1
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
2
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
3
|
Ross FC, Mayer DE, Gupta A, Gill CIR, Del Rio D, Cryan JF, Lavelle A, Ross RP, Stanton C, Mayer EA. Existing and Future Strategies to Manipulate the Gut Microbiota With Diet as a Potential Adjuvant Treatment for Psychiatric Disorders. Biol Psychiatry 2024; 95:348-360. [PMID: 37918459 DOI: 10.1016/j.biopsych.2023.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dylan E Mayer
- Institute of Human Nutrition, Columbia University, New York, New York
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland.
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Research Progress in Vitamin A and Autism Spectrum Disorder. Behav Neurol 2021; 2021:5417497. [PMID: 34917197 PMCID: PMC8670912 DOI: 10.1155/2021/5417497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder. Over the past few decades, many studies have investigated the effects of VA supplementation in ASD patients and the relationship between vitamin A (VA) levels and ASD. VA is an essential micronutrient that plays an important role in various systems and biological processes in the form of retinoic acid (RA). Recent studies have shown that serum VA concentration is negatively correlated with the severity of ASD. The lack of VA during pregnancy or early fetal development can affect brain development and lead to long-term or even permanent impairment in the learning process, memory formation, and cognitive function. In addition, VA deficiency has been reported to have a major impact on the gastrointestinal function of children with ASD, while VA supplementation has been shown to improve the symptoms of ASD to a certain extent. This paper provides a comprehensive review of the relationship between VA and ASD.
Collapse
|
5
|
Comparan-Meza M, Vargas de la Cruz I, Jauregui-Huerta F, Gonzalez-Castañeda RE, Gonzalez-Perez O, Galvez-Contreras AY. Biopsychological correlates of repetitive and restricted behaviors in autism spectrum disorders. Brain Behav 2021; 11:e2341. [PMID: 34472728 PMCID: PMC8553330 DOI: 10.1002/brb3.2341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is considered a neurodevelopmental condition that is characterized by alterations in social interaction and communication, as well as patterns of restrictive and repetitive behaviors (RRBs). RRBs are defined as broad behaviors that comprise stereotypies, insistence on sameness, and attachment to objects or routines. RRBs can be divided into lower-level behaviors (motor, sensory, and object-manipulation behaviors) and higher-level behaviors (restrictive interests, insistence on sameness, and repetitive language). According to the DSM-5, the grade of severity in ASD partially depends on the frequency of RRBs and their consequences for disrupting the life of patients, affecting their adaptive skills, and increasing the need for parental support. METHODS We conducted a systematic review to examine the biopsychological correlates of the symptomatic domains of RRBs according to the type of RRBs (lower- or higher-level). We searched for articles from the National Library of Medicine (PubMed) using the terms: autism spectrum disorders, ASD, and autism-related to executive functions, inhibitory control, inflexibility, cognitive flexibility, hyper or hypo connectivity, and behavioral approaches. For describing the pathophysiological mechanism of ASD, we also included animal models and followed PRISMA guidelines. RESULTS One hundred and thirty-one articles were analyzed to explain the etiology, continuance, and clinical evolution of these behaviors observed in ASD patients throughout life. CONCLUSIONS Biopsychological correlates involved in the origin of RRBs include alterations in a) neurotransmission system, b) brain volume, c) inadequate levels of growth factors, d) hypo- or hyper-neural connectivity, e) impairments in behavioral inhibition, cognitive flexibility, and monitoring and f) non-stimulating environments. Understanding these lower- and higher-level of RRBs can help professionals to improve or design novel therapeutic strategies.
Collapse
Affiliation(s)
- Miguel Comparan-Meza
- Maestría en Neuropsicología, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Ivette Vargas de la Cruz
- Unidad de Atención en Neurociencias, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Fernando Jauregui-Huerta
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Rocio E Gonzalez-Castañeda
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima, COL, Mexico
| | - Alma Y Galvez-Contreras
- Unidad de Atención en Neurociencias, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| |
Collapse
|
6
|
Abdul F, Sreenivas N, Kommu JVS, Banerjee M, Berk M, Maes M, Leboyer M, Debnath M. Disruption of circadian rhythm and risk of autism spectrum disorder: role of immune-inflammatory, oxidative stress, metabolic and neurotransmitter pathways. Rev Neurosci 2021; 33:93-109. [PMID: 34047147 DOI: 10.1515/revneuro-2021-0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/01/2021] [Indexed: 12/27/2022]
Abstract
Circadian rhythms in most living organisms are regulated by light and synchronized to an endogenous biological clock. The circadian clock machinery is also critically involved in regulating and fine-tuning neurodevelopmental processes. Circadian disruption during embryonic development can impair crucial phases of neurodevelopment. This can contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) in the offspring. Increasing evidence from studies showing abnormalities in sleep and melatonin as well as genetic and epigenetic changes in the core elements of the circadian pathway indicate a pivotal role of circadian disruption in ASD. However, the underlying mechanistic basis through which the circadian pathways influence the risk and progression of ASD are yet to be fully discerned. Well-recognized mechanistic pathways in ASD include altered immune-inflammatory, nitro oxidative stress, neurotransmission and synaptic plasticity, and metabolic pathways. Notably, all these pathways are under the control of the circadian clock. It is thus likely that a disrupted circadian clock will affect the functioning of these pathways. Herein, we highlight the possible mechanisms through which aberrations in the circadian clock might affect immune-inflammatory, nitro-oxidative, metabolic pathways, and neurotransmission, thereby driving the neurobiological sequelae leading to ASD.
