1
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
2
|
Li H, Lou R, Xu X, Xu C, Yu Y, Xu Y, Hu L, Xiang Y, Lin X, Tang S. The variations in human orphan G protein-coupled receptor QRFPR affect PI3K-AKT-mTOR signaling. J Clin Lab Anal 2021; 35:e23822. [PMID: 34018631 DOI: 10.1002/jcla.23822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND QRFPR is a recently identified member of the G protein-coupled receptor and is an orphan receptor for 26Rfa, which plays important role in the regulation of many physiological functions. METHODS Here, we employed whole exome sequencing (WES) to examine the patients with intellectual disability (ID) and difficulty in feeding. We performed SIFT and PolyPhen2 predictions for the variants. The structure model was built from scratch by I-TASSER. Here, results derived from a number of cell-based functional assays, including shRNA experiment, intracellular Ca2+ measurement, the expression of PI3 K-AKT-mTOR, and phosphorylation. The functional effect of QRFPR variants on PI3K-AKT-mTOR signaling was evaluated in vitro transfection experiments. RESULT Here, we identified two QRFPR variants at c.202 T>C (p.Y68H) and c.1111C>T (p.R371W) in 2 unrelated individuals. Structural analysis revealed that p.Y68H and p.R371W variants may affect the side chain structure of adjacent amino acids causing reduced binding of QRFPR to 26Rfa. The results show that QRFPR stimulated by 26Rfa leading to the transient rise of intracellular Ca2+ . The QRFPR variations p.Y68H and p.R371 W can reduce the mobilization of intracellular Ca2+ . The phosphorylation levels of the PI3K, Akt, and mTOR were significantly up- or downregulated by QRFPR overexpression or silencing, respectively. The QRFPR variations inhibited PI3K-AKT-mTOR signaling, resulting in downregulation of p-mTOR. CONCLUSIONS Our findings suggest that QRFPR acts as important role in neurodevelopment, and the effects of QRFPR are likely to be mediated by the Ca2+ -dependent PI3K-AKT-mTOR pathways. Importantly, these findings provide a foundation for future elucidation of GPCR-mediated signaling and the physiological implications.
Collapse
Affiliation(s)
- Huanzheng Li
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China.,Human Aging Research Institute, Nanchang University, Nanchang, China
| | - Ran Lou
- Department of Acupuncture, Wenzhou Central Hospital, Wenzhou, China
| | - Xueqin Xu
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chenyang Xu
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yuan Yu
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yunzhi Xu
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Lin Hu
- Department of Blood Transfusion, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanbao Xiang
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xuan Lin
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Shaohua Tang
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Dingli Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Diana MC, Peres FF, Justi V, Bressan RA, Lacerda ALT, Crippa JA, Hallak JEC, Abilio VC. Sodium nitroprusside is effective in preventing and/or reversing the development of schizophrenia-related behaviors in an animal model: The SHR strain. CNS Neurosci Ther 2018; 24:624-632. [PMID: 29656549 DOI: 10.1111/cns.12852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS The treatment of schizophrenia with antipsychotics is still unsatisfactory. Therefore, the search for new treatments and prevention is crucial, and animal models are fundamental tools for this objective. Preclinical and clinical data evidence the antipsychotic profile of sodium nitroprusside (SNP), a nitric oxide (NO) donor. We aimed to investigate SNP in treating and/or preventing the schizophrenia-related behaviors presented by the spontaneously hypertensive rats (SHR) strain. METHODS Wistar rats (WR) and SHRs were submitted to two schemes of treatment: (i) a single injection of SNP or vehicle in adulthood; (ii) a long-term early treatment from 30 to 60 postnatal day with SNP or vehicle. The following behaviors were evaluated 24 hours after the acute treatment or 30 days after the long-term treatment: locomotion, social interaction, and contextual fear conditioning. RESULTS Spontaneously hypertensive rats presented hyperlocomotion, decreased social interaction, and impaired contextual fear conditioning. Single injection of SNP decreased social interaction in both strains and induced a deficit in contextual fear conditioning in WR. Oppositely, early treatment with SNP prevented the behavioral abnormalities in adult SHRs without promoting any effects in WR. CONCLUSION Our preclinical data point to SNP as a preventive and safe strategy with a broad range of effectiveness to the positive, negative, and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Mariana C Diana
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Fernanda F Peres
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Veronica Justi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Rodrigo A Bressan
- LiNC-Laboratório Interdisciplinar de Neurociências Clínicas, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Acioly L T Lacerda
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,LiNC-Laboratório Interdisciplinar de Neurociências Clínicas, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanesssa Costhek Abilio
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Lack of association between SLC5A7 polymorphisms and Tourette syndrome in a Chinese Han population. Neurosci Lett 2017; 658:161-164. [PMID: 28830823 DOI: 10.1016/j.neulet.2017.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
Although Tourette syndrome (TS) is a chronic neuropsychiatric disorder whose pathogenesis remains unclear, genetic factors play an important role in the occurrence and development. A variety of studies have been shown that the candidate genes related to cholinergic neurons may be associated with the onset of TS. To investigate the association between the SLC5A7 polymorphisms and Tourette syndrome (TS) in the Chinese Han population, the SNP rs1013940, rs2433718, and rs4676169 were genotyped in 401 TS trios and 400 controls. The transmission disequilibrium test (TDT) and haplotype relative risk (HRR) compared genetic distributions of trios, while the chi-square test compared patients and controls. However, no transmission disequilibrium was found between the three SLC5A7 SNPs and TS. Therefore, we think that this gene may not be the main risk factor on the onset of TS. However, these results should be further validated in different populations.
