1
|
Fan G, Chen W, He J, Wang D, Yang X. Bile acids alleviate intestinal inflammation by modulating gut microbiota composition in LPS-challenged broilers. Res Vet Sci 2024; 184:105526. [PMID: 39755074 DOI: 10.1016/j.rvsc.2024.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/10/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Previous research has identified bile acids (BAs) as a valuable supplement for animal feed, especially in the poultry industry. However, there is limited research on the use of bile acids as a preventative measure against intestinal inflammation in broilers. This study aims to investigate the impact of dietary BAs on LPS-triggered intestinal inflammation in broilers. 180 Arbor Acres broilers were randomly divided into four group: (1) broilers receiving a standard diet (Con group); (2) broilers from the Con category subjected to LPS challenge (LPS group); (3) broilers on a diet supplemented with BAs compound and exposed to LPS (BA+LPS group); and (4) broilers on a diet enriched with lithocholic acid (LCA) and challenged with LPS (LCA + LPS group).The results showed that the LPS challenge caused a notable rise in liver mass, plasma AST concentrations, and levels of inflammatory cytokines (P < 0.05). BAs compounds or LCA improved intestinal morphological damage, inflammation response and bile acid metabolism (P < 0.05). Furthermore, analysis of 16S rRNA gene sequences revealed that supplementation with BAs compounds or LCA mitigated the reduction in bacterial diversity, while also increasing the abundance of operational taxonomic units (OTUs) associated with Bacteroides and Bifidobacterium. Additionally, the increased abundance of Candidatus_Arthromitus due to BAs compound or LCA supplementation showed a significant negative correlation with the concentrations of intestinal inflammatory cytokines (P < 0.05). These results suggest that the supplementation of BAs compound or LCA has the potential to alleviate intestinal inflammation and regulate gut microbiota in broilers subjected to LPS challenge.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianxing He
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Mangan M, Połtowicz K, Metges CC, Siwek M. Modulatory effects of in ovo delivery of galactooligosaccharide and Lactiplantibacillus plantarum on antioxidant capacity, gene expression, and selected plasma metabolite parameters of broiler chickens. J Appl Genet 2024:10.1007/s13353-024-00931-7. [PMID: 39666172 DOI: 10.1007/s13353-024-00931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
A stable gut microbiota promotes a healthy gut and enhances immune function, antioxidant status, and metabolic activities in chickens. The present research work aimed to investigate the modulatory impacts of in ovo delivery of prebiotic and probiotic on oxidative stress, the intestinal transcriptome, and various plasma metabolites in chickens. Fertilized Ross 308 eggs were administered in ovo either with galactooligosaccharide (GOS) (3.5 mg/egg or Lactiplantibacillus plantarum (LP) 1 × 106/egg on the 12th day of egg incubation. Three hundred viable Ross 308 broiler hatching eggs in total were randomly assigned to four groups, namely, the negative control not injected group, the group receiving physiological saline injections as the positive control, GOS, and LP. The analysis of genes associated with immune functions, antioxidants, barrier functions, and free fatty acid receptors were determined via qPCR. The analysis of the selected plasma blood metabolites was performed automatically with Pentra C 400. The antioxidant capacity of the chickens' liver, breast muscle, and spleen was enhanced by the in ovo injection of GOS and LP. The immune-related gene expression levels were upregulated after in ovo stimulation with either GOS or LP which improved the gut health of broiler chickens. In addition, several genes related to gut barrier functions were upregulated, thus ensuring epithelial integrity. As for blood plasma metabolites, no adverse effects were observed. In summary, we report that in ovo stimulation with either GOS or LP stimulates the immune system and improves the antioxidant status and gut health of chickens with no negative impact on plasma blood metabolite indices.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakow-Ska 1, 32-083, Balice, Poland
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
3
|
van der Klein SAS, Arora SS, Haldar S, Dhara AK, Gibbs K. A dual strain probiotic administered via the waterline beneficially modulates the ileal and cecal microbiome, sIgA and acute phase protein levels, and growth performance of broilers during a dysbacteriosis challenge. Poult Sci 2024; 103:104462. [PMID: 39504831 PMCID: PMC11577228 DOI: 10.1016/j.psj.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Intestinal dysbacteriosis is increasing in broilers due to the reduced use of antibiotics in feed. This study tested the effect of daily waterline administration of a dual-strain probiotic comprising Lactobacillus acidophilus AG01 and Bifidobacterium animalis subspecies lactis AG02, on growth performance and intestinal health during a 3-step microbial challenge. In total, 900 Ross 308 males were assigned to 36 floor pens (25 birds/pen, 12 pens/treatment) in a completely randomized design. Birds were fed a corn, wheat and soybean-meal based diet. Diets were formulated in 3 phases (starter: 1 to 10; grower: 11 to 24; finisher: 25 to 42 d of age). Treatments comprised a non-challenged control (NC), challenged control (CC), and the CC supplemented with 1 × 108 colony forming units (CFU)/bird/day of the probiotic (CC+Probiotic). The challenge comprised 1 × 108 CFU/bird of Avian Pathogenic Escherichia coli on d 7, 4,000 oocysts/bird of Eimeria on d 15 and 1 × 109 CFU/bird of C. perfringens on d 18, 19 and 20. Growth performance was monitored over 42 d, blood samples, and digesta were collected and intestinal dysbacteriosis scoring was performed. Compared to NC birds, CC birds exhibited reduced BW (all phases), reduced feed intake (starter and grower phase), increased FCR (grower phase and overall; P < 0.05), reduced ileal lactic acid bacteria concentrations (d 24 and 42), and increased cecal E. coli (d 24; P < 0.05). Compared to CC birds, CC+Probiotic birds exhibited increased BW, BW gain and feed intake during grower phase (P < 0.05), increased ileal lactic acid bacteria at d 24 and 42 and reduced ileal C. perfringens at d 24, increased mucosal secretory IgA and reduced serum alpha-1-acid-glycoprotein at d 42. The overall growth performance of CC+Probiotic birds was equivalent to NC birds. These results confirm the efficacy of the dual strain probiotic for mitigating the negative effects of a multi-microbial challenge, improving gut health and growth performance in commercial broilers under dysbacteriosis challenge.
Collapse
Affiliation(s)
- S A S van der Klein
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4 2342 BH, Oegstgeest, The Netherlands.
| | - S S Arora
- Agrivet Research and Advisory Pvt Ltd., 714 Block A Lake Town, Kolkata 700089, India
| | - S Haldar
- Agrivet Research and Advisory Pvt Ltd., 714 Block A Lake Town, Kolkata 700089, India
| | - A K Dhara
- Agrivet Research and Advisory Pvt Ltd., 714 Block A Lake Town, Kolkata 700089, India
| | - K Gibbs
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4 2342 BH, Oegstgeest, The Netherlands
| |
Collapse
|
4
|
Zhang Y, Liu J, Pan Y, Shi K, Mai P, Li X, Shen S. Progress on the prevention of poultry Salmonella with natural medicines. Poult Sci 2024; 104:104603. [PMID: 39631274 DOI: 10.1016/j.psj.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Salmonella infection is an acute and systemic disease of poultry, primarily affecting young birds. The mortality rate of chicken within one week of age can reach up to 40 %. Surviving individuals may become carriers of the bacteria, leading to latent infections that can result in bacterial residues in meat and egg products, posing serious threats to human food safety and health. Antibiotic therapy is one of the most conventional treatments for Salmonella infections in birds. However, the current abuse of antibiotics has accelerated the mutation of pathogenic bacteria to generate antibiotic-resistant strains. Thus, the effectiveness of treatment with antibiotics alone is gradually diminishing. To address this threat, researchers have explored the use of natural products to enhance the immune system of poultry for preventing Salmonella infections. This study aims to provide a comprehensive review, systematically summarizing recent research progress of the application of natural medicines on poultry Salmonella infection.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Jianglan Liu
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Yinan Pan
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Kai Shi
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Ping Mai
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Xiaokai Li
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Shasha Shen
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China.
| |
Collapse
|
5
|
Su X, Su L, Cao M, Sun Y, Dai J, He Y, Li W, Ge W, Lv X, Zhang Q, Cui S, Chen J, Yang B. Improvement and Recovery of Intestinal Flora Disorder Caused by Ciprofloxacin Using Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10401-5. [PMID: 39565564 DOI: 10.1007/s12602-024-10401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
In this study, four lactic acid bacteria (LAB) strains demonstrating ciprofloxacin, bile salt, gastric fluid, and intestinal fluid tolerance as well as adhesion ability to Caco-2 and HT-29 cells were used to improve and recover the intestinal flora disorders caused by ciprofloxacin, among which, Lactobacillus brevis 505 exhibited excellent adhesion ability to two kinds of cells and colonization ability to mouse intestinal. After ciprofloxacin treatment, certain recovery effect on cecum caused by ciprofloxacin in the mice was found during natural recovery (group 5C2), but it was challenging to fully restore the intestinal integrity to the initial level. After L. brevis 505 intervention (group 5C5), the intestinal damage to the colon and ileum caused by ciprofloxacin in mice was significantly alleviated; the recovery effect was better than that of natural recovery. Additionally, L. brevis 505 could effectively regulate INF-γ, sIgA, and RegIIIγ increase induced by ciprofloxacin. Shannon and Simpson index of the intestinal flora of mice in 5C5 group were higher than those in other group, the relative abundance of Bifidobacterium and Lactobacillus in the mice in 5C5 group was increased, indicating that LAB can better restore the structure and abundance of intestinal microflora. Consequently, L. brevis 505 shows promise as a probiotic for gut microbiota restoration and rebuilding during antibiotic therapy.