Collapse
Affiliation(s)
- Fazal Abdul
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nikhitha Sreenivas
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - John Vijay Sagar Kommu
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Moinak Banerjee
- Human Molecular Genetics Division, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum, 695014, Kerala, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Michael Maes
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Pathum Wan, Pathum Wan District, Bangkok, 10330, Thailand.,Department of Psychiatry, Medical University of Plovdiv, bul. "Vasil Aprilov" 15A, 4002 Tsetar, Plovdiv, Bulgaria
| | - Marion Leboyer
- Université Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires "H. Mondor", DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, 8, rue du Général Sarrail, 94010, Creteil, France
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| |
Collapse
|
7
|
Nuñez-Rios DL, Chaskel R, Lopez A, Galeano L, Lattig MC. The role of 5-HTTLPR in autism spectrum disorder: New evidence and a meta-analysis of this polymorphism in Latin American population with psychiatric disorders. PLoS One 2020; 15:e0235512. [PMID: 32614901 PMCID: PMC7332001 DOI: 10.1371/journal.pone.0235512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023] Open
Abstract
The autism spectrum disorder (ASD) is a complex disorder encompassing a broad phenotypic and genotypic variability. The short (S)/long (L) 5-HTTLPR polymorphism has a functional role in the regulation of extracellular serotonin levels and both alleles have been associated to ASD. Most studies including European, American, and Asian populations have suggested an ethnical heterogeneity of this polymorphism; however, the short/long frequencies from Latin American population have been under-studied in recent meta-analysis. Here, we evaluated the 5-HTTLPR polymorphism in Colombian individuals with idiopathic ASD and reported a non-preferential S or L transmission and a non-association with ASD risk or symptom severity. Moreover, to recognize the allelic frequencies of an under-represented population we also recovered genetic studies from Latin American individuals and compared these frequencies with frequencies from other ethnicities. Results from meta-analysis suggest that short/long frequencies in Latin American are similar to those reported in Caucasian population but different to African and Asian regions.
Collapse
Affiliation(s)
- D. L. Nuñez-Rios
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - R. Chaskel
- Instituto Colombiano del Sistema Nervioso Clínica Monserrat, Bogotá, Colombia
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - A. Lopez
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Servicios Integrales en Genética (SIGEN) alianza Fundación Santa Fe de Bogotá – Universidad de los Andes, Bogotá, Colombia
| | - L. Galeano
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - M. C. Lattig
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Servicios Integrales en Genética (SIGEN) alianza Fundación Santa Fe de Bogotá – Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
8
|
Bridgemohan C, Cochran DM, Howe YJ, Pawlowski K, Zimmerman AW, Anderson GM, Choueiri R, Sices L, Miller KJ, Ultmann M, Helt J, Forbes PW, Farfel L, Brewster SJ, Frazier JA, Neumeyer AM. Investigating Potential Biomarkers in Autism Spectrum Disorder. Front Integr Neurosci 2019; 13:31. [PMID: 31427932 PMCID: PMC6687766 DOI: 10.3389/fnint.2019.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/03/2019] [Indexed: 01/20/2023] Open
Abstract
Background Early identification and treatment of individuals with autism spectrum disorder (ASD) improves outcomes, but specific evidence needed to individualize treatment recommendations is lacking. Biomarkers that could be routinely measured within the clinical setting could potentially transform clinical care for patients with ASD. This demonstration project employed collection of biomarker data during regular autism specialty clinical visits and explored the relationship of biomarkers with clinical ASD symptoms. Methods Eighty-three children with ASD, aged 5–10 years, completed a multi-site feasibility study integrating the collection of biochemical (blood serotonin, urine melatonin sulfate excretion) and clinical (head circumference, dysmorphology exam, digit ratio, cognitive and behavioral function) biomarkers during routine ASD clinic visits. Parents completed a demographic survey and the Aberrant Behavior Checklist-Community. Cognitive function was determined by record review. Data analysis utilized Wilcoxon two-sample tests and Spearman correlations. Results Participants were 82% male, 63% White, 19% Hispanic, with a broad range of functioning. Group means indicated hyperserotonemia. In a single regression analysis adjusting for race and median household income, higher income was associated with higher levels of blood serotonin and urine melatonin sulfate excretion levels (p = 0.004 and p = 0.04, respectively). Melatonin correlated negatively with age (p = 0.048) and reported neurologic problems (p = 0.02). Dysmorphic status correlated with higher reported stereotyped behavior (p = 0.02) and inappropriate speech (p = 0.04). Conclusion This demonstration project employed collection of multiple biomarkers, allowed for examination of associations between biochemical and clinical measures, and identified several findings that suggest direction for future studies. This clinical research model has promise for integrative biomarker research in individuals with complex, heterogeneous neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Carolyn Bridgemohan
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - David M Cochran
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - Yamini J Howe
- Harvard Medical School, Boston, MA, United States.,Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| | | | - Andrew W Zimmerman
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - George M Anderson
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Roula Choueiri
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Sices