Collapse
|
5
|
Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, Patel N, Hashem M, Ibrahim N, Abdulwahab F, Ewida N, Alsaif HS, Al Sharif H, Alamoudi W, Kentab A, Bashiri FA, Alnaser M, AlWadei AH, Alfadhel M, Eyaid W, Hashem A, Al Asmari A, Saleh MM, AlSaman A, Alhasan KA, Alsughayir M, Al Shammari M, Mahmoud A, Al-Hassnan ZN, Al-Husain M, Osama Khalil R, Abd El Meguid N, Masri A, Ali R, Ben-Omran T, El Fishway P, Hashish A, Ercan Sencicek A, State M, Alazami AM, Salih MA, Altassan N, Arold ST, Abouelhoda M, Wakil SM, Monies D, Shaheen R, Alkuraya FS. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry 2017; 22:615-624. [PMID: 27431290 DOI: 10.1038/mp.2016.113] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
Intellectual disability (ID) is a measurable phenotypic consequence of genetic and environmental factors. In this study, we prospectively assessed the diagnostic yield of genomic tools (molecular karyotyping, multi-gene panel and exome sequencing) in a cohort of 337 ID subjects as a first-tier test and compared it with a standard clinical evaluation performed in parallel. Standard clinical evaluation suggested a diagnosis in 16% of cases (54/337) but only 70% of these (38/54) were subsequently confirmed. On the other hand, the genomic approach revealed a likely diagnosis in 58% (n=196). These included copy number variants in 14% (n=54, 15% are novel), and point mutations revealed by multi-gene panel and exome sequencing in the remaining 43% (1% were found to have Fragile-X). The identified point mutations were mostly recessive (n=117, 81%), consistent with the high consanguinity of the study cohort, but also X-linked (n=8, 6%) and de novo dominant (n=19, 13%). When applied directly on all cases with negative molecular karyotyping, the diagnostic yield of exome sequencing was 60% (77/129). Exome sequencing also identified likely pathogenic variants in three novel candidate genes (DENND5A, NEMF and DNHD1) each of which harbored independent homozygous mutations in patients with overlapping phenotypes. In addition, exome sequencing revealed de novo and recessive variants in 32 genes (MAMDC2, TUBAL3, CPNE6, KLHL24, USP2, PIP5K1A, UBE4A, TP53TG5, ATOH1, C16ORF90, SLC39A14, TRERF1, RGL1, CDH11, SYDE2, HIRA, FEZF2, PROCA1, PIANP, PLK2, QRFPR, AP3B2, NUDT2, UFC1, BTN3A2, TADA1, ARFGEF3, FAM160B1, ZMYM5, SLC45A1, ARHGAP33 and CAPS2), which we highlight as potential candidates on the basis of several lines of evidence, and one of these genes (SLC39A14) was biallelically inactivated in a potentially treatable form of hypermanganesemia and neurodegeneration. Finally, likely causal variants in previously published candidate genes were identified (ASTN1, HELZ, THOC6, WDR45B, ADRA2B and CLIP1), thus supporting their involvement in ID pathogenesis. Our results expand the morbid genome of ID and support the adoption of genomics as a first-tier test for individuals with ID.