Collapse
Affiliation(s)
- Xiumin Su
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Yulu Sun
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling 712100, Xianyang, China
| | - Wei Li
- School of Biomedicine and Food Engineering, Shangluo University, Shangluo, 726000, Shaanxi, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, 050035, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 28# Xinong Road, Yangling 712100, Xianyang, Shaanxi, China.
| |
Collapse
|
6
|
Xu D, Wang X, Hou X, Wang X, Shi W, Hu Y. The effect of Lonicerae flos and Rhizoma curcumae longae extract on the intestinal development and function of broilers. Poult Sci 2024; 103:104225. [PMID: 39217666 PMCID: PMC11402626 DOI: 10.1016/j.psj.2024.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study was conducted to explore effects of Lonicerae flos and Rhomoma curcumae longae extracts (LR) on intestinal function of broilers. Three hundred broiler chickens were randomly assigned to the following 5 groups. The control group were fed the basal diet; the antibiotic group were fed the basal diet supplemented with spectinomycin hydrochloride (50 million units/ton) + lincomycin hydrochloride (25 g/ton); the LRH, LRM and LRL groups were fed the basal diet supplemented with a high dose (750 g/ton of feed), normal dose (500 g/ton of feed), or low dose (250 g/ton of feed) of LR, respectively. The changes of intestinal structure, intestinal digestive enzyme activities, antioxidant enzyme activities, inflammatory cytokines, and bacterial abundances in the colon and cecum contents were determined. The results indicated that compared with the control group and the antibiotic group, LR significantly increased the villus length/crypt depth (VCR) of the intestine, and significantly inhibited oxidative stress and inflammatory responses in the broiler intestine. In addition, LR regulated intestinal function by increasing the abundance of the intestinal microorganisms in broilers. In conclusion, LR improved antioxidant capacity, intestinal morphology, and microorganisms, and inhibited inflammatory response. The effect of high and medium doses of LR was better than lower doses.
Collapse
Affiliation(s)
- Dahai Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China; State Key Laboratory of Animal Nutrition and feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojiao Hou
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Xiumin Wang
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China.
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Wei LS, Téllez-Isaías G, Abdul Kari Z, Tahiluddin AB, Wee W, Kabir MA, Abdul Hamid NK, Cheadoloh R. Role of Phytobiotics in Modulating Transcriptomic Profile in Carps: A Mini-Review. Biochem Genet 2024; 62:3285-3304. [PMID: 38167984 DOI: 10.1007/s10528-023-10606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Carp is a key aquaculture species worldwide. The intensification of carp farming, aimed at meeting the high demand for protein sources for human consumption, has resulted in adverse effects such as poor water quality, increased stress, and disease outbreaks. While antibiotics have been utilized to mitigate these issues, their use poses risks to both public health and the environment. As a result, alternative and more sustainable practices have been adopted to manage the health of farmed carp, including the use of probiotics, prebiotics, phytobiotics, and vaccines to prevent disease outbreaks. Phytobiotics, being both cost-effective and abundant, have gained widespread acceptance. They offer various benefits in carp farming, such as improved growth performance, enhanced immune system, increased antioxidant capacity, stress alleviation from abiotic factors, and enhanced disease resistance. Currently, a focal point of research involves employing molecular approaches to assess the impacts of phytobiotics in aquatic animals. Gene expression, the process by which genetic information encoded is translated into function, along with transcription profiling, serves as a crucial tool for detecting changes in gene expression within cells. These changes provide valuable insights into the growth rate, immune system, and flesh quality of aquatic animals. This review delves into the positive impacts of phytobiotics on immune responses, growth, antioxidant capabilities, and flesh quality, all discerned through gene expression changes in carp species. Furthermore, this paper explores existing research gaps and outlines future prospects for the utilization of phytobiotics in aquaculture.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, 7500, Bongao, Tawi-Tawi, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, 37200, Kastamonu, Türkiye
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | | | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala Province, 133 Thetsaban 3 Rd, Sateng, Mueang, 95000, Thailand
| |
Collapse
|
8
|
Li S, Chen P, Li Q, Wang X, Peng J, Xu P, Ding H, Zhou Z, Shi D, Xiao Y. Bacillus amyloliquefaciens TL promotes gut health of broilers by the contribution of bacterial extracellular polysaccharides through its anti-inflammatory potential. Front Immunol 2024; 15:1455996. [PMID: 39376562 PMCID: PMC11456473 DOI: 10.3389/fimmu.2024.1455996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
The focal point of probiotic efficacy and a crucial factor influencing poultry cultivation lies in the level of intestinal inflammation. In conventional farming processes, the reduction of intestinal inflammation generally proves advantageous for poultry growth. This study investigated the impact of Bacillus amyloliquefaciens TL (B.A.-TL) on inflammatory factor expression at both tissue and cellular levels, alongside an exploration of main active secondary metabolites. The results demonstrated that broiler feeding with a basal diet containing 4 × 109 CFU/kg B.A.-TL markedly enhanced chicken growth performance, concomitant with a significant decrease in the expression of genes encoding inflammatory cytokines (e.g., CCL4, CCR5, XCL1, IL-1β, IL-6, IL-8, LITAF, and LYZ) in jejunum and ileum tissues. The extracellular polysaccharides of B.A.-TL (EPS-TL) exhibited notable suppression of elevated inflammatory cytokine expression induced by Escherichia coli O55 lipopolysaccharides (LPS) in chicken macrophage-like cells (HD11) and primary chicken embryonic small intestinal epithelial cells (PCIECs). Moreover, EPS-TL demonstrated inhibitory effect on NF-κB signaling pathway activation. These findings suggested that the metabolic product of B.A.-TL (i.e., EPS-TL) could partly mitigate the enhanced expression of inflammatory factors induced by LPS stimulation, indicating its potential as a key component contributing to the anti-inflammatory effects of B.A.-TL.
Collapse
Affiliation(s)
- Shijie Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Pinpin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qiuyuan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jintao Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ping Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Ding
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Zou C, Xing X, Li S, Zheng X, Zhao J, Liu H. Effects of a Combined Chinese Herbal Medicine on Growth Performance, Intestinal Barrier Function, Immune Response, and Cecal Microflora in Broilers Infected with Salmonella enteritidis. Animals (Basel) 2024; 14:2670. [PMID: 39335258 PMCID: PMC11429040 DOI: 10.3390/ani14182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of CCHM in drinking water on broilers infected with Salmonella enteritidis. One-day-old male Cobb 500 broilers (n = 300) were randomly assigned to five groups: a control (NC) group, a Salmonella enteritidis challenge (SE) group, an antibiotic (AB) group, a low dose of CCHM (CL) group, and a high dose of CCHM (CH) group. Each group had six replicate cages with ten broilers per cage. The broilers in the NC and SE groups were given normal drinking water. From days 12 to 18, the AB group received water treated with ciprofloxacin lactate injection (1 mL/L), while the CL and CH groups received water containing CCHM at doses of 5 mL/L and 10 mL/L, respectively. Broilers in all groups except the NC group were orally given Salmonella enteritidis daily from days 9 to 11. The experimental period was 28 days. The results showed that, compared with the SE group, the CL and CH groups showed improved growth performance; increased immune organ indices, expressions of ileal occludin and ZO-1 proteins, jejunal and ileal villus heights (except at day 19), and cecal Lactobacillus counts on days 19 and 28 (p < 0.05); and decreased jejunal and ileal lesion scores, ileal interleukin 1β (IL-1β) (except at day 19), interferon-γ (IFN-γ), interleukin 6 (IL-6) (except at day 19), secretory immunoglobulin A (slgA) and tumor necrosis factor α (TNF-α) (except at day 19) levels, serum D-lactic acid and diamine oxidase (DAO) (except at day 19) contents, jejunal and ileal crypt depths (except at day 19), and cecal Salmonella and Escherichia coli counts on days 19 and 28 (p < 0.05). On day 28, except for the levels of ileal interleukin 10 (IL-10), TNF-α, slgA, and serum D-lactic acid content, there were no differences among the NC, AB, and CL groups (p > 0.05). In conclusion, drinking water supplemented with CCHM alleviated the intestinal damage caused by Salmonella enteritidis infection and improved growth performance and cecal microbiota in broilers. The optimal addition rate of CCHM was 5 mL/L.
