1
|
Delfani N, Daneshyar M, Farhoomand P, Payvastegan S, Alijoo YA, Najafi G. Attenuating susceptibility to ascites in cold-stressed broiler chickens fed canola meal-based diets by supplementing arginine or guanidinoacetic acid, either alone or in combination with phenylalanine. Vet Med Sci 2024; 10:e70011. [PMID: 39367788 PMCID: PMC11452903 DOI: 10.1002/vms3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/19/2023] [Accepted: 08/23/2024] [Indexed: 10/07/2024] Open
Abstract
OBJECTIVE The purpose of this study was to determine the effects of dietary supplementation of arginine (ARG) or guanidinoacetic acid (GAA), with or without phenylalanine (PHE), on the ascites susceptibility in the cold-stressed broilers fed canola meal (CM)-based diet. METHOD A total of 450 one-day-old male broiler chicks were randomly allocated to 30 floor pens with 6 replications for each of the 5 treatments. The dietary treatments were as follows: CM-based diet (control), CM-based diet + 2.57 g/kg ARG, CM-based diet + 1.8 g/kg GAA, CM-based diet + 2.57 g/kg ARG + 1.5 g/kg PHE and CM-based diet + 1.8 g/kg GAA + 1.5 g/kg PHE. The groups experienced cold stress induction starting at 32°C on day one, with gradual reductions to 15°C on days 21. The temperature was then held at 15°C for the remainder of the experiment. RESULTS The supplements ARG + PHE and GAA + PHE resulted in improved feed conversion ratios (FCR) when compared to the control group. In comparison with the control group, supplementation of ARG and ARG + PHE decreased the ascites mortality by increasing the plasma nitric oxide level (NO), blood O2 partial pressure, blood O2 saturation (SO2), and decreasing the blood CO2 partial pressure (PCO2) and right ventricle to total ventricle (RV:TV) ratio. Supplementation of GAA and GAA + PHE also declined ascites mortality by reducing blood PCO2 while increasing blood SO2 and plasma NO levels. Although plasma corticosterone level and RV:TV ratio were similar between the GAA and control groups, adding GAA + PHE significantly reduced both compared to the control group. CONCLUSION In summary, supplementing cold-stressed broiler chicken diets with 2.57 g/kg ARG may alleviate hypertension. Additionally, 1.8 g/kg GAA proves to be an effective substitute for dietary ARG in low-ARG diets, alleviating adverse effects from cold stress. Proper PHE formulation, at 1.5 g/kg in this study, is crucial when using ARG and GAA supplements.
Collapse
Affiliation(s)
- Negin Delfani
- Department of Animal ScienceFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Mohsen Daneshyar
- Department of Animal ScienceFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Parviz Farhoomand
- Department of Animal ScienceFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Sina Payvastegan
- Department of Animal ScienceFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Younes Ali Alijoo
- Department of Animal ScienceFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Gholamreza Najafi
- Department of Basic SciencesFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| |
Collapse
|
2
|
Chen Z, Zheng X, Shu X, Hua G, Zhu R, Sun L, Chen J. Supplemental L-arginine promotes hepatocyte proliferation and alters liver fatty acid metabolism in the late embryonic phase: an RNA-seq analysis. Poult Sci 2024; 103:104175. [PMID: 39216267 PMCID: PMC11402549 DOI: 10.1016/j.psj.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The in ovo feeding (IOF) of L-arginine (L-Arg) to chick embryos is a viable method for improving early intestinal development, subsequently leading to an acceleration in growth rate during the posthatch stage. However, the liver, being the pivotal organ for energy metabolism in poultry, the precise effects and mechanisms of L-Arg on the liver development and metabolism remain unclear. To elucidate these, the present study injected 2 doses of L-Arg (10 mg/egg and 15 mg/egg) into the embryos of Hongyao chickens at 17.5 d of incubation, subsequently incubating them until d 19 for further analysis. IOF of 15 mg L-Arg/egg significantly increased the organ indices of liver and small intestine, as well as the duodenal villus height/crypt depth. RNA-Seq analysis of liver tissues showed that the metabolism of xenobiotics, amino acid metabolism, and the fatty acid metabolism were significantly enriched in L-Arg injection group. The core differentially expressed genes (DEGs) were primarily involved in cell proliferation and fatty acid metabolism. The CCK8 assays revealed that supplemental L-Arg significantly enhanced the proliferation of primary embryo hepatocytes and leghorn male hepatoma (LMH) cells. Upregulation of core DEGs, including HBEGF, HES4, NEK3, EGR1, and USP2, significantly promoted the proliferation of liver cells. Additionally, analysis of triglyceride and total cholesterol content, as well as oil red O staining, indicated that supplemental L-Arg effectively reduced lipid accumulation. Overall, L-Arg supplementation in late chick embryos may promote early liver and small intestine development by reducing liver lipid deposition and enhancing energy efficiency, necessitating further experimental validation. This study provides profound insights into the molecular regulatory network of L-Arg in promoting the development of chicken embryos. The identified DEGs that promote cell proliferation and lipid metabolism can serve as novel targets for further developing methods to enhance early development of chicken embryos.