Collapse
Affiliation(s)
- S Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - E Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - H Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Al Sharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - W Alamoudi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A Kentab
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - F A Bashiri
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - M Alnaser
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - A H AlWadei
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M Alfadhel
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - W Eyaid
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - A Hashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - A Al Asmari
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M M Saleh
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - A AlSaman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - K A Alhasan
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - M Alsughayir
- Department of Psychiatry, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - M Al Shammari
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - A Mahmoud
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Z N Al-Hassnan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M Al-Husain
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - R Osama Khalil
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.,National Research Center, Cairo, Egypt
| | | | - A Masri
- Department of Pediatrics, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - R Ali
- Clinical & Metabolic Genetics, Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - T Ben-Omran
- Clinical & Metabolic Genetics, Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - P El Fishway
- Department of Neurosurgery, Program on Neurogenetics, Yale University School of Medicine, New Haven, CT, USA
| | - A Hashish
- National Research Center, Cairo, Egypt
| | - A Ercan Sencicek
- Department of Neurosurgery, Program on Neurogenetics, Yale University School of Medicine, New Haven, CT, USA
| | - M State
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - A M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M A Salih
- Department of Pediatrics, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - N Altassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - M Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - D Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - R Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Santos CM, Peres FF, Diana MC, Justi V, Suiama MA, Santana MG, Abílio VC. Peripubertal exposure to environmental enrichment prevents schizophrenia-like behaviors in the SHR strain animal model. Schizophr Res 2016; 176:552-559. [PMID: 27338757 DOI: 10.1016/j.schres.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a highly disabling mental disorder, in which genetics and environmental factors interact culminating in the disease. The treatment of negative symptoms and cognitive deficits with antipsychotics is currently inefficient and is an important field of research. Environmental enrichment (EE) has been suggested to improve some cognitive deficits in animal models of various psychiatric disorders. In this study, we aimed to evaluate a possible beneficial effect of early and long-term exposure to EE on an animal model of schizophrenia, the SHR strain. Young male Wistar rats (control strain) and SHRs (21 post-natal days) were housed for 6weeks in two different conditions: in large cages (10 animals per cage) containing objects of different textures, forms, colors and materials that were changed 3 times/week (EE condition) or in standard cages (5 animals per cage - Control condition). Behavioral evaluations - social interaction (SI), locomotion, prepulse inhibition of startle (PPI) and spontaneous alternation (SA) - were performed 6weeks after the end of EE. SHRs presented deficits in PPI (a sensorimotor impairment), SI (mimicking the negative symptoms) and SA (a working memory deficit), and also hyperlocomotion (modeling the positive symptoms). EE was able to reduce locomotion and increase PPI in both strains, and to prevent the working memory deficit in SHRs. EE also increased the number of neurons in the CA1 and CA3 of the hippocampus. In conclusion, EE can be a potential nonpharmacological strategy to prevent some behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Camila Mauricio Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Fernanda Fiel Peres
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mariana Cepollaro Diana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Veronica Justi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mayra Akimi Suiama
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Marcela Gonçalves Santana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
7
|
Ota VK, Noto C, Santoro ML, Spindola LM, Gouvea ES, Carvalho CM, Santos CM, Xavier G, Higuchi CH, Yonamine C, Moretti PN, Abílio VC, Hayashi MAF, Brietzke E, Gadelha A, Cordeiro Q, Bressan RA, Belangero SI. Increased expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic-naïve patients with first-episode psychosis. Eur Neuropsychopharmacol 2015; 25:2416-25. [PMID: 26476704 DOI: 10.1016/j.euroneuro.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/12/2015] [Accepted: 09/24/2015] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a multifactorial neurodevelopmental disorder with high heritability. First-episode psychosis (FEP) is a critical period for determining the disease prognosis and is especially helpful for identifying potential biomarkers associated with the onset and progression of the disorder. We investigated the mRNA expression of 12 schizophrenia-related genes in the blood of antipsychotic-naïve FEP patients (N=73) and healthy controls (N=73). To evaluate the influences of antipsychotic treatment and progression of the disorder, we compared the gene expression within patients before and after two months of treatment with risperidone (N=64). We observed a significantly increased myelin basic protein (MBP) and nuclear distribution protein nudE-like 1 (NDEL1) mRNA levels in FEP patients compared with controls. Comparing FEP before and after risperidone treatment, no significant differences were identified; however; a trend of relatively low NDEL1 expression was observed after risperidone treatment. Animals chronically treated with saline or risperidone exhibited no significant change in Ndel1 expression levels in the blood or the prefrontal cortex (PFC), suggesting that the trend of low NDEL1 expression observed in FEP patients after treatment is likely due to factors other than risperidone treatment (i.e., disease progression). In addition to the recognized association with schizophrenia, MBP and NDEL1 gene products also play an essential role in the functions that are deregulated in schizophrenia, such as neurodevelopment. Our data strengthen the importance of these biological processes in psychotic disorders, indicating that these changes can be detected peripherally and potentially represent putative novel blood biomarkers of susceptibility and disorder progression.