Collapse
Affiliation(s)
- Changzhi Zou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Xin Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Shunxi Li
- Guangrao County Livestock Development Service Center, Dongying 257000, China;
| | - Xuelong Zheng
- Pingdu Yunshan Animal Health and Product Quality Supervision Station, Qingdao 266700, China;
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| |
Collapse
|
10
|
Fayed RH, Ali SE, Yassin AM, Madian K, Bawish BM. Terminalia bellirica and Andrographis paniculata dietary supplementation in mitigating heat stress-induced behavioral, metabolic and genetic alterations in broiler chickens. BMC Vet Res 2024; 20:388. [PMID: 39227945 PMCID: PMC11370032 DOI: 10.1186/s12917-024-04233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Heat stress (HS) is one of the most significant environmental stressors on poultry production and welfare worldwide. Identification of innovative and effective solutions is necessary. This study evaluated the effects of phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata on behavioral patterns, hematological and biochemical parameters, Oxidative stress biomarkers, and HSP70, I-FABP2, IL10, TLR4, and mTOR genes expression in different organs of broiler chickens under chronic HS conditions. A total of 208 one-day-old Avian-480 broiler chicks were randomly allocated into four treatments (4 replicate/treatment, 52 birds/treatment): Thermoneutral control treatment (TN, fed basal diet); Thermoneutral treatment (TN, fed basal diet + 1 kg/ton feed PHY); Heat stress treatment (HS, fed basal diet); Heat stress treatment (HS, fed basal diet + 1 kg/ton feed PHY). RESULTS The findings of the study indicate that HS led to a decrease in feeding, foraging, walking, and comfort behavior while increasing drinking and resting behavior, also HS increased red, and white blood cells (RBCs and WBCs) counts, and the heterophile/ lymphocyte (H/L) ratio (P < 0.05); while both mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were decreased (P < 0.05). In addition, HS negatively impacted lipid, protein, and glucose levels, liver and kidney function tests, and oxidative biomarkers by increasing malondialdehyde (MDA) levels and decreasing reduced glutathion (GSH) activity (P < 0.05). Heat stress (HS) caused the upregulation in HSP70, duodenal TLR4 gene expression, and the downregulation of I-FABP2, IL10, mTOR in all investigated tissues, and hepatic TLR4 (P < 0.05) compared with the TN treatment. Phytogenic feed additives (PHY) effectively mitigated heat stress's negative impacts on broilers via an improvement of broilers' behavior, hematological, biochemical, and oxidative stress biomarkers with a marked decrease in HSP70 expression levels while all tissues showed increased I-FABP2, IL10, TLR4, and mTOR (except liver) levels (P < 0.05). CONCLUSION Phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata have ameliorated the HS-induced oxidative stress and improved the immunity as well as the gut health and welfare of broiler chickens.
Collapse
Affiliation(s)
- Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - K Madian
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
11
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
12
|
Shi S, Ge M, Xiong Y, Zhang Y, Li W, Liu Z, Wang J, He E, Wang L, Zhou D. The novel probiotic preparation based on Lactobacillus spp. mixture on the intestinal bacterial community structure of Cherry Valley duck. World J Microbiol Biotechnol 2024; 40:194. [PMID: 38713319 DOI: 10.1007/s11274-023-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/27/2023] [Indexed: 05/08/2024]
Abstract
The development and utilization of probiotics have many environmental benefits when they are used to replace antibiotics in animal production. In this study, intestinal lactic acid bacteria were isolated from the intestines of Cherry Valley ducks. Probiotic lactic acid bacterial strains were screened for antibacterial activity and tolerance to produce a Lactobacillus spp. mixture. The effects of the compound on the growth performance and intestinal flora of Cherry Valley ducks were studied. Based on the results of the antibacterial activity and tolerance tests, the highly active strains Lactobacillus casei 1.2435, L. salivarius L621, and L. salivarius L4 from the intestines of Cherry Valley ducks were selected. The optimum ratio of L. casei 1.2435, L. salivarius L621, and L. salivarius L4 was 1:1:2, the amount of inoculum used was 1%, and the fermentation time was 14 h. In vivo experiments showed that compared with the control group, the relative abundances of intestinal Lactobacillus and Blautia were significantly increased in the experimental group fed the lactobacilli compound (P < 0.05); the relative abundances of Parabacteroides, [Ruminococcus]_torques_group, and Enterococcus were significantly reduced (P < 0.05), and the growth and development of the dominant intestinal flora were promoted in the Cherry Valley ducks. This study will provide more opportunities for Cherry Valley ducks to choose microecological agents for green and healthy breeding.
Collapse
Affiliation(s)
- Shuiqin Shi
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Mengrui Ge
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Yan Xiong
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Yixun Zhang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Wenhui Li
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Zhimuzi Liu
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Jianfen Wang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Enhui He
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Liming Wang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China.
| | - Duoqi Zhou
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China.
| |
Collapse
|
13
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
14
|
Lambo MT, Ma H, Liu R, Dai B, Zhang Y, Li Y. Review: Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants' enteric methane emission. Animal 2024; 18:101134. [PMID: 38593679 DOI: 10.1016/j.animal.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.
Collapse
Affiliation(s)
- M T Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - H Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - R Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - B Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Liu L, Yang N, Chen Y, Xu Z, Zhang Q, Miao X, Zhao Y, Hu G, Liu L, Song Z, Li X. Effects of fulvic acid on broiler performance, blood biochemistry, and intestinal microflora. Poult Sci 2024; 103:103273. [PMID: 38096671 PMCID: PMC10762468 DOI: 10.1016/j.psj.2023.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
To study the effects of mineral fulvic acid (FuA) on broiler performance, slaughter performance, blood biochemistry index, antioxidant function, immune performance, and intestinal microflora, 360 Arbor Acres (AA) broiler chickens with similar body weights were randomly divided into 5 groups with 6 replicates in each group and 12 chickens in each replicate in the current study. Chickens in the control group (C) were fed with the basal diet, and chickens in the test groups (I, II, III, and IV) were fed with the diet supplemented with 0.05%, 0.1%, 0.2%, and 0.3% mineral FuA, respectively. The indicators were measured on the hatching day, d 21 and d 35. From the whole experimental period, FuA supplement significantly increased average body weight (ABW) (P < 0.05), average daily gain (ADG) of broilers (P < 0.05), and thymus weight (P < 0.05) in II and IV groups, but bascially reduced the pH value of thigh meat. FuA supplement significantly improved aspartate aminotransferase (AST) activity in the group III on d 35 (P < 0.05) and the serum levels of IgA and IgG on d 21 and d 35 (P < 0.05), but reduced glutathione peroxidase (GSH-Px) level on d 21 (P < 0.05) and malondialdehyde (MDA) level in serum on d 35 (P < 0.05). FuA supplement significantly affected the abundance of Barnesiella, Lachnospiraceae, Alistipes, Lactobacillus, and Christensenellaceae on genus level. Differences between group III and other groups were significant in the genera microflora composition on d 21 and d 35. Functional analysis showed that the cecum microbiota were mainly enriched in carbohydrate metabolism, amino acid metabolism, and energy metabolism. In conclusion, FuA may potentially have significant positive effects on the growth performance and immune function of AA chickens through the modulation of the gut microbiota, and the 0.1% FuA was the best in broiler diet based on the present study.