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Azizollahi M, Ghasemi HA, Foroudi F, Hajkhodadadi I. Effect of guanidinoacetic acid on performance, egg quality, yolk fatty acid composition, and nutrient digestibility of aged laying hens fed diets with varying substitution levels of corn with low-tannin sorghum. Poult Sci 2024; 103:103297. [PMID: 38104413 PMCID: PMC10765105 DOI: 10.1016/j.psj.2023.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
A study was conducted to evaluate the efficiency of guanidinoacetic acid (GAA) in diets containing varying levels of corn replacement with low-tannin sorghum (LTS) for laying hens in the later stage of production. In a 12-wk study, a total of 288 laying hens at 52 wk of age were divided into 6 treatment groups. Each treatment group had 8 replicates, each of which consisted of 6 hens. A 2 × 3 factorial design was used to investigate the impact of substituting corn with LTS at 3 levels (100% corn, 50% LTS, and 100% LTS) with 2 doses of GAA supplementation (0 and 0.6 g/kg). The results indicate that there were interaction effects (P < 0.05) between diet type and GAA supplementation on protein digestibility and AMEn, with the GAA supplement being more effective in the 100% LTS group. Replacing corn with LTS at both levels had no negative effects on performance and metabolic profile. In contrast, the 100% LTS diet increased monounsaturated fatty acids in the yolk (P < 0.05), but decreased the yolk color index, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA) in the yolk, ileal digestibility of energy, and AMEn when compared to the 100% corn diet (P < 0.05). Regardless of the diet, dietary supplementation with GAA resulted in increases (P < 0.05) in shell-breaking strength, the PUFA to SFA ratio in egg yolk, and concentrations of creatine and nitric oxide in serum. There was also a decrease (P < 0.05) in serum malondialdehyde concentration with GAA supplementation. In conclusion, the positive effects of GAA on protein digestibility and AMEn were found to be more pronounced when corn was completely replaced with LTS. However, the positive effects of GAA on egg-laying performance, eggshell quality, antioxidant status, and yolk fatty acid composition remained consistent regardless of the extent to which corn was substituted with LTS.
Collapse
Affiliation(s)
- Mohammad Azizollahi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran.
| | - Farhad Foroudi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| |
Collapse
|
4
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
5
|
El Sabry MI, Yalcin S. Factors influencing the development of gastrointestinal tract and nutrient transporters' function during the embryonic life of chickens-A review. J Anim Physiol Anim Nutr (Berl) 2023; 107:1419-1428. [PMID: 37409520 DOI: 10.1111/jpn.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Intestinal morphology and regulation of nutrient transportation genes during the embryonic and early life of chicks influence their body weight and feed conversion ratio through the growing period. The intestine development can be monitored by measuring villus morphology and enzymatic activity and determining the expression of nutrient transporters genes. With the increasing importance of gut development and health in broiler production, considerable research has been directed towards factors affecting intestine development. Thus, this article reviews (1) intestinal development during embryogenesis, and (2) maternal factors, in ovo administration, and incubation conditions that influence intestinal development during embryogenesis. Conclusively, (1) chicks from heavier eggs may have a better-developed intestine than chicks from younger ones, (2) in ovo supplementation with amino acids, minerals, vitamins or a combination of several probiotics and prebiotics stimulates intestine development and increases the expression of intestine mucosal-related genes and (3) the long storage period, improper incubation temperature and imbalanced ventilation can negatively influence intestinal morphology and nutrient transporters gene expression. Finally, understanding the intestine development during embryonic life will enable us to enhance the productivity of broilers.