- Boston University Medical Center, Boston, MA, United States.,Boston University School of Medicine, Boston, MA, United States
| | - Karen J Miller
- Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Monica Ultmann
- Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Jessica Helt
- Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| | | | - Laura Farfel
- Boston University Medical Center, Boston, MA, United States.,Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Autism Consortium at Harvard Medical School, Boston, MA, United States
| | | | - Jean A Frazier
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States.,Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ann M Neumeyer
- Harvard Medical School, Boston, MA, United States.,Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| |
Collapse
|
9
|
Cai Y, Wang L, Nalvarte I, Xiao R, Li X, Fan X. Citalopram attenuates social behavior deficits in the BTBR T +Itpr3 tf/J mouse model of autism. Brain Res Bull 2019; 150:75-85. [PMID: 31047973 DOI: 10.1016/j.brainresbull.2019.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is diagnosed by two core symptoms: impaired social communication and the presence of repetitive, stereotyped behaviors and/or restricted interests. Alterations in serotonergic signaling are involved in the genesis of ASD. Selective serotonin reuptake inhibitors (SSRIs) have been reported to reduce repetitive behaviors and rescue social deficits in ASD mouse models and patients. In the present study, we examined the potential of citalopram (a representative selective serotonin reuptake inhibitor) on sociability and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of ASD. We found that the deficits of sociability in the BTBR mice were reversed by a 20 mg/kg dose of citalopram treatment without any adverse effects on locomotor activity or anxiety level. In addition, both high (20 mg/kg) and low (10 mg/kg) doses decreased the repetitive behavior of marble burying but did not affect self-grooming behavior. Furthermore, both doses were shown to have antidepressant-like activity in both the B6 and the BTBR mice in the tail suspension test. Taken together, these findings further demonstrate that citalopram can alleviate behavioral abnormalities in the BTBR autism model and lend support to the hypothesis that SSRIs may be potential therapeutic drugs for the treatment of behavioral dysfunctions in ASD.
Collapse
Affiliation(s)
- Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet Hälsovägen 7C, Neo, 141 57 Huddinge, Sweden
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
10
|
Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019; 11:E521. [PMID: 30823414 PMCID: PMC6471505 DOI: 10.3390/nu11030521] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
In recent years, there has been an emerging interest in the possible role of the gut microbiota as a co-factor in the development of autism spectrum disorders (ASDs), as many studies have highlighted the bidirectional communication between the gut and brain (the so-called "gut-brain axis"). Accumulating evidence has shown a link between alterations in the composition of the gut microbiota and both gastrointestinal and neurobehavioural symptoms in children with ASD. The aim of this narrative review was to analyse the current knowledge about dysbiosis and gastrointestinal (GI) disorders in ASD and assess the current evidence for the role of probiotics and other non-pharmacological approaches in the treatment of children with ASD. Analysis of the literature showed that gut dysbiosis in ASD has been widely demonstrated; however, there is no single distinctive profile of the composition of the microbiota in people with ASD. Gut dysbiosis could contribute to the low-grade systemic inflammatory state reported in patients with GI comorbidities. The administration of probiotics (mostly a mixture of Bifidobacteria, Streptococci and Lactobacilli) is the most promising treatment for neurobehavioural symptoms and bowel dysfunction, but clinical trials are still limited and heterogeneous. Well-designed, randomized, placebo-controlled clinical trials are required to validate the effectiveness of probiotics in the treatment of ASD and to identify the appropriate strains, dose, and timing of treatment.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Lorenza Di Genova
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Giovanni Battista Dell'Isola
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Elisabetta Mencaroni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
11
|
Israelyan N, Margolis KG. Reprint of: Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res 2019; 140:115-120. [PMID: 30658882 DOI: 10.1016/j.phrs.2018.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autism-spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and repetitive patterns of behavior. ASD is, however, often associated with medical comorbidities and gastrointestinal (GI) dysfunction is among the most common. Studies have demonstrated a correlation between GI dysfunction and the degree of social impairment in ASD. The etiology of GI abnormalities in ASD is unclear, though the association between GI dysfunction and ASD-associated behaviors suggest that overlapping developmental defects in the brain and the intestine and/or a defect in communication between the enteric and central nervous systems (ENS and CNS, respectively), known as the gut-brain axis, could be responsible for the observed phenotypes. Brain-gut abnormalities have been increasingly implicated in several disease processes, including ASD. As a critical modulator of ENS and CNS development and function, serotonin may be a nexus for the gut-brain axis in ASD. This paper reviews the role of serotonin in ASD from the perspective of the ENS. A murine model that has been demonstrated to possess brain, behavioral and GI abnormalities mimicking those seen in ASD harbors the most common serotonin transporter (SERT) based mutation (SERT Ala56) found in children with ASD. Discussion of the gut-brain manifestations in the SERT Ala56 mice, and their correction with developmental administration of a 5-HT4 agonist, are also addressed in conjunction with other future directions for diagnosis and treatment.
