168220 PMCID: PMC10164944 DOI: 10.3389/fphys.2023.1056481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Bone issues such as osteoporosis are major concerns for the laying hen industry. A study was conducted to improve bone-health in pullets. A total of 448 one-day-old Hyline W36 pullets were randomly assigned to four treatments (8 rep; 14 birds/rep) until 17 weeks (wks). Dietary treatments were: 1) vitamin D3 at (2,760 IU/kg) (D), 2) vitamin D3 (2,760 IU/kg)+62.5 mg 25-(OH)D3/ton (H25D), 3) vitamin D3 (2,760 IU/kg) + 62.5 mg 25-(OH)D3/ton + high Ca&P (H25D + Ca/P), and 4) vitamin D3 (2,760 IU/kg) + high Ca&P (D + Ca/P). The high calcium (Ca) and phosphorus (P) diet was modified by increasing both high calcium and phosphorus by 30% (2:1) for the first 12 wks and then only increasing P for 12-17 wks to reduce the Ca to P ratio. At 17 wk, growth performance was measured, whole body composition was measured by dual energy x-ray absorptiometry (DEXA), and femur bones were scanned using Micro-computed tomography (Micro-CT) for bone 3D structure analyses. The data were subjected to a one-way ANOVA using the GLM procedure, with means deemed significant at p < 0.05. There was no significant outcome for growth performance or dual energy x-ray absorptiometry parameters. Micro-computed tomography results indicated that the H25D + Ca/P treatment had lower open pore volume space, open porosity, total volume of pore space, and total porosity in the cortical bone compared to the D + Ca/P. It also showed that a higher cortical bone volume/tissue volume (BV/TV) in the H25D + Ca/P than in the D + Ca/P. Furthermore, the H25D + Ca/P treatment had the lowest trabecular pattern factor and structure model index compared to the other treatments, which indicates its beneficial effects on trabecular structural development. Moreover, the H25D + Ca/P had a higher trabecular percentage compared to the D and 25D, which suggests the additional high calcium and phosphorus supplementation on top of 25D increased trabecular content in the cavity. In conclusion, the combination of 25D with higher levels of high calcium and phosphorus could improve cortical bone quality in pullets and showed a beneficial effect on trabecular bone 3D structural development. Thus, combination of a higher bio-active form of vitamin D3 and higher levels of high calcium and phosphorus could become a potential feeding strategy to improve bone structural integrity and health in pullets.
Collapse
|
14
|
Tompkins YH, Teng P, Pazdro R, Kim WK. Long Bone Mineral Loss, Bone Microstructural Changes and Oxidative Stress After Eimeria Challenge in Broilers. Front Physiol 2022; 13:945740. [PMID: 35923236 PMCID: PMC9340159 DOI: 10.3389/fphys.2022.945740] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to evaluate the impact of coccidiosis on bone quality and antioxidant status in the liver and bone marrow of broiler chickens. A total of 360 13-day old male broilers (Cobb 500) were randomly assigned to different groups (negative control, low, medium-low, medium-high, and highest dose groups) and orally gavaged with different concentrations of Eimeria oocysts solution. Broiler tibia and tibia bone marrow were collected at 6 days post-infection (6 dpi) for bone 3-D structural analyses and the gene expression related to osteogenesis, oxidative stress, and adipogenesis using micro-computed tomography (micro-CT) and real-time qPCR analysis, respectively. Metaphyseal bone mineral density and content were reduced in response to the increase of Eimeria challenge dose, and poor trabecular bone traits were observed in the high inoculation group. However, there were no significant structural changes in metaphyseal cortical bone. Medium-high Eimeria challenge dose significantly increased level of peroxisome proliferator-activated receptor gamma (PPARG, p < 0.05) and decreased levels of bone gamma-carboxyglutamate protein coding gene (BGLAP, p < 0.05) and fatty acid synthase coding gene (FASN, p < 0.05) in bone marrow. An increased mRNA level of superoxide dismutase type 1 (SOD1, p < 0.05) and heme oxygenase 1 (HMOX1, p < 0.05), and increased enzyme activity of superoxide dismutase (SOD, p < 0.05) were found in bone marrow of Eimeria challenged groups compared with that of non-infected control. Similarly, enzyme activity of SOD and the mRNA level of SOD1, HMOX1 and aflatoxin aldehyde reductase (AKE7A2) were increased in the liver of infected broilers (p < 0.05), whereas glutathione (GSH) content was lower in the medium-high challenge group (p < 0.05) compared with non-challenged control. Moreover, the mRNA expression of catalase (CAT) and nuclear factor kappa B1 (NFKB1) showed dose-depend response in the liver, where expression of CAT and NFKB1 was upregulated in the low challenge group but decreased with the higher Eimeria challenge dosage (p < 0.05). In conclusion, high challenge dose of Eimeria infection negatively affected the long bone development. The structural changes of tibia and decreased mineral content were mainly located at the trabecular bone of metaphyseal area. The change of redox and impaired antioxidant status following the Eimeria infection were observed in the liver and bone marrow of broilers.