Collapse
Affiliation(s)
- Long Liu
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Na Yang
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Yueji Chen
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Zhihao Xu
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Qingwei Zhang
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Xiuxiu Miao
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Yanan Zhao
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Geng Hu
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhi Song
- Shandong Agricultural Fertilizer Technology Co., Ltd., Feicheng, Shandong 271600, China
| | - Xianyao Li
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an 271018, China.
| |
Collapse
|
16
|
Liu Y, Song M, Bai H, Wang C, Wang F, Yuan Q. Curcumin improves the egg quality, antioxidant activity, and intestinal microbiota of quails during the late laying period. Poult Sci 2024; 103:103233. [PMID: 37980738 PMCID: PMC10685021 DOI: 10.1016/j.psj.2023.103233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
This study aimed to investigate the effects of dietary curcumin supplementation on laying performance, egg quality, egg metabolites, lipid metabolism, antioxidant activity, and intestinal microbial composition of quails in the late laying period. A total of 960 late-laying quails (240-day-old) were randomly divided into 4 groups of 6 replicates each (n = 40/replicate). The experimental diets of the 4 groups consisted of basal diets supplemented with 0, 50, 100, and 200 mg/kg curcumin, respectively. The feeding experiment lasted for 8 wk. The results showed that 200 mg/kg curcumin supplementation decreased mortality and increased eggshell thickness and strength compared with the 0 mg/kg curcumin supplementation during wk 5 to 8. In addition, dietary supplementation of curcumin promoted lipid metabolism, enhanced antioxidant activity, and modified intestinal microbiota structure. In conclusion, dietary supplemented with 200 mg/kg curcumin significantly improved the egg quality of quails in the late laying period, primarily by improving lipid metabolism and selectively regulating the intestinal microbial community.
Collapse
Affiliation(s)
- Yong Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Mudanjiang Medical University, Mudanjiang 157011, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Zoonosis, Harbin 150030, China
| | - He Bai
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Chunhua Wang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Fei Wang
- Beijing Sunshine Yunlian Medical Technology Service Co., Ltd., Beijing 100076, China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China.
| |
Collapse
|
17
|
Tran HL, Chen YS, Hung HW, Shih BL, Lee TY, Yen CH, Lin JB. Diet Supplementation with Prinsepiae Nux Extract in Broiler Chickens: Its Effect on Growth Performance and Expression of Antioxidant, Pro-Inflammatory, and Heat Shock Protein Genes. Animals (Basel) 2023; 14:73. [PMID: 38200804 PMCID: PMC10778437 DOI: 10.3390/ani14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Heat stress significantly undermines the poultry industry by escalating rates of morbidity and mortality and impairing growth performance. Our recent findings indicate that Prinsepiae Nux extract (PNE) effectively stimulates the Nrf2 signaling pathway, a vital element in cellular antioxidant stress responses. This study further explores the prospective benefits of supplementing PNE into poultry feed to enhance broiler growth in heat-stressed conditions. An Nrf2-luciferase reporter assay was developed in a chicken fibroblast cell line, demonstrating that PNE induces Nrf2 activity in a concentration-dependent manner. Real-time RT-PCR results showed that PNE intensifies the expression of Nrf2-responsive targets such as Ho1 and Nqo1 in chicken fibroblasts. A total of 160 one-day-old Arbor Acres broiler chicks were randomly assigned into four groups, each receiving a basal diet supplemented with either 0% (control), 0.1% PNE, 1% PNE, or commercial electrolyte for 35 days. Broilers were raised in an environment where the ambient temperature exceeded 30 °C for approximately seven hours each day, fluctuating between 26 and 34 °C, which is known to induce mild heat stress. The findings reveal that a 1% PNE supplement led to a significant decrease in the feed conversion ratio (FCR) compared to the control group. Moreover, chickens supplemented with 1% PNE exhibited a substantial increase in hepatic mRNA expression of antioxidant genes, such as Nqo1, Gclc, Sod2, Cat, and heat shock protein-related genes including Hsp90 and Hsf1, and a decrease in pro-inflammatory cytokine genes Il-6 and Il-1β. Consequently, PNE holds potential as a feed supplement to strengthen the antioxidant defenses of broilers and build heat stress resilience in the poultry industry.
Collapse
Affiliation(s)
- Hong-Loan Tran
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
| | - His-Wen Hung
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Bor-Ling Shih
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Tsung-Yu Lee
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jeng-Bin Lin
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| |
Collapse
|
18
|
Nath SK, Hossain MT, Ferdous M, Siddika MA, Hossain A, Maruf AA, Chowdhory AT, Nath TC. Effects of antibiotic, acidifier, and probiotic supplementation on mortality rates, lipoprotein profile, and carcass traits of broiler chickens. Vet Anim Sci 2023; 22:100325. [PMID: 38058382 PMCID: PMC10696248 DOI: 10.1016/j.vas.2023.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Antimicrobial resistance is a significant issue, therefore it's relevant to assess the effects of antibiotics, acidifiers, and probiotic supplementation finding a good alternative to reduce the use of antibiotics in broiler production in rural areas of Bangladesh. Using randomized control trial, this 28-day study evaluated 360 Hubbard Classic broiler chicks divided into four groups: oxytetracycline-treated, acidifier-treated, Lactobacillus-based probiotic-treated, and control (no antibiotics, acidifiers, or probiotics). Each group was replicated three times with 30 birds each with adlibitum feeding. Body weight and feed intake were recorded weekly, and on 28th day, carcass traits and blood lipoprotein levels were evaluated. Results showed that in first and fourth weeks, the body weight gain significantly varied in probiotics and acidifier-treated birds than the control group (P < 0.001). The probiotic group had gained considerable increase in body weight (185.0 g vs 161.7 g and 1745.0 g vs 1592.7 g) than the control group. Notably, in the first week, the feed conversion ratio for the probiotic group was 0.76, but the antibiotic group's was 0.96 (P < 0.001). The weights of the drumstick (88.33 g) and liver (61.0 g) having probiotic supplements were substantially higher than those in the control group (77.0 g and 51.33 g, respectively) (P < 0.001). According to serum lipoprotein analysis, the probiotic and acidifier groups exhibited lower LDL levels (71.1 mg/dl and 69.8 mg/dl, respectively) and higher triglyceride levels (122.9 mg/dl and 135.4 mg/dl). These findings highlight the potential of probiotics and acidifiers as effective antibiotic alternatives, promoting carcass traits and lowering LDL levels in broilers in Bangladesh.
Collapse
Affiliation(s)
- Sabuj Kanti Nath
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Md Taslim Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Mahfuza Ferdous
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Mst. Assrafi Siddika
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Amir Hossain
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Amim Al Maruf
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Ahanaf Tahmid Chowdhory
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Tilak Chandra Nath
- Department of Parasitology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
19
|
Zhang X, Miao Q, Tang B, Mijakovic I, Ji XJ, Qu L, Wei Y. Discovery of novel alkaline-tolerant xylanases from fecal microbiota of dairy cows. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:182. [PMID: 38012750 PMCID: PMC10683242 DOI: 10.1186/s13068-023-02435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Xylo-oligosaccharides (XOS) are considered as a promising type of prebiotics that can be used in foods, feeds, and healthcare products. Xylanases play a key role in the production of XOS from xylan. In this study, we conducted a metagenomic analysis of the fecal microbiota from dairy cows fed with different types of fodders. Despite the diversity in their diets, the main phyla observed in all fecal microbiota were Firmicutes and Bacteroidetes. At the genus level, one group of dairy cows that were fed probiotic fermented herbal mixture-containing fodders displayed decreased abundance of Methanobrevibacter and increased growth of beneficial Akkermansia bacteria. Additionally, this group exhibited a high microbial richness and diversity. Through our analysis, we obtained a comprehensive dataset comprising over 280,000 carbohydrate-active enzyme genes. Among these, we identified a total of 163 potential xylanase genes and subsequently expressed 34 of them in Escherichia coli. Out of the 34 expressed genes, two alkaline xylanases with excellent temperature stability and pH tolerance were obtained. Notably, CDW-xyl-8 exhibited xylanase activity of 96.1 ± 7.5 U/mg protein, with an optimal working temperature of 55 ℃ and optimal pH of 8.0. CDW-xyl-16 displayed an activity of 427.3 ± 9.1 U/mg protein with an optimal pH of 8.5 and an optimal temperature at 40 ℃. Bioinformatic analyses and structural modeling suggest that CDW-xyl-8 belongs to GH10 family xylanase, and CDW-xyl-16 is a GH11 family xylanase. Both enzymes have the ability to hydrolyze beechwood xylan and produce XOS. In conclusion, this metagenomic study provides valuable insights into the fecal microbiota composition of dairy cows fed different fodder types, revealing main microbial groups and demonstrating the abundance of xylanases. Furthermore, the characterization of two novel xylanases highlights their potential application in XOS production.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qin Miao
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lingbo Qu
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Yang J, Zhou S, Fu Z, Xiao B, Li M, Yu G, Ma Z, Zong H. Fermented Astragalus membranaceus could promote the liver and intestinal health of juvenile tiger grouper ( Epinephelus fuscoguttatus). Front Physiol 2023; 14:1264208. [PMID: 37781230 PMCID: PMC10534042 DOI: 10.3389/fphys.2023.1264208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In order to understand the effects of fermented Astragalus membranaceus (FAM) on the liver and intestinal health of tiger grouper (Epinephelus fuscoguttatus), this study was conducted. This study evaluates the effects of different levels of FAM on liver and intestinal tissue structure, serum biochemical parameters, intestinal digestive enzyme, and microbiota structure of tiger grouper. Fish were fed with diets (crude protein ≥ 48.0%, crude fat ≥ 10.0%) with five levels of FAM (L1:0.25%, L2: 0.5%, L3: 1%, L4: 2% and L5: 4%) in the experimental groups and a regular diet was used as the control (L0: 0%) for 8 weeks. Compared with AM, the protein content of FAM was significantly changed by 34.70%, indicating that a large amount of bacterial protein was produced after AM fermentation, and its nutritional value was improved. FAM had significant effects on the growth performance of tiger grouper (p < 0.05). The high-density lipoprotein cholesterol (HDL-C) was highest in L4 group, being significantly different from L0 group. The area and diameter of hepatocytes were lowest in L3 and L4, and the density of hepatocyte was highest in L4 group and relatively decreased in L5 group. The mucosal height and muscular thickness were highest in L3 group. The intestinal microbiota structure of tiger grouper was changed under the intervention of FAM. The lower abundance of potential pathogenic bacteria and higher abundance of probiotics colonization in the L4 group showed that the dose of FAM had the best effect on improving the health of intestinal microbiota. This study indicates that the addition of FAM in the feed contributes to liver health, improves intestinal morphology, and regulates the intestinal microbiota of tiger grouper. The addition ratio of 1%-2% is better for intestinal and liver health, and a high addition ratio will cause liver damage. Our work will provide a reference for the addition and management of FAM in the aquaculture industry.