Collapse
Affiliation(s)
- Narek Israelyan
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) St, New York, NY, 10032, USA.
| | - Kara Gross Margolis
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University Medical Center, 620 W 168(th) St, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Israelyan N, Margolis KG. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res 2018; 132:1-6. [PMID: 29614380 DOI: 10.1016/j.phrs.2018.03.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Autism-spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and repetitive patterns of behavior. ASD is, however, often associated with medical comorbidities and gastrointestinal (GI) dysfunction is among the most common. Studies have demonstrated a correlation between GI dysfunction and the degree of social impairment in ASD. The etiology of GI abnormalities in ASD is unclear, though the association between GI dysfunction and ASD-associated behaviors suggest that overlapping developmental defects in the brain and the intestine and/or a defect in communication between the enteric and central nervous systems (ENS and CNS, respectively), known as the gut-brain axis, could be responsible for the observed phenotypes. Brain-gut abnormalities have been increasingly implicated in several disease processes, including ASD. As a critical modulator of ENS and CNS development and function, serotonin may be a nexus for the gut-brain axis in ASD. This paper reviews the role of serotonin in ASD from the perspective of the ENS. A murine model that has been demonstrated to possess brain, behavioral and GI abnormalities mimicking those seen in ASD harbors the most common serotonin transporter (SERT) based mutation (SERT Ala56) found in children with ASD. Discussion of the gut-brain manifestations in the SERT Ala56 mice, and their correction with developmental administration of a 5-HT4 agonist, are also addressed in conjunction with other future directions for diagnosis and treatment.
Collapse
Affiliation(s)
- Narek Israelyan
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) St, New York, NY, 10032, USA.
| | - Kara Gross Margolis
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University Medical Center, 620 W 168(th) St, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Guo M, Zhu J, Yang T, Lai X, Liu X, Liu J, Chen J, Li T. Vitamin A improves the symptoms of autism spectrum disorders and decreases 5-hydroxytryptamine (5-HT): A pilot study. Brain Res Bull 2017; 137:35-40. [PMID: 29122693 DOI: 10.1016/j.brainresbull.2017.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorders (ASD) are complicated neurodevelopmental disorders. Many studies have demonstrated that children with autism have multiple nutritional deficiencies and increased serum 5-hydroxytryptamine (5-HT) levels. In our previous study, 77.9% of autistic children were found to have vitamin A deficiency, and the concentration of vitamin A was negatively associated with the CARS score. In the present study, we sought to test whether vitamin A supplementation could improve autistic symptoms and decrease serum 5-HT levels. The DSM-V criteria and CARS score were used for symptom description and symptom assessment of the patients, respectively, before and after vitamin A supplementation (VAS). Serum retinol and 5-HT levels, mRNA levels of RAR α, β, and γ and TpH 1 expression were detected in autistic children before and after VAS and in normal children. Serum retinol levels in children with ASD were significantly lower than in control children. Serum 5-HT levels in children with ASD were higher than in control children, which were correlated with symptom severity of children with autism. After VA supplementation, the children with ASD exhibited significant improvement in autism symptoms. Serum retinol concentrations of children with ASD were significantly increased, and serum 5-HT levels were decreased. Moreover, statistically significant changes were observed in mRNA expression levels of RAR α, RAR γ and TpH 1 after VAS compared to baseline. This study suggested that VA supplementation may improve symptoms and reduce 5-HT levels in children with ASD, indicating that VA supplementation is a reasonable therapy at least for a subset of children with autism.
Collapse
Affiliation(s)
- Min Guo
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Jiang Zhu
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Ting Yang
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Xi Lai
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Xiao Liu
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Juan Liu
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Jie Chen
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Tingyu Li
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China.
| |
Collapse
|
14
|
Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder. J Autism Dev Disord 2016; 46:1124-30. [PMID: 26527110 DOI: 10.1007/s10803-015-2646-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elevated whole blood serotonin levels are observed in more than 25% of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD, we observed a correlation between a quantitative measure of lower GI symptoms and whole blood serotonin levels. No significant association was seen between functional constipation diagnosis and serotonin levels in the hyperserotonemia range, suggesting that this correlation is not driven by a single subgroup. More specific assessment of gut function, including the microbiome, will be necessary to evaluate the contribution of gut physiology to serotonin levels in ASD.