Collapse
Affiliation(s)
- Y. H. Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - P. Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - R. Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - W. K. Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: W. K. Kim,
| |
Collapse
|
15
|
He Y, Li Y, Zeng R, Zhang X. The Effect of Humanized Nursing Intervention Guided by Computed Tomography Images on Elderly Patients Undergoing Anesthesia for Femur Intertrochanteric Fractures under Intelligent Reconstruction Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5070518. [PMID: 35655860 PMCID: PMC9155936 DOI: 10.1155/2022/5070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
This research was aimed at analyzing the effect of humanized nursing intervention combined with computed tomography (CT) imaging in the surgical anesthesia of femur intertrochanteric fractures (FIF) in the elderly. An image reconstruction algorithm was proposed based on nonlocal mean (NLM) algorithm, which was named as ONLM, and its performance was analyzed. A total of 114 elderly patients with FIF were equally and randomly divided into a humanized nursing group (57 cases) and a routine nursing group (57 cases). They were performed with CT imaging scan based on the ONLM algorithm, and the clinical indicators of the two groups of patients were recorded. The root mean square error (RMSE) and mean absolute error (MAE) of the CT images constructed using the ONLM algorithm were significantly lower than those using NLM algorithm, edge filtering algorithm, and total variation model, while the peak signal-to-noise ratio (PSNR) was the opposite (P < 0.05). The operation time, hospitalization days, intraoperative blood loss, postoperative drainage, and anesthesia preparation time of patients in the humanized nursing group were significantly lower than those in the routine nursing group. The number of patients with excellent Harris scores in the humanized nursing group was higher than that in the routine nursing group, and the number of patients with poor Harris scores was lower (P < 0.05). The language pain score, facial pain score, and visual analog simulation (VAS) scores of patients in the humanized nursing group were significantly lower than those in the routine nursing group. The numbers of postoperative hip varus and fracture nonunion cases in the humanized nursing group were significantly more than those in the routine nursing group. In short, CT images constructed by the ONLM showed higher performance than those by the traditional algorithm. In addition, CT images constructed by ONLM combined with humanized nursing intervention could more effectively improve the cooperation of patients with surgical anesthesia, reduce surgical pain and fear of patients, improve the prognosis of patients, and lower the occurrence of adverse events.
Collapse
Affiliation(s)
- Yanfang He
- Department of Anesthesia Surgery Department, Changsha Fourth Hospital, Changsha, 410006 Hunan, China
| | - Yufang Li
- Department of Anesthesia Surgery Department, Changsha Fourth Hospital, Changsha, 410006 Hunan, China
| | - Rong Zeng
- Department of Anesthesia Surgery Department, Changsha Fourth Hospital, Changsha, 410006 Hunan, China
| | - Xiaoyan Zhang
- Department of Anesthesia Surgery Department, Changsha Fourth Hospital, Changsha, 410006 Hunan, China
| |
Collapse
|
16
|
Li J, Xiang Z, Zhou J, Zhang M. Three-Dimensional Reconstruction of a CT Image under Deep Learning Algorithm to Evaluate the Application of Percutaneous Kyphoplasty in Osteoporotic Thoracolumbar Compression Fractures. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9107021. [PMID: 35919502 PMCID: PMC9290755 DOI: 10.1155/2022/9107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
Abstract
In order to investigate the therapeutic evaluation of percutaneous kyphoplasty (PKP) for the treatment of osteoporotic thoracolumbar compression fractures by three-dimensional (3D) reconstruction of computed tomography (CT) based on the deep learning V-Net network, the traditional V-Net was optimized first and a new and improved V-Net was proposed. The introduced U-Net, V-Net, and convolutional neural network (CNN) were compared in this study. Then, 106 patients with osteoporotic thoracolumbar compression fractures were enrolled, and 128 centrums were divided into the test group with 53 cases of PKP and the control group with 53 cases of percutaneous vertebroplasty (PVP) according to different surgical protocols. All patients underwent CT scan based on the improved V-Net, and data of centrum measurement indicators, pain score, and therapeutic evaluation results of the modified Macnab were collected. The Dice coefficient of the improved V-Net was observably higher than that of U-Net, V-Net, and CNN, while the Hausdorff distance was lower than that of U-Net, V-Net, and CNN (P < 0.05). The anterior height, central height, and posterior height of the centrum were significantly higher than those in the control group after operation (3, 5, and 7 days), while the Cobb angle of vertebral kyphosis was significantly lower than that in the control group (P < 0.05). The score of visual analog scale (VAS) and analgesic use score of patients in the test group were markedly lower than those in the control group (3, 5, and 7 days after operation), P < 0.05. Besides, the excellent and good rate of the test group was remarkably higher than that of the control group, P < 0.05. Hence, the improved V-Net had better quality of segmentation and reconstruction than the traditional deep learning network. Compared with PVP, PKP was helpful in restoring the height of the centrum in patients with osteoporotic thoracolumbar compression fractures and correct kyphosis, with better analgesic effect safety.