Collapse
Affiliation(s)
- Vanessa Kiyomi Ota
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Cristiano Noto
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Marcos Leite Santoro
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Leticia Maria Spindola
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Eduardo Sauerbronn Gouvea
- Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Carolina Muniz Carvalho
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Camila Maurício Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Gabriela Xavier
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Cinthia Hiroko Higuchi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Camila Yonamine
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Patricia Natalia Moretti
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Mirian Akemi F Hayashi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Elisa Brietzke
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Ary Gadelha
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Rodrigo Affonseca Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Sintia Iole Belangero
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil.
| |
Collapse
|
8
|
Diana MC, Santoro ML, Xavier G, Santos CM, Spindola LN, Moretti PN, Ota VK, Bressan RA, Abilio VC, Belangero SI. Low expression of Gria1 and Grin1 glutamate receptors in the nucleus accumbens of Spontaneously Hypertensive Rats (SHR). Psychiatry Res 2015; 229:690-4. [PMID: 26296755 DOI: 10.1016/j.psychres.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
The Spontaneously Hypertensive Rat (SHR) strain is a classical animal model for the study of essential hypertension. Recently, our group suggested that this strain could be a useful animal model for schizophrenia, which is a severe mental illness with involvement of glutamatergic system. The aim of this study is to investigate glutamatergic receptors (Gria1 and Grin1) and glycine transporter (Glyt1) gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) of SHR animals. The effects in gene expression of a chronic treatment with antipsychotic drugs (risperidone, haloperidol and clozapine) were also analyzed. Animals were treated daily for 30 days, and euthanized for brain tissue collection. The expression pattern was evaluated by Real Time Reverse-Transcriptase (RT) PCR technique. In comparison to control rats, SHR animals present a lower expression of both NMDA (Grin1) and AMPA (Gria1) gene receptors in the NAcc. Antipsychotic treatments were not able to change gene expressions in any of the regions evaluated. These findings provide evidence for the role of glutamatergic changes in schizophrenia-like phenotype of the SHR strain.
Collapse
Affiliation(s)
- Mariana C Diana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil; Department of Pharmacology, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo 669, 5th floor, CEP 04039032, Brazil
| | - Marcos L Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Gabriela Xavier
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil
| | - Camila Mauricio Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil; Department of Pharmacology, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo 669, 5th floor, CEP 04039032, Brazil
| | - Leticia N Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Patrícia N Moretti
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Vanessa K Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Rodrigo A Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Vanessa C Abilio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil; Department of Pharmacology, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo 669, 5th floor, CEP 04039032, Brazil
| | - Sintia I Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil.
| |
Collapse
|
9
|
Dela Peña I, Bang M, Lee J, de la Peña JB, Kim BN, Han DH, Noh M, Shin CY, Cheong JH. Common prefrontal cortical gene expression profiles between adolescent SHR/NCrl and WKY/NCrl rats which showed inattention behavior. Behav Brain Res 2015; 291:268-276. [PMID: 26048425 DOI: 10.1016/j.bbr.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
Factor analyses of attention-deficit/hyperactivity (ADHD) symptoms divide the behavioral symptoms of ADHD into two separate domains, one reflecting inattention and the other, a combination of hyperactivity and impulsivity. Identifying domain-specific genetic risk variants may aid in the discovery of specific biological risk factors for ADHD. In contrast with data available on genes involved in hyperactivity and impulsivity, there is limited information on the genetic influences of inattention. Transcriptional profiling analysis in animal models of disorders may provide an important tool to identify genetic involvement in behavioral phenotypes. To explore some of the potential genetic underpinnings of ADHD inattention, we examined common differentially expressed genes (DEGs) in the prefrontal cortex of SHR/NCrl, the most validated animal model of ADHD and WKY/NCrl, animal model of ADHD-inattentive type. In contrast with Wistar rats, strain representing the "normal" heterogeneous population, SHR/NCrl and WKY/NCrl showed inattention behavior in the Y-maze task. The common DEGs in the PFC of SHR/NCrl and WKY/NCrl vs. Wistar rats are those involved in transcription (e.g. Creg1, Thrsp, Zeb2), synaptic transmission (e.g. Atp2b2, Syt12, Chrna5), neurological system process (e.g. Atg7, Cacnb4, Grin3a), and immune response (e.g. Atg7, Ip6k2, Mx2). qRT-PCR analyses validated expression patterns of genes representing the major functional gene families among the DEGs (Grin3a, Thrsp, Vof-16 and Zeb2). Although further studies are warranted, the present findings indicate novel genes associated with known functional pathways of relevance to ADHD which are assumed to play important roles in the etiology of ADHD-inattentive subtype.