Collapse
Affiliation(s)
- Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Servet Yalcin
- Department of Animal Science, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Karakelle H, Özçalişan G, Şahin F, Narinç D. The effects of exposure to cold during incubation on developmental stability, fear, growth, and carcass traits in Japanese quails. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02497-1. [PMID: 37225917 DOI: 10.1007/s00484-023-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
The aim of this study was to determine the effects of 6 h/day cold (35.0 °C) acclimatization between the 9th and 15th days of incubation of Japanese quail embryos on hatchability, livability, chick quality, developmental stability, fear response, live weight, and slaughter-carcass characteristics. Two homologous incubators and a total of 500 hatching eggs were used in the study. Randomly selected half of the eggs were exposed to cold according to the eggshell temperature. The cold acclimation of Japanese quail embryos had no adverse effects on all mentioned traits, except for chick quality. Chicks in the control group had higher Tona scores (99.46) than those exposed to cold (99.00) (P < 0.05). In addition, there were differences among the treatment groups in terms of the parameters of mature weight (β0), instantaneous growth rate (β2), and inflection point coordinates of the Gompertz growth model (P < 0.05 for all). It was found that exposing embryos to cold during the incubation changed the shape of the growth curve. As the development of embryos exposed to cold slows down, a compensatory growth occurs in the early posthatch period. Thus, the growth rate increased in the period before the inflection point of the growth curve.
Collapse
Affiliation(s)
- Hasan Karakelle
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Gülşah Özçalişan
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Fatih Şahin
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Doğan Narinç
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
7
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2023:1-14. [PMID: 36607291 DOI: 10.1080/00071668.2022.2160626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. This experiment investigated the efficacy of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to one of nine treatment groups (six pens/treatment with 20 birds/pen) according to a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other eight groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).2. There were EB × BT × CT interactions for body weight (BW) at 24 d (P = 0.038) and average daily gain (ADG) during the 10-24 d period (P = 0.049), with the greatest values found with concurrent supplementation of three supplements.3. Inclusion of EB resulted in greater (P < 0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, digestible energy (DE) and the coefficient of apparent ileal digestibility (CAID) of dry matter, crude protein, and fat However, feed conversion ratio, mortality rate and heterophile to lymphocyte ratio were lower (P < 0.05).4. Dietary BT supplementation improved (P < 0.05) all performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth and the CAID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P < 0.05) in ADG (d 10-24) and a decrease (P < 0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).5. In conclusion, dietary supplementation of either EB or BT alone or in combination ameliorated some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- J Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - K Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - H A Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - M Akbari Gharaei
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Y Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - F Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
8
|
Effect of early feeding of L-arginine and L-threonine on hatchability and post-hatch performance of broiler chicken. Trop Anim Health Prod 2022; 54:380. [DOI: 10.1007/s11250-022-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
|
9
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. RETRACTED ARTICLE: Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2022. [PMID: 36103130 DOI: 10.1080/00071668.2022.2124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. This experiment investigated the efficiency of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions.2. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to nine treatment groups (six pens/treatment with 20 birds/pen) in a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other 8 groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).3. There were EB × BT × CT interactions for body weight (BW) at 24 d (P=0.038) and average daily gain (ADG) during the 10-24 d period (P=0.049), with the greatest values with concurrent supplementation of all three ingredients.4. Inclusion of EB resulted in greater (P<0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility (AID) of dry matter, crude protein and fat, but lower (P<0.05) feed conversion ratio, mortality rate and heterophile to lymphocyte ratio.5. Dietary BT supplementation improved (P<0.05) overall performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth, AID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P<0.05) in ADG (d 10-24) and a decrease (P<0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).6. In conclusion, dietary supplementation of either EB or BT alone or in combination can ameliorate some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- Jalal Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | | | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Farhad Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
10
|
Hossain ME, Akter N. Further insights into the prevention of pulmonary hypertension syndrome (ascites) in broiler: a 65-year review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2090305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Md. Emran Hossain
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Bangladesh
| | - Nasima Akter
- Department of Dairy and Poultry Science, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Bangladesh
| |
Collapse
|