Collapse
Affiliation(s)
- Jiameng Li
- Department of Spine Surgery, The Fourth Hospital of Changsha, Changsha 412002,
Hunan, China
| | - Zhong Xiang
- Department of Spine Surgery, The Fourth Hospital of Changsha, Changsha 412002,
Hunan, China
| | - Jiaqing Zhou
- Department of Spine Surgery, The Fourth Hospital of Changsha, Changsha 412002,
Hunan, China
| | - Meng Zhang
- Department of Spine Surgery, The Fourth Hospital of Changsha, Changsha 412002,
Hunan, China
| |
Collapse
|
17
|
Bi Y, Jiang C, Qi H, Zhou H, Sun L. Computed Tomography Image Texture under Feature Extraction Algorithm in the Diagnosis of Effect of Specific Nursing Intervention on Mycoplasma Pneumonia in Children. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6059060. [PMID: 34697567 PMCID: PMC8541873 DOI: 10.1155/2021/6059060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
To evaluate the effect of specific nursing intervention in children with mycoplasma pneumonia (MP), a feature extraction algorithm based on gray level co-occurrence matrix (GLCM) was proposed and combined with computed tomography (CT) image texture features. Then, 98 children with MP were rolled into the observation group with 49 cases (specific nursing) and the control group with 49 cases (routine nursing). CT images based on feature extraction algorithm of optimized GLCM were used to examine the children before and after nursing intervention, and the recovery of the two groups of children was discussed. The results showed that the proportion of lung texture increase, rope shadow, ground glass shadow, atelectasis, and pleural effusion in the observation group (24.11%, 3.86%, 8.53%, 15.03%, and 3.74%) was significantly lower than that in the control group (28.53%, 10.23%, 13.34%, 21.15%, and 8.13%) after nursing (P < 0.05). There were no significant differences in the proportion of small patchy shadows, large patchy consolidation shadows, and bronchiectasis between the observation group and the control group (P > 0.05). In the course of nursing intervention, in the observation group, the disappearance time of cough, normal temperature, disappearance time of lung rales, and absorption time of lung shadow (2.15 ± 0.86 days, 4.81 ± 1.14 days, 3.64 ± 0.55 days, and 5.96 ± 0.62 days) were significantly shorter than those in the control group (2.87 ± 0.95 days, 3.95 ± 1.06 days, 4.51 ± 1.02 days, and 8.14 ± 1.35 days) (P < 0.05). After nursing intervention, the proportion of satisfaction and total satisfaction in the experimental group (67.08% and 28.66%) was significantly higher than that in the control group (40.21% and 47.39%), while the proportion of dissatisfaction (4.26%) was significantly lower than that in the control group (12.4%) (P < 0.05). To sum up, specific nursing intervention was more beneficial to improve the progress of characterization recovery and the overall recovery effect of children with MP relative to conventional nursing. CT image based on feature extraction algorithm of optimized GLCM was of good adoption value in the diagnosis and treatment of MP in children.
Collapse
Affiliation(s)
- Yuyan Bi
- Department of Pediatric Ward, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Cuifeng Jiang
- Department of Pediatric Surgery, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Hua Qi
- Department of Pediatric Ward, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Haiwei Zhou
- Department of Pediatric Ward, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Lixia Sun
- Department of Nursing, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| |
Collapse
|
18
|
Yamada M, Chen C, Sugiyama T, Kim WK. Effect of Age on Bone Structure Parameters in Laying Hens. Animals (Basel) 2021; 11:ani11020570. [PMID: 33671735 PMCID: PMC7926946 DOI: 10.3390/ani11020570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in medullary and cortical bone structure with age remain unclear. Twenty Hy-Line W36 hens, 25 or 52 weeks of age, were euthanized, and both tibiae were collected when an egg was present in the magnum. Serial cross sections of the tibiae were stained with Alcian blue. The bones were scanned using micro-computed tomography. Trabecular width (Tb.Wi) was significantly higher (p < 0.05) in 25-week-old hens, whereas medullary bone tissue volume (TV) was significantly higher (p < 0.01) in 52-week-old hens. 25-week-old hens had significantly higher (p < 0.01) bone volume fraction (BVF = calcified tissue / TV). Moreover, the cortical bone parameters were significantly higher (TV and bone mineral content (BMC) at p < 0.05, and bone volume (BV) and BVF at p < 0.01) in younger hens. Open porosity and total porosity, which indicate less density, were significantly higher (p < 0.01) in older hens. Older hens showed significantly higher (p < 0.01) tibial diaphysis TV than younger hens. Younger hens had significantly higher (p < 0.01) BV, BVF and bone mineral density (BMD) of the tibial diaphysis. These findings reveal that reductions in medullary bone quality might be associated with age-related low estrogen levels and stimulation of osteoclastic bone resorption by parathyroid hormone. Cortical bone quality decreased with enlargement of the Haversian canals and loss of volume, with a longer egg-laying period leading to osteoporosis.
Collapse
Affiliation(s)
- Masayoshi Yamada
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan; (M.Y.); (T.S.)
| | - Chongxiao Chen
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Toshie Sugiyama
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan; (M.Y.); (T.S.)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30606, USA
- Correspondence: ; Tel.: +1-706-342-1346
| |
Collapse
|