Collapse
|
15
|
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016; 321:24-41. [PMID: 26577932 PMCID: PMC4824539 DOI: 10.1016/j.neuroscience.2015.11.010] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 02/02/2023]
Abstract
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker.
Collapse
Affiliation(s)
- C L Muller
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA.
| | - A M J Anacker
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| | - J Veenstra-VanderWeele
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Columbia University; Center for Autism and the Developing Brain, New York Presbyterian Hospital; New York State Psychiatric Institute, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| |
Collapse
|
16
|
Kolevzon A, Lim T, Schmeidler J, Martello T, Cook EH, Silverman JM. Self-injury in autism spectrum disorder: an effect of serotonin transporter gene promoter variants. Psychiatry Res 2014; 220:987-90. [PMID: 25446464 DOI: 10.1016/j.psychres.2014.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 11/30/2022]
Abstract
Self-injurious behavior in autism spectrum disorder (ASD) has been associated with lower whole blood serotonin levels and the role of serotonin transporter gene promoter region (5HTTLPR) polymorphisms is of interest because of their effects on transporter functioning. This study examined the association between self-injurious behavior in ASD and allelic frequencies of 5HTTLPR. Sixty-four children and adolescents with ASD who were not taking serotonergic medication at the time of the assessment were included in the analysis. Self-injury was assessed using the Autism Diagnostic Interview-Revised (ADI-R) and whole blood serotonin levels were measured using high-pressure liquid chromatography (HPLC) with fluorometic detection. DNA was extracted from saliva and PCR amplified with fluorescent primers. Self-injury significantly increased with the number of La alleles of the 5HTTLPR and decreased with the number of Lg alleles. Self-injury in ASD may be associated with a specific genotype of the serotonin transporter gene promoter region. Future studies should continue to explore subgroups to clarify the underlying clinical and genetic heterogeneity in ASD.
Collapse
|
17
|
Yang CJ, Liu CL, Sang B, Zhu XM, Du YJ. The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience 2014; 284:290-296. [PMID: 25453766 DOI: 10.1016/j.neuroscience.2014.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 12/26/2022]
Abstract
Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction and repetitive behaviors. Diagnosis of autism is currently phenotype based with no reliable laboratory test available to assist clinicians. It has been shown that dysfunction of serotonin (5-HT) and interleukin-6 (IL-6) are involved in autism. The goal of this study was to evaluate the combined role of 5-HT and IL-6 as potential biomarkers for autism. The whole blood concentration of 5-HT and plasma concentration of IL-6 of individuals with autism were significantly elevated compared with the control group, and the concentration of 5-HT and IL-6 had positive correlations with the severity of autism. The results of receiver operating characteristic (ROC) analysis indicated that the combination of 5-HT and IL-6 produced the best sensitivity and specificity for diagnosis of autism. Therefore, the present study has revealed a simple clinical method with great potential for assisting the diagnosis of autism.
Collapse
Affiliation(s)
- C-J Yang
- School of Preschool & Special Education, East China Normal University, Shanghai, China.
| | - C-L Liu
- School of Preschool & Special Education, East China Normal University, Shanghai, China
| | - B Sang
- School of Preschool & Special Education, East China Normal University, Shanghai, China
| | - X-M Zhu
- Children's Hospital, Fudan University, Shanghai, China
| | - Y-J Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Bortolato M, Godar SC, Tambaro S, Li FG, Devoto P, Coba MP, Chen K, Shih JC. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice. Neuropharmacology 2013; 75:223-32. [PMID: 23871843 PMCID: PMC3849223 DOI: 10.1016/j.neuropharm.2013.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
Monoamine oxidase (MAO) A, the major enzyme catalyzing the oxidative degradation of serotonin (5-hydroxytryptamine, 5-HT), plays a key role in emotional regulation. In humans and mice, MAO-A deficiency results in high 5-HT levels, antisocial, aggressive, and perseverative behaviors. We previously showed that the elevation in brain 5-HT levels in MAO-A knockout (KO) mice is particularly marked during the first two weeks of postnatal life. Building on this finding, we hypothesized that the reduction of 5-HT levels during these early stages may lead to enduring attenuations of the aggression and other behavioral aberrances observed in MAO-A KO mice. To test this possibility, MAO-A KO mice were treated with daily injections of a 5-HT synthesis blocker, the tryptophan hydroxylase inhibitor p-chloro-phenylalanine (pCPA, 300 mg/kg/day, IP), from postnatal day 1 through 7. As expected, this regimen significantly reduced 5-HT forebrain levels in MAO-A KO pups. These neurochemical changes persisted throughout adulthood, and resulted in significant reductions in marble-burying behavior, as well as increases in spontaneous alternations within a T-maze. Conversely, pCPA-treated MAO-A KO mice did not exhibit significant changes in anxiety-like behaviors in a novel open-field and elevated plus-maze; furthermore, this regimen did not modify their social deficits, aggressive behaviors and impairments in tactile sensitivity. Treatment with pCPA from postnatal day 8 through 14 elicited similar, yet milder, behavioral effects on marble-burying behavior. These results suggest that early developmental enhancements in 5-HT levels have long-term effects on the modulation of behavioral flexibility associated with MAO-A deficiency.