Collapse
Affiliation(s)
- Jingru Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shengjie Zhou
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Bo Xiao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian, China
| |
Collapse
|
21
|
Li X, Wu X, Ma W, Xu H, Chen W, Zhao F. Feeding Behavior, Growth Performance and Meat Quality Profile in Broiler Chickens Fed Multiple Levels of Xylooligosaccharides. Animals (Basel) 2023; 13:2582. [PMID: 37627372 PMCID: PMC10451349 DOI: 10.3390/ani13162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
A total of 240 1-day-old Arbor Acres broiler chickens were randomly distributed to 4 treatment groups with 6 replicates and 10 birds per replicate. Chickens were fed with corn-soybean meal diet supplementation with additions of 0, 150, 300, and 450 mg/kg XOS for 42 days. At 4 weeks of age, the average feeding time was reduced in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was increased in the 300 mg/kg XOS group (p < 0.05). At 5 weeks of age, broilers fed with 300 mg/kg XOS had increased the percentage of feeding time (p < 0.05), and 450 mg/kg XOS had increased the feeding frequency and percentage of feeding time (p < 0.05). At 6 weeks of age, the feeding frequency was highest in the 450 mg/kg XOS group (p < 0.05). During 4 to 6 weeks of age, the average feeding time was increased in 300 mg/kg XOS group (p < 0.05), the frequency was improved in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was longer in the XOS group than that in the control group (p < 0.05). The average daily gain was improved during days 22-42 and days 1-42 in the 150 mg/kg XOS group (p < 0.05). Broilers fed with 300 mg/kg XOS had an increased eviscerated rate (p < 0.05). The pH45min of breast muscle was highest in the 450 mg/kg XOS group (p < 0.05), as well as the pH45min and pH24h of thigh muscle, which improved in the 300 mg/kg and 450 mg/kg XOS groups (p < 0.05). In addition, the cooking loss of thigh muscle was reduced in the 300 mg/kg XOS group (p < 0.05). In conclusion, dietary supplementation with XOS had positive effects on the feeding behavior, growth performance, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Xiaohong Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Furong Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| |
Collapse
|
22
|
Wang S, Li C, Zhang C, Liu G, Zheng A, Qiu K, Chang W, Chen Z. Effects of Sihuang Zhili Granules on the Diarrhea Symptoms, Immunity, and Antioxidant Capacity of Poultry Challenged with Lipopolysaccharide (LPS). Antioxidants (Basel) 2023; 12:1372. [PMID: 37507912 PMCID: PMC10376454 DOI: 10.3390/antiox12071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
A growing interest has been focused on Chinese herbs as alternatives to antimicrobial growth promoters, which are characterized by non-toxic side effects and drug resistance. The purpose of this study was to evaluate the effects of the Sihuang Zhili granule (abbreviated as Sihuang) on diarrhea, immunity, and antioxidation in poultry. Thirty male Leghorn chickens, aged 21 days, were randomly assigned to one of three groups with ten animals each. The control group (CON) received intraperitoneal saline injections, while the LPS-challenged group (LPS) and Sihuang intervention group (SH) received intraperitoneal injections of LPS (0.5 mg/kg of BW) and Sihuang (5 g/kg) at d 31, d 33, d 35, respectively. The control and LPS groups were fed a basal diet, while the SH group was fed a diet supplemented with Sihuang from d 21 to d 35. Analysis of the diarrhea index showed that the addition of Sihuang inhibited the increase in the diarrhea grade and the fecal water content caused by LPS, effectively alleviating poultry diarrhea symptoms. The results of the immune and antioxidant indexes showed that Sihuang significantly reduced the contents of the pro-inflammatory factors TNF- α and IL-1 β, as well as the oxidative stress markers ROS and MDA. Conversely, it increased the contents of the anti-inflammatory factors IL-4 and IL-10, along with the activities of antioxidant enzymes GSH-Px and CAT, thereby enhancing the immune and antioxidant abilities of chickens. Furthermore, Sihuang protected the chicken's ileum, liver, and immune organs from LPS invasion and maintained their normal development. In conclusion, this study confirmed the antidiarrheal effect of Sihuang in poultry farming and demonstrated its ability to improve poultry immunity and antioxidant capacity by modulating antioxidant enzyme activity and inflammatory cytokine levels.
Collapse
Affiliation(s)
- Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Yosi F, Metzler-Zebeli BU. Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis. Animals (Basel) 2023; 13:1970. [PMID: 37370480 DOI: 10.3390/ani13121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Data published in the literature about the favorable effects of dietary probiotics on gut health in broiler chickens are inconsistent. To obtain a more comprehensive understanding, we conducted a meta-analysis to assess the effects of probiotics on the gut barrier and immune-related gene expression, histomorphology, and growth in chickens that were either challenged or non-challenged with pathogens. From the 54 articles published between 2012 and 2022, subsets of data, separately for non-challenged and challenged conditions, for response variables were created. The mean dietary probiotic concentrations ranged from 4.7 to 6.2 and 4.7 to 7.2 log10 colony-forming unit/kg under non-challenged and challenged conditions, respectively. Probiotics increased the expression of genes for mucins and tight junction proteins in the jejunum and ileum at weeks 3 and 6. The stimulatory effect of probiotics on tight junction protein expression was partly stronger in challenged than in non-challenged birds. Meta-regressions also showed an anti-inflammatory effect of probiotics under challenged conditions by modulating the expression of cytokines. Probiotics improved villus height at certain ages in the small intestine while not influencing growth performance. Dietary metabolizable energy, crude protein, and days post-infection modified the effects of probiotics on the observed variables. Overall, meta-regressions support the beneficial effects of probiotics on gut integrity and structure in chickens.