Collapse
Affiliation(s)
- Ike Dela Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea; Department of Pharmaceutical and Administrative Sciences, Loma Linda University, CA 92350, USA.
| | - Minji Bang
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jinhee Lee
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Clinical Research Institute, Seoul National University Hospital, 28 Yungundong, Chongrogu, Seoul 110-744, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Medical School, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
10
|
Xu Y, Chen XT, Luo M, Tang Y, Zhang G, Wu D, Yang B, Ruan DY, Wang HL. Multiple epigenetic factors predict the attention deficit/hyperactivity disorder among the Chinese Han children. J Psychiatr Res 2015; 64:40-50. [PMID: 25840828 DOI: 10.1016/j.jpsychires.2015.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most common psychiatric disorders of childhood. Despite its prevalence, the critical factors involved in its development remain to be identified. It was recently suggested that epigenetic mechanisms probably contribute to the etiology of ADHD. The present study was designed to examine the associations of epigenetic markers with ADHD among Chinese Han children, aiming to establish the prediction model for this syndrome from the epigenetic perspective. We conducted a pair-matching case-control study, and the ADHD children were systematically evaluated via structured diagnostic interviews, including caregiver interviews, based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, revised criteria (DSM-IV-R). The expression levels of risk genes DAT1, DRD4, DRD5, as well as their promoter methylation, were determined respectively, followed by the expression profiles of histone-modifying genes p300, MYST4, HDAC1, MeCP2. The multivariate logistic regressions were performed to establish ADHD prediction models. All of the seven genes tested were identified as risk factors for ADHD. The methylation of one critical CpG site located upstream of DRD4 was shown to affect its transcription, suggesting a role in ADHD's development. Aberrant DNA methylation and histone acetylation were indicated in ADHD patients. In addition, a prediction model was established using the combination of p300, MYST4 and HDAC1, with the accuracy of 0.9338. This is, to our knowledge, the first study to clearly demonstrate the associations between epigenetic markers and ADHD, shedding light on the preliminary diagnosis and etiological studies of this widespread disorder.
Collapse
Affiliation(s)
- Yi Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China.
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, 230031, PR China.
| | - Man Luo
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China.
| | - Yuqing Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China.
| | - Guangxiang Zhang
- Biostatistics and Data Management Core, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - De Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, PR China.
| | - Bin Yang
- Department of Child Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui Province, 230031, PR China.
| | - Di-Yun Ruan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China.
| |
Collapse
|
11
|
Attention-Deficit/Hyperactivity Disorder: Focus upon Aberrant N-Methyl-D-Aspartate Receptors Systems. Curr Top Behav Neurosci 2015; 29:295-311. [PMID: 26718589 DOI: 10.1007/7854_2015_415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) pathophysiology persists in an obscure manner with complex interactions between symptoms, staging, interventions, genes, and environments. Only on the basis of increasing incidence of the disorder, the need for understanding is greater than ever. The notion of an imbalance between central inhibitory/excitatory neurotransmitters is considered to exert an essential role. In this chapter, we first review how the default mode network functions and dysfunction in individuals diagnosed with ADHD. We also present and briefly review some of the animal models used to examine the neurobiological aspects of ADHD. There is much evidence indicating that compounds/interventions that antagonize/block glutamic acid receptors and/or block the glutamate signal during the "brain growth spurt" or in the adult animal may induce functional and biomarker deficits. Additionally, we present evidence suggesting that animals treated with glutamate blockers at the period of the "brain growth spurt" fail to perform the exploratory activity, observed invariably with control mice, that is associated with introduction to a novel environment (the test cages). Later, when the control animals show less locomotor and rearing activity, i.e., interest in the test cages, the MK-801, ketamine and ethanol treated mice showed successively greater levels of locomotion and rearing (interest), i.e., they fail to "habituate" effectively, implying a cognitive dysfunction. These disturbances of glutamate signaling during a critical period of brain development may contribute to the ADHD pathophysiology. As a final addition, we have briefly identified new research venues in the interaction between ADHD, molecular studies, and personality research.
Collapse
|