Collapse
Affiliation(s)
- Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, MH 5040, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA.
| | - Sean C Godar
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Felix G Li
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Paola Devoto
- "Guy Everett" Laboratory, Dept. of Neuroscience "B.B. Brodie", University of Cagliari, 09124 Monserrato, CA, Italy
| | - Marcelo P Coba
- Dept. of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kevin Chen
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Jean C Shih
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; Dept. of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Tang J, Ma Y, Guo Y, Ahmed NI, Yu Y, Wang J. Association of aggression and non-suicidal self injury: a school-based sample of adolescents. PLoS One 2013; 8:e78149. [PMID: 24205132 PMCID: PMC3813494 DOI: 10.1371/journal.pone.0078149] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Non-suicidal self-injury (NSSI) in adolescent has drawn increasing attention because it is associated with subsequent depression, drug abuse, anxiety disorders, and suicide. In the present study, we aimed to estimate the prevalence of non-suicidal self-injury (NSSI) in a school-based sample of Chinese adolescents and to explore the association between aggression and NSSI. METHODS This study was part of a nationwide study on aggression among adolescents in urban areas of China. A sample of 2907 school students including 1436 boys and 1471 girls were randomly selected in Guangdong Province, with their age ranging from 10 to 18 years old. NSSI, aggression, emotional management and other factors were measured by self-administrated questionnaire. Multinomial logistic regression was used to estimate the association between aggression and NSSI, after adjustment for participants' emotional management, and other potential confounding variables. RESULTS The one year self-reported prevalence of NSSI was 33.6%. Of them, 21.7% engaged in 'minor NSSI', 11.9% in 'moderate/severe NSSI'. 96.9% of self-injuries engaged in one to five different types of NSSI in the past year. Hostility, verbal and indirect aggression was significantly associated with self-reported NSSI after adjusting for other potential factors both in 'minor NSSI' and 'moderate/severe NSSI'. Hostility, verbal and indirect aggression was significantly associated with greater risk of 'minor NSSI' and 'moderate/severe NSSI' in those who had poor emotional management ability. CONCLUSION These findings highlight a high prevalence of NSSI and indicate the importance of hostility, verbal and indirect aggression as potentially risk factor for NSSI among Chinese adolescents.
Collapse
Affiliation(s)
- Jie Tang
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Child, Adolescence & Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Ma
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Yong Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Niman Isse Ahmed
- Department of Child, Adolescence & Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Yizhen Yu
- Department of Child, Adolescence & Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
- * E-mail: (YY); (JW)
| | - Jiaji Wang
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (YY); (JW)
| |
Collapse
|
20
|
Jacob J, Ribes V, Moore S, Constable SC, Sasai N, Gerety SS, Martin DJ, Sergeant CP, Wilkinson DG, Briscoe J. Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis Model Mech 2013; 7:107-17. [PMID: 24135485 PMCID: PMC3882053 DOI: 10.1242/dmm.013219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fetal valproate syndrome (FVS) is caused by in utero exposure to the drug sodium valproate. Valproate is used worldwide for the treatment of epilepsy, as a mood stabiliser and for its pain-relieving properties. In addition to birth defects, FVS is associated with an increased risk of autism spectrum disorder (ASD), which is characterised by abnormal behaviours. Valproate perturbs multiple biochemical pathways and alters gene expression through its inhibition of histone deacetylases. Which, if any, of these mechanisms is relevant to the genesis of its behavioural side effects is unclear. Neuroanatomical changes associated with FVS have been reported and, among these, altered serotonergic neuronal differentiation is a consistent finding. Altered serotonin homeostasis is also associated with autism. Here we have used a chemical-genetics approach to investigate the underlying molecular defect in a zebrafish FVS model. Valproate causes the selective failure of zebrafish central serotonin expression. It does so by downregulating the proneural gene ascl1b, an ortholog of mammalian Ascl1, which is a known determinant of serotonergic identity in the mammalian brainstem. ascl1b is sufficient to rescue serotonin expression in valproate-treated embryos. Chemical and genetic blockade of the histone deacetylase Hdac1 downregulates ascl1b, consistent with the Hdac1-mediated silencing of ascl1b expression by valproate. Moreover, tonic Notch signalling is crucial for ascl1b repression by valproate. Concomitant blockade of Notch signalling restores ascl1b expression and serotonin expression in both valproate-exposed and hdac1 mutant embryos. Together, these data provide a molecular explanation for serotonergic defects in FVS and highlight an epigenetic mechanism for genome-environment interaction in disease.