Collapse
Affiliation(s)
- Fitra Yosi
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
24
|
Jin X, Liu S, Chen S, Wang L, Cui Y, He J, Fang S, Li J, Chang Y. A systematic review on botany, ethnopharmacology, quality control, phytochemistry, pharmacology and toxicity of Arctium lappa L. fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116223. [PMID: 36781057 DOI: 10.1016/j.jep.2023.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
25
|
Liu M, Zhou J, Li Y, Ding Y, Lian J, Dong Q, Qu Q, Lv W, Guo S. Effects of dietary polyherbal mixtures on growth performance, antioxidant capacity, immune function and jejunal health of yellow-feathered broilers. Poult Sci 2023; 102:102714. [PMID: 37172360 DOI: 10.1016/j.psj.2023.102714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/14/2023] Open
Abstract
This study aimed to investigate the effects of polyherbal mixtures (PHM) on growth performance, antioxidant capacities, immune function, and intestinal health in yellow-feathered broilers. PHM is composed of five traditional Chinese medicine herbs (Portulaca oleracea L., Radix Sophora flavescens, Thalictrum glandulosissimum, Terra flava usta, and Pogostemon cablin). A total of 270 one-day-old yellow-feathered broilers were randomly allotted into 3 treatments for a 42-d feeding trial, each with 6 replicates of 15 birds. The dietary treatments consisted of a basal diet (CON), a basal diet supplemented with 50 mg/kg chlortetracycline (CTC), and a basal diet supplemented with 1000 mg/kg PHM. The results showed that dietary PHM supplementation increased body weight, ADG, and decreased F/G compared to the CON. PHM also increased spleen index and mRNA expression of IL-4 (d 21), and thymus index, serum IgA (d 42) and IgG, IL-4 and sIgA in jejunal mucosa (d 21 and 42), but decreased serum IFN-γ and mRNA expression of IFN-γ (d 21 and 42). In addition, PHM increased serum SOD, GSH-Px (d 21 and 42) and T-AOC (d 42), but decreased the content of serum MDA (d 21), the up-regulated mRNA expression of GSH-Px, CAT (d 21), SOD and CAT (d 42). Furthermore, PHM also improved the intestinal epithelial barrier indicators by the up-regulated mRNA expression of CLDN-1, OCLN (d 21 and 42) and ZO-1 (d 21), and the increased of villus height and villus height to crypt depth in jejunum (d 42). The high-throughput sequencing results showed that dietary PHM supplementation increased the alpha diversity and relative abundance of Oscillospira and Ruminococcus (d 21) and Lactobacillus (d 42), whereas decreasing that of Enterococcus (d 21) compared with CON. PICRUSt analysis revealed that metabolic pathways of carbohydrate, energy, lipid, cofactors, and vitamins were significantly enriched in the PHM group. Spearman's correlation analysis revealed that the genera Lactobacillus, Enterococcus, Ruminococcus, Oscillospira, and Faecalibacterium were related to growth performance, intestinal integrity, immune-related factors, antioxidant indices, and tight junction proteins. In conclusion, the results indicated that dietary PHM supplementation improved growth performance and immune status of yellow-feathered broilers by enhancing antioxidant capacities, barrier function, and modulated jejunal microbial communities. PHM used in our study has the potential to replace prophylactic antibiotic use in poultry production systems.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jing Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yue Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiale Lian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Technology Research center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
26
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Khalid Shihab S, Hkmat Nafea H. Effect of Adding Cordyceps sinensis Extract and Probiotic to the Diet on Productive Performance of Broiler. ARCHIVES OF RAZI INSTITUTE 2023; 78:659-666. [PMID: 37396748 PMCID: PMC10314248 DOI: 10.22092/ari.2022.359478.2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/13/2022] [Indexed: 07/04/2023]
Abstract
Following a substantial increase in poultry breeding, the demand for their meat has risen. Poultry meat is one of the primary sources of protein in human nutrition, which contributes to food security. However, implementing intensive breeding programs and exposing birds to multiple stressors have led to the overuse of antibiotics and worse poultry health. This study was carried out at the poultry farm of the Animal Production Department, College of Agriculture, University of Anbar, Ramadi, Iraq from 28/10/2021 to 8/12/2021 (42 days), to show the effect of the addition of Cordyceps sinensis extract and a probiotic to the diet of broilers on their productive performance. For this purpose, 210 one-day-old unsexed chicks of strain (Ross 308) were used with an average weight of 40 g. They were randomly divided into seven groups of treatments, and each treatment had three replicates (10 chicks per replicate). The treatments included T1, which was the control group without any addition to the diet, T2 and T3 with the addition of C. sinensis extract at a level of 300 and 600 mg/kg feed, respectively, T4 and T5 with the addition of a probiotic at the level of 3 and 6 g/kg feed, respectively, T6 with the addition of C. sinensis extract at a level of 300 mg/kg feed + the probiotic at a level of 3 g/kg feed, T7 with the addition of C. sinensis extract at a level of 600 mg/kg feed + the probiotic at a level of 3 g/kg fodder and 6 g/kg feed. The results showed a significant superiority (P≤0.05) in favor of the T6 and T7 treatments, which included the mixture of C. sinensis extract and the probiotic, in terms of the average body weight at the sixth week, over the rest of the treatments except for the T3 treatment which included the addition of C. sinensis extract at a level of 600 mg/kg feed. Regarding weight increase, the T3 treatment, which included the addition of . sinensis extract at a level of 600 mg/kg feed, was significantly superior (P≤0.05) to the T4 treatment, which included the addition of the booster at a level of 3 g/kg feed. Regarding the feed consumption rate, it was observed that all the added treatments significantly decreased it (P≤0.05), compared to the control T1 and the cumulative feed conversion factor (0-6 weeks). It was noticed that the treatments of the mixture T6 and T7 led to a significant (P≤0.05) improvement, compared to the other experimental treatments. It is concluded from this that the addition that C. sinensis extract and the probiotic improved the productive performance of broilers without any adverse effects.
Collapse
Affiliation(s)
- S Khalid Shihab
- Directorate of Agriculture of Anbar Province, Ministry of Agriculture, Republic of Iraq, Baghdad, Iraq
| | - H Hkmat Nafea
- Department of Animal Recourse, College of Agriculture, University of Anbar, Baghdad, Iraq
| |
Collapse
|
28
|
Zhou X, Li S, Jiang Y, Deng J, Yang C, Kang L, Zhang H, Chen X. Use of fermented Chinese medicine residues as a feed additive and effects on growth performance, meat quality, and intestinal health of broilers. Front Vet Sci 2023; 10:1157935. [PMID: 37056232 PMCID: PMC10086232 DOI: 10.3389/fvets.2023.1157935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction The purpose of this research was to investigate how dietary supplementation with fermented herbal residues (FCMR) affected birds' development capacity, quality of meat, gut barrier, and cecum microbiota. Methods 540 cyan-shank partridge birds aged 47 days were chosen and divided into two groups of six replicates each and 45 birds for each replicate. The control group (CON) received a basal diet, while the trial group decreased a basic diet containing 5% FCMR. Results and discussion The findings revealed that the addition of FCMR decreased FCR and increased ADG in broilers (P < 0.05). Adding FCMR increased steaming loss in broiler chicken breasts (p < 0.05). Supplementation with FCMR significantly enhanced VH/CD and VH in the bird's intestine (jejunum, duodenum, and ileum) (p < 0.05). In addition, the addition of FCMR significantly down-regulated mRNA expression of INF-γ, IL-6, IL-1β, and TNF-α and up-regulated mRNA expression of ZO-1, Occludin, and Claudin (P < 0.05). Microbial 16S rDNA high-throughput sequencing study revealed that supplements with FCMR modified the cecum microbiota, and α-diversity analysis showed that supplementation with FCMR reduced the cecum bacterial abundance in broilers (P < 0.05). At the phylum level, the relative abundance of Spirochaetota increased considerably following FCMR supplementation (P < 0.05). The broiler cecum's close lot of Prevotellaceae_UCG-001 (P < 0.05), Desulfovibrio, Muribaculaceae, and Fusobacterium (p < 0.05) reduced when FCMR was supplemented. Supplementation with FCMR can promote growth capacity and maintain intestinal health in birds by enhancing gut barrier function and modulating the inflammatory response and microbial composition.
Collapse
Affiliation(s)
- Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Lijuan Kang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| |
Collapse
|
29
|
Li C, Wang S, Chen S, Wang X, Deng X, Liu G, Chang W, Beckers Y, Cai H. Screening and Characterization of Pediococcus acidilactici LC-9-1 toward Selection as a Potential Probiotic for Poultry with Antibacterial and Antioxidative Properties. Antioxidants (Basel) 2023; 12:215. [PMID: 36829774 PMCID: PMC9952579 DOI: 10.3390/antiox12020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Growing interest has been focused on lactic acid bacteria as alternatives to antimicrobial growth promoters, which are characterized by the production of various functional metabolites, such as antimicrobial and antioxidants compounds. The present study was undertaken to evaluate a potential probiotic from the antioxidant perspective. LC-9-1, screened from the intestines of healthy animals, was revealed to be Pediococcus acidilactici on the basis of its morphological, biochemical, and molecular characteristics. The strain has excellent properties, including acid-production efficiency, antibacterial performance and antioxidant activity. The safety of the strain was also evaluated. Furthermore, the experiments in broiler chickens suggested that dietary LC-9-1 supplementation improved the growth performance and decreased the abdominal fat, and enhanced the antioxidant capability and intestinal innate immunity of broilers. Analysis of intestinal microbiota showed that a higher community diversity (Shannon index) was achieved. In addition to the significantly increased relative abundances of Pediococcus spp., beneficial genera such as Rothia spp. and Ruminococcus spp. were abundant, while opportunistic pathogens such as Escherichia-Shigella spp. were significantly reduced in LC-9-1-supplemented broilers. Collectively, such in-depth characterization and the available data will guide future efforts to develop next-generation probiotics, and LC-9-1 could be considered a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Xiaoying Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Xuejuan Deng
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Yves Beckers
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| |
Collapse
|
30
|
Kong Q, Shang Z, Liu Y, Fakhar-e-Alam Kulyar M, Suo-lang S, Xu Y, Tan Z, Li J, Liu S. Preventive effect of Terminalia bellirica (Gaertn.) Roxb. extract on mice infected with Salmonella Typhimurium. Front Cell Infect Microbiol 2023; 12:1054205. [PMID: 36699727 PMCID: PMC9868565 DOI: 10.3389/fcimb.2022.1054205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional herbal combination used in Chinese medicine for the treatment of a broad range of diseases. In this study, thirty KM mice were randomly divided into control (N), infection group (NS), and the TB protection group (HS). Based on its digestive feature, intestinal physical barrier, immunological barrier and gut microbiota effects in vivo on challenged with S.typhimurium mice were investigated after oral administration of 600 mg/kg b.wt of TB for 13 days. The results show that the extract could improve the level of serum immunoglobulins (IgA and IgG), decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the V3-V4 region of the 16S rRNA analyzed, the results of the taxonomic structure of the intestinal microbiota demonstrated that the TB prevention effect transformed the key phylotypes of the gut microbiota in S. Typhimurium-challenged mice and promoted the multiplication of beneficial bacteria. Furthermore, the abundance of Firmicutes and Deferribacteres increased, while that of Bacteroidetes and Actinobacteria decreased. At the genus level, the abundance of Ruminococcus and Oscillospira was substantially enhanced, while the other dominant genera showed no significant change between the vehicle control groups and the TB prevention groups. In summary, these results provide evidence that the administration of TB extract can prevent S. Typhimurium infection by alleviating the intestinal physical and immunological barriers and normalizing the gut microbiota, highlighting a promising application in clinical treatment. Thus, our results provide new insights into the biological functions of TB for the preventive effect of intestinal inflammation.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| | - Yao Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | | | - Sizhu Suo-lang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Yefen Xu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| | - Jiakui Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| |
Collapse
|
31
|
Fu G, Zhou Y, Song Y, Liu C, Hu M, Xie Q, Wang J, Zhang Y, Shi Y, Chen S, Hu J, Sun Y. The effect of combined dietary supplementation of herbal additives on carcass traits, meat quality, immunity and cecal microbiota composition in Hungarian white geese. PeerJ 2023; 11:e15316. [PMID: 37180579 PMCID: PMC10174065 DOI: 10.7717/peerj.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was performed to investigate the effects of dietary supplementation with herbal additives on meat quality, slaughter performance and the cecal microbial community in Hungarian white geese. A total of 60 newborn geese were assigned equally into the control group (CON) and the herbal complex supplemented group (HS). The dietary supplementations consisted of Compound Herbal Additive A (CHAA) including Pulsatilla, Gentian and Rhizoma coptidis, and Compound Herbal Additive B (CHAB) containing Codonopsis pilosula, Atractylodes, Poria cocos and Licorice. The geese in the HS group received a basal diet supplemented with 0.2% CHAA from day 0 to day 42 at the postnatal stage. Then from day 43 to day 70, the geese in HS group were provide a basal diet with 0.15% CHAB. The geese in the CON group were only provided with the basal diet. The results showed that the slaughter rate (SR), half chamber rates (HCR), eviscerated rate (ER) and breast muscle rate (BMR) in the HS group tended to increase slightly compared with the CON group (ns). In addition, the shear force, filtration rate and pH value of breast muscle and thigh muscle in the HS group were slightly enhanced compared to the CON group (ns). Significant increased levels in carbohydrate content, fat content and energy (P < 0.01) and significant decreased levels in cholesterol content (P < 0.01) were observed in the muscle of the HS group. The total amino acid (Glu, Lys, Thr and Asp) content in the muscle increased in HS group than in the CON group (P < 0.01). Dietary herb supplementations significantly increased the levels of IgG in serum (P < 0.05) on day 43 and higher levels of IgM, IgA and IgG (P < 0.01) were also observed in the HS group on day 70. Furthermore, 16S rRNA sequencing results indicated that herbal additives increased the growth of beneficial bacteria and inhibited the proliferation of harmful bacteria in the geese caecum. Altogether, these results offer crucial insights into the potential benefits of incorporating CHAA and CHAB into the diets of Hungarian white goose. The findings indicate that such supplementations could significantly improve meat quality, regulate the immune system and shape the intestinal microbiota composition.
Collapse
Affiliation(s)
- Guilin Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Liu
- Changchun Animal Husbandry Service, Changchun, China
| | - Manjie Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiuyu Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yumeng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuhao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
32
|
Li C, Li S, Dang G, Jia R, Chen S, Deng X, Liu G, Beckers Y, Cai H. Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property. Front Microbiol 2023; 14:1143265. [PMID: 37138616 PMCID: PMC10149742 DOI: 10.3389/fmicb.2023.1143265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Bacillus spp. have gained increasing recognition as an option to use as antimicrobial growth promoters, which are characterized by producing various enzymes and antimicrobial compounds. The present study was undertaken to screen and evaluate a Bacillus strain with the multi-enzyme production property for poultry production. LB-Y-1, screened from the intestines of healthy animals, was revealed to be a Bacillus velezensis by the morphological, biochemical, and molecular characterization. The strain was screened out by a specific screening program, possessed excellent multi-enzyme production potential, including protease, cellulase, and phytase. Moreover, the strain also exhibited amylolytic and lipolytic activity in vitro. The dietary LB-Y-1 supplementation improved growth performance and tibia mineralization in chicken broilers, and increased serum albumin and serum total protein at 21 days of age (p < 0.05). Besides, LB-Y-1 enhanced the activity of serum alkaline phosphatase and digestive enzyme in broilers at 21 and 42 days of age (p < 0.05). Analysis of intestinal microbiota showed that a higher community richness (Chao1 index) and diversity (Shannon index) in the LB-Y-1 supplemented compared with the CON group. PCoA analysis showed that the community composition and structure were distinctly different between the CON and LB-Y-1 group. The beneficial genera such as Parasutterella and Rikenellaceae were abundant, while the opportunistic pathogen such as Escherichia-Shigella were reduced in the LB-Y-1 supplemented group (p < 0.05). Collectively, LB-Y-1 can be considered as a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guoqi Dang
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rui Jia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Xuejuan Deng
- National Engineering Research Center of Biological Feed, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- National Engineering Research Center of Biological Feed, Beijing, China
- *Correspondence: Huiyi Cai,
| |
Collapse
|
33
|
Lv W, Ma Y, Zhang Y, Wang T, Huang J, He S, Du H, Guo S. Effects of Lactobacillus plantarum fermented Shenling Baizhu San on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Front Vet Sci 2023; 10:1103023. [PMID: 36908522 PMCID: PMC9992544 DOI: 10.3389/fvets.2023.1103023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The current study focused on the effects of Shenling Baizhu San (SLBZS) fermented by Lactobacillus plantarum (L. plantarum) on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Our results showed that the content of ginsenoside Rb1 was the highest when SLBZS were inoculated with 3% L. plantarum and fermented at 28°C for 24 h. One-day-old male broilers were divided into five treatment groups. Treatment consisted of a basal diet as a control (Con), 0.1% unfermented SLBZS (U-SLBZS), 0.05% fermented SLBZS (F-SLBZS-L), 0.1% fermented SLBZS (F-SLBZS-M), and 0.2% fermented SLBZS (F-SLBZS-H). On days 14, 28, and 42, six chickens from each group were randomly selected for blood collection and tissue sampling. The results showed that the addition of 0.1% fermented SLBZS could significantly increase average daily feed intake (ADFI) and average daily gain (ADG), and decrease feed conversion ratio (FCR) of broilers. The addition of 0.1 and 0.2% fermented SLBZS significantly increased the lymphoid organ index of broilers on day 28 and 42. The addition of 0.1 and 0.2% fermented SLBZS could improve the antioxidant capacity of broilers. Moreover, the addition of 0.1 and 0.2% fermented SLBZS could significantly increase the villus height/crypt depth of the ileum, and significantly increase the expression of tight junction. In addition, fermentation of SLBZS increase the abundance of Coprococcus, Bifidobacterium and Bilophila in the gut of broilers. These results indicate that the supplementation of fermented SLBZS in the diet could improve the growth performance, lymphoid organ index, antioxidant capacity, and positively affect the intestinal health of broilers.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| |
Collapse
|
34
|
Effects of Kadsura coccinea L. Fruit Extract on Growth Performance, Meat Quality, Immunity, Antioxidant, Intestinal Morphology and Flora of White-Feathered Broilers. Animals (Basel) 2022; 13:ani13010093. [PMID: 36611702 PMCID: PMC9817888 DOI: 10.3390/ani13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to determine whether adding Kadsura coccinea fruit extract to the diet of broilers could replace antibiotics. For this study, 300 one-day-old AA white feathered broilers were divided into five groups (no sex separated), with six repetitions per group (n = 10), as follows: blank control group (basal feed, CK group), positive drug (basal feed + 300 mg/kg aureomycin, PD group), and Kadsura coccinea low-dose, medium-dose, and high-dose groups (basal feed + 100 mg/kg, 200 mg/kg, and 300 mg/kg of Kadsura coccinea fruit extract, LD group, MD group and HD group). The experiment period was divided into early (1−21 days) and late (22−42 days) stage. We found that supplementation with Kadsura coccinea fruit extract in the diet significantly improved the growth performance of broilers (p < 0.05), reduced the feed to meat ratio (p < 0.05), reduced the fat percentage (p < 0.05), while had no significant effect on meat quality (p > 0.05) and Kadsura coccinea fruit extract could promote the development of immune organs to different extents, enhance antioxidant capacity, the contents of SOD and GSH-Px in serum were significantly increased (p < 0.05), improve the ratio of villus height to crypt depth. Finally, Kadsura coccinea fruit extract increased the relative abundance of probiotics and beneficial bacteria (Bacteroidales, NK4A214, Subdoligranulum and Eubacterium hallii) (p < 0.05) and reduced the relative abundance of harmful bacteria (Erysipelatoclostridium) (p < 0.05) in the gut of broilers. Compared with positive drug group, most of the indexes in the medium-dose group were better or had similar effects. We believe that Kadsura coccinea fruit extract can be used as a potential natural antibiotic substitute in livestock and poultry breeding programs.