Collapse
Affiliation(s)
- John Jacob
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Trophoblast inclusions are significantly increased in the placentas of children in families at risk for autism. Biol Psychiatry 2013; 74:204-11. [PMID: 23623455 PMCID: PMC3755347 DOI: 10.1016/j.biopsych.2013.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/23/2013] [Accepted: 03/10/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Gestation is a critical window for neurodevelopmental vulnerability. This study examined whether the presence of trophoblast inclusions (TIs) in the placenta could serve as a predictor for children at elevated risk for autism spectrum disorder (ASD). METHODS Placentas were obtained from 117 births in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) cohort of families who have one or more previous biological children with ASD, placing their newborn at elevated risk for neurodevelopmental compromise. Control samples were obtained from 100 uncomplicated term pregnancies of multiparous women with one or more typically developing biological children. Frequency of TIs was compared across the two groups. RESULTS Placentas from at-risk pregnancies had an eightfold increased odds of having two or more TIs compared with control samples (odds ratio: 8.0, 95% confidence interval: 3.6-18.0). The presence of≥2 TIs yielded a sensitivity of 41% and a specificity of 92% for predicting ASD risk status, whereas≥4 TIs yielded a sensitivity of 19%, a specificity of 99.9%, and a positive likelihood ratio of 242 and conservatively predicted an infant with a 74% probability of being at risk for ASD. CONCLUSIONS Our findings suggest that the placentas from women whose fetuses are at elevated risk for autism are markedly different from control placentas. These differences are manifested histologically as TIs. Their identification has the possibility of identifying newborns at risk for ASD who might benefit from targeted early interventions aimed at preventing or ameliorating behavioral symptoms and optimizing developmental outcomes.
Collapse
|
22
|
Hammock E, Veenstra-VanderWeele J, Yan Z, Kerr TM, Morris M, Anderson GM, Carter CS, Cook EH, Jacob S. Examining autism spectrum disorders by biomarkers: example from the oxytocin and serotonin systems. J Am Acad Child Adolesc Psychiatry 2012; 51:712-721.e1. [PMID: 22721594 PMCID: PMC3672055 DOI: 10.1016/j.jaac.2012.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/16/2012] [Accepted: 04/25/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a heritable but highly heterogeneous neuropsychiatric syndrome, which poses challenges for research relying solely on behavioral symptoms or diagnosis. Examining biomarkers may give us ways to identify individuals who demonstrate specific developmental trajectories and etiological factors related to ASD. Plasma oxytocin (OT) and whole-blood serotonin (5-HT) levels are consistently altered in some individuals with ASD. Reciprocal relationships have been described between brain oxytocin and serotonin systems during development. We therefore investigated the relationship between these peripheral biomarkers as well as their relationships with age. METHOD In our first study, we analyzed correlations between these two biomarkers in 31 children and adolescents who were diagnosed with autism and were not on medications. In our second study, we explored whether whole-blood 5-HT levels are altered in mice lacking the oxytocin receptor gene Oxtr. RESULTS In humans, OT and 5-HT were negatively correlated with each other (p < .05) and this relationship was most prominent in children less than 11 years old. Paralleling human findings, mice lacking Oxtr showed increased whole-blood 5-HT levels (p = .05), with this effect driven exclusively by mice less than 4 months old (p < .01). CONCLUSIONS Identifying relationships between identified ASD biomarkers may be a useful approach to connect otherwise disparate findings that span multiple systems in this heterogeneous disorder. Using neurochemical biomarkers to perform parallel studies in animal and human populations within a developmental context is a plausible approach to probe the root causes of ASD and to identify potential interventions.
Collapse
Affiliation(s)
- Elizabeth Hammock
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mazzone L, Ruta L, Reale L. Psychiatric comorbidities in asperger syndrome and high functioning autism: diagnostic challenges. Ann Gen Psychiatry 2012; 11:16. [PMID: 22731684 PMCID: PMC3416662 DOI: 10.1186/1744-859x-11-16] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 05/10/2012] [Indexed: 11/10/2022] Open
Abstract
Several psychiatric conditions, both internalizing and externalizing, have been documented in comorbidity with Asperger Syndrome (AS) and High Functioning Autism (HFA). In this review we examine the interplay between psychiatric comorbidities and AS/HFA. In particular, we will focus our attention on three main issues. First, we examine which psychiatric disorders are more frequently associated with AS/HFA. Second, we review which diagnostic tools are currently available for clinicians to investigate and diagnose the associated psychiatric disorders in individuals with AS/HFA. Third, we discuss the challenges that clinicians and researchers face in trying to determine whether the psychiatric symptoms are phenotypic manifestations of AS/HFA or rather they are the expression of a distinct, though comorbid, disorder. We will also consider the role played by the environment in the manifestation and interpretation of these symptoms. Finally, we will propose some strategies to try to address these issues, and we will discuss therapeutic implications.