Collapse
|
35
|
Zou Q, Meng W, Wang T, Liu X, Li D. Effect of multi-strain probiotics on the performance of AA+ male broilers. Front Vet Sci 2022; 9:1098807. [PMID: 36590807 PMCID: PMC9797809 DOI: 10.3389/fvets.2022.1098807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of the experiment was to investigate the effects of a probiotic complex (PC) consisting of Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis on productive performance, carcass traits, immune organ indices, fecal microbiota counts and noxious gas emissions in AA+ male broilers. Three hundred and sixty 1-day-old AA+ male broilers with similar body weight (44.77 ± 0.25) were randomly divided into 3 treatment groups of 6 replicates each, with 20 broilers in each replicate. The experimental groups consisted of a group fed a basal diet and groups fed basal diet supplemented with 0.1 and 0.2% PC. The results showed that the addition of PC had no significant effect (P > 0.05) on growth performance, and carcass traits of AA+ broilers during the experimental period (1-42 days of age). Dietary addition of PC significantly increased the thymus index of AA+ broilers (P < 0.05), reduced the number of E. coli and Salmonella in feces (P < 0.01) and reduced the concentrations of fecal NH3 and H2S emissions (P < 0.01). Furthermore, birds fed 0.2% PC diet had the highest number of fecal Lactobacillus counts. Results indicate that probiotic complex consisting of Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis enhances immune organ development, reduces the number of E. coli and Salmonella in feces, increases the number of Lactobacillus and reduces NH3 and H2S emissions in feces. This trial provides a theoretical basis for the use of probiotic complexes in broiler production.
Collapse
Affiliation(s)
- Qiangqiang Zou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Weishuang Meng
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tieliang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Xiao Liu
| | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,Desheng Li
| |
Collapse
|
36
|
Wang T, Tian XL, Xu XB, Li H, Tian Y, Ma YH, Li XF, Li N, Zhang TT, Sheng YD, Tang QX, Zhang L, Wang CF, Siddiquid SA, Wang LX, Shan XF, Qian AD, Zhang DX. Dietary supplementation of probiotics fermented Chinese herbal medicine Sanguisorba officinalis cultures enhanced immune response and disease resistance of crucian carp (Carassius auratus) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 131:682-696. [PMID: 36341871 DOI: 10.1016/j.fsi.2022.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, is one of the major pathogens causing bacterial sepsis in aquatic animals due to drug resistance and pathogenicity, which could cause high mortality and serious economic losses to the aquaculture. Sanguisorba officinalis (called DiYu in Chinese, DY) is well known as herbal medicine, which could inhibit the growth of pathogenic bacteria, hemostasis and regulate the immune response. Moreover, the active ingredients in DY could remarkably reduce drug resistance. In this study, we investigated the effects of probiotic fermentation cultures on A. hydrophila through in vitro and in vivo experiments. Three lactic acid bacteria, including Lactobacillus rhamnosus (LGG), Lactobacillus casei (LC) and Lactobacillus plantarum (LP), were selected to ferment the Chinese herbal medicine DY. The assays of antagonism showed that all three fermented cultures could influence the ability of A. hydrophila growth, among which L. rhamnosus fermented DY cultures appeared to be the strongest inhibitory effect. In addition, the biofilm determination revealed that L. rhamnosus fermented DY cultures could significantly inhibit the biofilm formation of A. hydrophila compared to the other groups. Furthermore, protease, lecithinase and urease activities were found in the three fermentation cultures. Three probiotics fermented DY cultures were orally administration with crucian carp to evaluate the growth performance, immunological parameters and pathogen resistance. The results showed that the three fermentation cultures could promote the growth performance of crucian carp, and the immunoglobulins, antioxidant-related enzymes and immune-related genes were significantly enhanced. Besides, the results showed that crucian carp received L. rhamnosus (60.87%), L. casei (56.09%) and L. plantarum (41.46%) fermented DY cultures had higher survival rates compared with the control group after infection with A. hydrophila. Meanwhile, the pathological tissue results revealed that the probiotic fermented cultures could largely improve the tissues damage caused by the pathogenic bacteria. In conclusion, this study proved that the fermentation cultures of three probiotics could effectively inhibit the growth of A. hydrophila, regulate the level of immune response and improve the survival rate against A. hydrophila in crucian carp. The present data suggest that probiotic fermented Sanguisorba officinalis act as a potential gut-targeted therapy regimens to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Lei Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue-Bin Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Ting-Ting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qian-Xi Tang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Li-Xia Wang
- Animal Disease Prevention and Control Center of Nong'an County, Jilin Province, 130200, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
37
|
Sun X, Chen DD, Deng S, Zhang G, Peng X, SA R. Using combined Lactobacillus and quorum quenching enzyme supplementation as an antibiotic alternative to improve broiler growth performance, anti-oxidative status, immune response, and gut microbiota. Poult Sci 2022; 101:101997. [PMID: 35841646 PMCID: PMC9289872 DOI: 10.1016/j.psj.2022.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/03/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
|
38
|
Zhu Y, Zhang X, Du P, Wang Z, Luo P, Huang Y, Liu Z, Zhang H, Chen W. Dietary herbaceous mixture supplementation reduced hepatic lipid deposition and improved hepatic health status in post-peak laying hens. Poult Sci 2022; 101:101870. [PMID: 35472740 PMCID: PMC9061633 DOI: 10.1016/j.psj.2022.101870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Fatty liver hemorrhagic syndrome is characterized by hepatic damage and hemorrhage impairing animal welfare in birds, which was well-known to be moderately relieved through dietary choline chloride supplementation in laying hens. Chinese herb has been proven to exert a positive role on hepatic health in human and rodents. Here, we investigated the effect of herbaceous mixture (HM), which consists of Andrographis paniculate, Silybum marianum, Azadirachta Indica, and Ocimum basilicum (2:3.5:1:2), on the hepatic lipid metabolism and health status in laying hens. A total of 240 Hy-line Brown hens (389-day-old) were randomly fed the basal diet with 0 mg/kg choline chloride (negative control, NC), 1,000 mg/kg choline chloride (control, Ctrl), or 300 mg/kg HM for 28 d. Birds fed HM diet exhibited lower serum triglyceride (TG) and low-density lipoprotein cholesterol concentration, and higher high-density lipoprotein cholesterol level than those received NC and Ctrl diets (P < 0.05). When compared to control and NC group, the diets with HM decreased the contents of total cholesterol and TG in liver, as well as upregulated the mRNA abundance of hepatic hormone-sensitive lipase and lipoprotein lipase. Meanwhile, the hepatic area and diameter of steatosis vacuoles were also decreased by dietary HM administration (P < 0.05), which accompanied by decreased serum alanine aminotransferase activity (P < 0.05). Birds fed HM diets enhanced the hepatic antioxidative capacity than those received NC and Ctrl diet. Dietary HM depressed the mRNA level of inflammatory cytokine as compared to NC but not Ctrl group. Collectively, the diet with 300 mg/kg HM has a favorable effect in decreasing the lipid deposition and protecting liver injury by alleviating hepatic oxidant stress and inflammation in post-peak laying hens.
Collapse
Affiliation(s)
- Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Ziyang Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengna Luo
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenhua Liu
- Henan Jinqianguo Bio Tech Co., Ltd, Zhengzhou 477150, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|