Collapse
Affiliation(s)
- Luigi Mazzone
- Child Neuropsychiatry Unit, Department of Neuroscience, I,R,C,C,S, Children's Hospital, Bambino Gesù, Rome, Italy.
| | | | | |
Collapse
|
24
|
Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 2012; 109:5469-74. [PMID: 22431635 DOI: 10.1073/pnas.1112345109] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.
Collapse
|
25
|
Azmitia EC, Singh JS, Hou XP, Wegiel J. Dystrophic serotonin axons in postmortem brains from young autism patients. Anat Rec (Hoboken) 2011; 294:1653-62. [PMID: 21901837 PMCID: PMC4112519 DOI: 10.1002/ar.21243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/01/2010] [Indexed: 02/04/2023]
Abstract
Autism causes neuropathological changes in varied anatomical loci. A coherent neural mechanism to explain the spectrum of autistic symptomatology has not been proposed because most anatomical researchers focus on point-to-point functional neural systems (e.g., auditory and social networks) rather than considering global chemical neural systems. Serotonergic neurons have a global innervation pattern. Disorders Research Program, AS073234, Program Project (JW). Their cell bodies are found in the midbrain but they project their axons throughout the neural axis beginning in the fetal brain. This global system is implicated in autism by animal models and by biochemical, imaging, pharmacological, and genetics studies. However, no anatomical studies of the 5-HT innervation of autistic donors have been reported. Our review presents immunocytochemical evidence of an increase in 5-HT axons in postmortem brain tissue from autism donors aged 2.8-29 years relative to controls. This increase is observed in the principle ascending fiber bundles of the medial and lateral forebrain bundles, and in the innervation density of the amygdala and the piriform, superior temporal, and parahippocampal cortices. In autistic donors 8 years of age and up, several types of dystrophic 5-HT axons were seen in the termination fields. One class of these dystrophic axons, the thick heavily stained axons, was not seen in the brains of patients with neurodegenerative diseases. These findings provide morphological evidence for the involvement of serotonin neurons in the early etiology of autism, and suggest new therapies may be effective to blunt serotonin's trophic actions during early brain development in children.
Collapse
Affiliation(s)
- Efrain C Azmitia
- Department of Biology, New York University, New York, 10003, USA.
| | | | | | | |
Collapse
|
26
|
Dykens EM, Lee E, Roof E. Prader-Willi syndrome and autism spectrum disorders: an evolving story. J Neurodev Disord 2011; 3:225-37. [PMID: 21858456 PMCID: PMC3261277 DOI: 10.1007/s11689-011-9092-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/26/2011] [Indexed: 11/04/2022] Open
Abstract
Prader-Willi syndrome (PWS) is well-known for its genetic and phenotypic complexities. Caused by a lack of paternally derived imprinted material on chromosome 15q11-q13, individuals with PWS have mild to moderate intellectual disabilities, repetitive and compulsive behaviors, skin picking, tantrums, irritability, hyperphagia, and increased risks of obesity. Many individuals also have co-occurring autism spectrum disorders (ASDs), psychosis, and mood disorders. Although the PWS 15q11-q13 region confers risks for autism, relatively few studies have assessed autism symptoms in PWS or directly compared social, behavioral, and cognitive functioning across groups with autism or PWS. This article identifies areas of phenotypic overlap and difference between PWS and ASD in core autism symptoms and in such comorbidities as psychiatric disorders, and dysregulated sleep and eating. Though future studies are needed, PWS provides a promising alternative lens into specific symptoms and comorbidities of autism.
Collapse
Affiliation(s)
- Elisabeth M Dykens
- Departments of Psychology and Human Development, Pediatrics and Psychiatry, Vanderbilt University, Vanderbilt Kennedy Center, Nashville, TN, USA,
| | | | | |
Collapse
|
27
|
Mamikunian G. Modern laboratory evaluation of peptide and amines: a continuing role for radioimmunoassay? Endocrinol Metab Clin North Am 2011; 40:135-51, viii-ix. [PMID: 21349415 DOI: 10.1016/j.ecl.2010.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern medicine, and specifically clinical diagnosis, relies, among other diagnostic procedures, on the measurements of the biogenic analytes for elucidation and correlation of specific neuroendocrine markers. Tremendous advances have been made in imaging and radioactive uptake procedures to elucidate tumor presence and characterization. However, such advances only partially provide the fundamental degree of tumor activity and clinical confirmational validity. The author points out in some detail the problems that may arise when the methodological differences presented by each investigational study and investigators are not standardized. This variation causes a concern with the specific objectives of the investigator and the specific aims of the research project at hand, and ultimately for the validity of the published results.
Collapse
Affiliation(s)
- Gregg Mamikunian
- Inter Science Institute, 944 West Hyde Park Boulevard, Inglewood, CA 90302, USA.
| |
Collapse
|
28
|
Abstract
Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging ((1)H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.
Collapse
|